数理统计内容总结(全面)

合集下载

概率论与数理统计知识点总结!-知识归纳整理

概率论与数理统计知识点总结!-知识归纳整理

《概率论与数理统计》 第一章随机事件及其概率§1.1 随机事件一、给出事件描述,要求用运算关系符表示事件: 二、给出事件运算关系符,要求判断其正确性: §1.2 概率古典概型公式:P (A )=所含样本点数所含样本点数ΩA 实用中经常采用“罗列组合”的想法计算补例1:将n 个球随机地放到n 个盒中去,问每个盒子恰有1个球的概率是多少?解:设A :“每个盒子恰有1个球”。

求:P(A)=?Ω所含样本点数:n n n n n =⋅⋅⋅...Α所含样本点数:!1...)2()1(n n n n =⋅⋅-⋅-⋅n n n A P !)(=∴补例2:将3封信随机地放入4个信箱中,问信箱中信的封数的最大数分别为1、2、3的概率各是多少?解:设A i :“信箱中信的最大封数为i”。

(i =1,2,3)求:P(A i )=?Ω所含样本点数:6444443==⋅⋅A 1所含样本点数:24234=⋅⋅836424)(1==∴A PA 2所含样本点数:363423=⋅⋅C1696436)(2==∴A PA 3所含样本点数:4433=⋅C161644)(3==∴A P注:由概率定义得出的几个性质:知识归纳整理1、0<P (A )<12、P(Ω)=1,P(φ) =0 §1.3 概率的加法法则定理:设A 、B 是互不相容事件(AB=φ),则: P (A ∪B )=P (A )+P (B )推论1:设A 1、 A 2、…、 A n 互不相容,则 P(A 1+A 2+...+ A n )= P(A 1) + P(A 2) +…+ P(A n )推论2:设A 1、 A 2、…、 A n 构成完备事件组,则 P(A 1+A 2+...+ A n )=1推论3: P (A )=1-P (A )推论4:若B ⊃A ,则P(B -A)= P(B)-P(A) 推论5(广义加法公式):对任意两个事件A 与B ,有P(A ∪B)=P(A)+P(B)-P(A B) 补充——对偶律:nnAA A A A A ⋂⋂⋂=⋃⋃⋃ (2)121nnAA A A A A ⋃⋃⋃=⋂⋂⋂ (2)121§1.4 条件概率与乘法法则条件概率公式:P(A/B)=)()(B P AB P (P(B)≠0)P(B/A)= )()(A P AB P (P(A)≠0)∴P (AB )=P (A /B )P (B )= P (B / A )P (A )有时须与P (A+B )=P (A )+P (B )-P (AB )中的P (AB )联系解题。

根据数理统计知识点归纳总结(精华版)

根据数理统计知识点归纳总结(精华版)

根据数理统计知识点归纳总结(精华版)
1. 引言
本文旨在对数理统计的基本知识点进行归纳总结,帮助读者快速了解数理统计的核心概念和方法。

2. 概率论基础
- 概率的基本定义和性质
- 随机事件的运算规则
- 条件概率和独立性
- 贝叶斯定理
3. 随机变量和分布
- 随机变量的定义和分类
- 离散型随机变量和连续型随机变量
- 常见离散型分布(如伯努利分布、二项分布、泊松分布)
- 常见连续型分布(如均匀分布、正态分布、指数分布)
4. 数理统计的基本概念
- 总体和样本的概念
- 估计与抽样分布
- 统计量和抽样分布
5. 参数估计
- 点估计的定义和性质
- 常见的点估计方法(如最大似然估计、矩估计)
- 区间估计的基本原理和方法
6. 假设检验
- 假设检验的基本思想和步骤
- 单侧检验和双侧检验
- 假设检验中的错误类型和显著性水平
- 常见的假设检验方法(如正态总体均值的检验、两样本均值的检验)
7. 相关分析
- 相关系数的定义和计算方法
- 相关分析的假设检验
- 线性回归分析的基本原理和方法
8. 统计软件的应用
- 常见的统计软件介绍(如SPSS、R、Python)
- 统计软件的基本操作(如数据导入、数据处理、统计分析)
9. 结语
本文对数理统计的核心知识点进行了简要的概括,供读者参考和研究。

通过研究数理统计,读者可以更好地理解和应用统计学在实际问题中的作用,提高数据分析和决策能力。

以上是根据数理统计知识点的归纳总结,希望有助于您对数理统计的理解和学习。

如需深入了解各个知识点的具体内容,请参考相关教材或课程。

概率论与数理统计公式定理全总结

概率论与数理统计公式定理全总结

概率论与数理统计公式定理全总结一、概率论公式:1.基本概率公式:对于随机试验E,事件A的概率可以表示为P(A)=事件A的样本点数/所有样本点数。

2.条件概率公式:对于事件A和事件B,若P(B)>,则事件A在事件B发生的条件下的概率可以表示为P(A,B)=P(A∩B)/P(B)。

3.全概率公式:对于互不相容事件A1,A2,...,An,它们的和事件为全样本空间S,且概率P(Ai)>,则对于任意事件B有P(B)=Σ(P(Ai)×P(B,Ai))。

4.贝叶斯公式:对于互不相容事件A1,A2,...,An,它们的和事件为全样本空间S,且概率P(Ai)>,则对于任意事件B,有P(Ai,B)=(P(B,Ai)×P(Ai))/Σ(P(B,Ai)×P(Ai))。

二、数理统计公式:1.期望:随机变量X的期望E(X)=Σ(Xi×P(Xi)),其中Xi为随机变量X的取值,P(Xi)为随机变量X取值为Xi的概率。

2. 方差:随机变量X的方差Var(X) = Σ((Xi - E(X))^2 ×P(Xi)),其中Xi为随机变量X的取值,E(X)为随机变量X的期望,P(Xi)为随机变量X取值为Xi的概率。

3. 协方差:随机变量X和Y的协方差Cov(X,Y) = E((X - E(X))(Y - E(Y))),其中E(X)和E(Y)分别为随机变量X和Y的期望。

4. 相关系数:随机变量X和Y的相关系数ρ(X,Y) = Cov(X,Y) / √(Var(X) × Var(Y)),其中Cov(X,Y)为随机变量X和Y的协方差,Var(X)和Var(Y)分别为随机变量X和Y的方差。

三、概率论与数理统计定理:1.大数定律:对于独立同分布的随机变量X1,X2,...,Xn,它们的均值X̄=(X1+X2+...+Xn)/n,当n趋向于无穷大时,X̄趋向于X的期望E(X)。

概率论与数理统计知识点总结(免费超详细版)80669

概率论与数理统计知识点总结(免费超详细版)80669

《概率论与数理统计》第一章 概率论的基本概念§2.样本空间、随机事件1.事件间的关系 B A ⊂则称事件B 包含事件A ,指事件A 发生必然导致事件B 发生B }x x x { ∈∈=⋃或A B A 称为事件A 与事件B 的和事件,指当且仅当A ,B 中至少有一个发生时,事件B A ⋃发生B }x x x { ∈∈=⋂且A B A 称为事件A 与事件B 的积事件,指当A ,B 同时发生时,事件B A ⋂发生B }x x x { ∉∈=且—A B A 称为事件A 与事件B 的差事件,指当且仅当A 发生、B 不发生时,事件B A —发生φ=⋂B A ,则称事件A 与B 是互不相容的,或互斥的,指事件A 与事件B 不能同时发生,基本事件是两两互不相容的且S =⋃B A φ=⋂B A ,则称事件A 与事件B 互为逆事件,又称事件A 与事件B 互为对立事件2.运算规则 交换律A B B A A B B A ⋂=⋂⋃=⋃结合律)()( )()(C B A C B A C B A C B A ⋂=⋂⋃⋃=⋃⋃ 分配律 )()B (C A A C B A ⋃⋂⋃=⋂⋃)( ))(()( C A B A C B A ⋂⋂=⋃⋂ 徳摩根律B A B A A B A ⋃=⋂⋂=⋃ B —§3.频率与概率定义 在相同的条件下,进行了n 次试验,在这n 次试验中,事件A 发生的次数A n 称为事件A 发生的频数,比值n n A 称为事件A 发生的频率概率:设E 是随机试验,S 是它的样本空间,对于E 的每一事件A 赋予一个实数,记为P (A ),称为事件的概率 1.概率)(A P 满足下列条件:(1)非负性:对于每一个事件A 1)(0≤≤A P (2)规范性:对于必然事件S 1)S (=P(3)可列可加性:设n A A A ,,,21Λ是两两互不相容的事件,有∑===nk kn k kA P A P 11)()(Y (n 可以取∞)2.概率的一些重要性质: (i ) 0)(=φP(ii )若n A A A ,,,21Λ是两两互不相容的事件,则有∑===nk kn k kA P A P 11)()(Y (n 可以取∞)(iii )设A ,B 是两个事件若B A ⊂,则)()()(A P B P A B P -=-,)A ()B (P P ≥ (iv )对于任意事件A ,1)(≤A P(v ))(1)(A P A P -= (逆事件的概率)(vi )对于任意事件A ,B 有)()()()(AB P B P A P B A P -+=⋃§4等可能概型(古典概型)等可能概型:试验的样本空间只包含有限个元素,试验中每个事件发生的可能性相同 若事件A包含k个基本事件,即}{}{}{2]1k i i i e e e A Y ΛY Y =,里个不同的数,则有中某,是,,k k n 2,1i i i ,21ΛΛ()中基本事件的总数包含的基本事件数S }{)(1j A n k e P A P kj i ===∑= §5.条件概率(1) 定义:设A,B 是两个事件,且0)(>A P ,称)()()|(A P AB P A B P =为事件A 发生的条件下事件B 发生的条件概率(2) 条件概率符合概率定义中的三个条件1。

概率论与数理统计知识点总结(免费超详细版)

概率论与数理统计知识点总结(免费超详细版)

《概率论与数理统计》第一章概率论的基本概念§2.样本空间、随机事件1.事件间的关系 A B 则称事件 B 包含事件 A ,指事件 A 发生必然导致事件 B 发生A B {x x A或x B} 称为事件 A 与事件 B 的和事件,指当且仅当 A ,B 中至少有一个发生时,事件 A B 发生A B {x x A且x B} 称为事件 A 与事件 B 的积事件,指当A,B 同时发生时,事件A B 发生A—B {x x A且x B} 称为事件A 与事件 B 的差事件,指当且仅当 A 发生、B 不发生时,事件 A — B 发生A B ,则称事件 A 与B 是互不相容的,或互斥的,指事件 A 与事件 B 不能同时发生,基本事件是两两互不相容的A B S A B ,则称事件 A 与事件 B 互为逆事件,又称事件 A 与事件 B 互为且对立事件2.运算规则交换律 A B B A A B B A结合律(A B) C A (B C) ( A B)C A(B C)分配律 A (B C)(A B) ( A C)A (B C)(A B)( A C)—徳摩根律 A B A B A B A B§3.频率与概率定义在相同的条件下,进行了n 次试验,在这n 次试验中,事件 A 发生的次数n称为事件AA 发生的频数,比值n nA 称为事件 A 发生的频率概率:设E是随机试验,S 是它的样本空间,对于E 的每一事件A赋予一个实数,记为P(A),称为事件的概率1.概率P( A)满足下列条件:(1)非负性:对于每一个事件 A 0 P( A) 1(2)规范性:对于必然事件S P (S) 11(3)可列可加性:设A1, A2 , ,A是两两互不相容的事件,有nn nP A k ) P( A) ( (n可kk 1 k 1以取)2.概率的一些重要性质:(i )P( ) 0(ii )若A1, A2 , ,A是两两互不相容的事件,则有n Pn n( (n可以取)A k ) P( A )kk 1 k 1(iii )设A,B 是两个事件若 A B ,则P(B A) P( B) P( A) ,P( B) P(A) (iv)对于任意事件A,P(A) 1(v)P( A) 1 P(A) (逆事件的概率)(vi)对于任意事件A,B 有P(A B) P( A) P( B) P( A B)§4等可能概型(古典概型)等可能概型:试验的样本空间只包含有限个元素,试验中每个事件发生的可能性相同若事件 A 包含k 个基本事件,即{e i } {e } {e }A ,里1 i i k] 2,k是,中某个不同的数,则有i1 i 2, ,i k 1,2 nP( A)j k1P { eij}knA包含的基本事件数S中基本事件的总数§5.条件概率(1)定义:设A,B 是两个事件,且P( A) 0 ,称P( A B)P(B | A) 为事件 A 发生的条P(A)件下事件 B 发生的条件概率(2)条件概率符合概率定义中的三个条件。

考研数学数理统计基础知识点总结

考研数学数理统计基础知识点总结

考研数学数理统计基础知识点总结在准备考研数学的过程中,掌握数理统计基础知识是非常重要的。

本文将为您总结一些常见的数理统计基础知识点,帮助您更好地备考。

一、概率论基础知识1. 事件与样本空间:事件是指样本空间中的某个子集,样本空间则是指随机试验的所有可能结果的集合。

2. 概率的定义:概率是指事件发生的可能性大小,其取值范围在0到1之间。

3. 概率的运算:包括加法公式和乘法公式。

加法公式适用于互斥事件的概率计算,乘法公式则适用于独立事件的概率计算。

4. 条件概率:指在已知某一事件发生的条件下,另一事件发生的概率。

5. 贝叶斯定理:用于计算事件的后验概率,在已经得到一些信息的情况下,通过先验概率和条件概率计算出事件的后验概率。

二、随机变量与概率分布1. 随机变量的概念:随机变量是指随机试验结果的某个函数,可以是离散的或连续的。

2. 概率质量函数与概率密度函数:对于离散型随机变量,其概率可以通过概率质量函数来描述;对于连续型随机变量,则需要使用概率密度函数。

3. 常见的离散型随机变量:包括伯努利分布、二项分布、泊松分布等。

4. 常见的连续型随机变量:包括均匀分布、正态分布、指数分布等。

三、统计推断1. 抽样与抽样分布:抽样是指从总体中选取一部分个体进行研究,抽样分布则是指统计量在大量抽样下的分布情况。

2. 参数估计:根据样本数据对总体的某个参数进行估计,可以使用点估计和区间估计两种方法。

3. 假设检验:对总体参数的某个假设进行检验,包括设置原假设和备择假设,以及计算检验统计量和判断拒绝域。

4. 方差分析:一种用于比较两个或多个总体均值是否有显著差异的统计方法,适用于独立样本、配对样本和重复测量样本。

四、相关与回归分析1. 相关分析:用于判断两个变量之间的相关性强弱,包括计算相关系数和进行假设检验。

2. 简单线性回归分析:用于建立一个自变量与因变量之间的线性关系模型,通过最小二乘法来估计回归系数。

3. 多元线性回归分析:在简单线性回归的基础上,将多个自变量引入回归模型中进行分析,以探究多个变量对因变量的影响。

概率论与数理统计知识点总结

某件事由两个步骤来完成,第一个步骤可由m种方法完成,第二个步骤可由n种方法来完成,则这件事可由m×n种方法来完成。
(3)一些常见排列
重复排列和非重复排列(有序)
对立事件(至少有一个)
顺序问题
(4)随机试验和随机事件
如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。
乘法公式:
更一般地,对事件A1,A2,…An,若P(A1A2…An-1)>0,则有
… …… … 。
(14)独立性
①两个事件的独立性
设事件 、 满足 ,则称事件 、 是相互独立的。
若事件 、 相互独立,且 ,则有
若事件 、 相互独立,则可得到 与 、 与 、 与 也都相互独立。
必然事件 和不可能事件?与任何事件都相互独立。
设离散型随机变量 的可能取值为Xk(k=1,2,…)且取各个值的概率,即事件(X=Xk)的概率为
P(X=xk)=pk,k=1,2,…,
则称上式为离散型随机变量 的概率分布或分布律。有时也用分布列的形式给出:

显然分布律应满足下列条件:
(1) , , (2) 。
(2)连续型随机变量的分布密度
设 是随机变量 的分布函数,若存在非负函数 ,对任意实数 ,有
, ,
其中 、 为常数,则称随机变量 服从参数为 、 的正态分布或高斯(Gauss)分布,记为 。
具有如下性质:
1° 的图形是关于 对称的;
2°当 时, 为最大值;
若 ,则 的分布函数为
参数 、 时的正态分布称为标准正态分布,记为 ,其密度函数记为
, ,
分布函数为

(完整版)概率论与数理统计知识点总结(免费超详细版)

《概率论与数理统计》第一章 概率论的基本概念§2.样本空间、随机事件1.事件间的关系 B A ⊂则称事件B 包含事件A ,指事件A 发生必然导致事件B 发生B }x x x { ∈∈=⋃或A B A 称为事件A 与事件B 的和事件,指当且仅当A ,B 中至少有一个发生时,事件B A ⋃发生B }x x x { ∈∈=⋂且A B A 称为事件A 与事件B 的积事件,指当A ,B 同时发生时,事件B A ⋂发生B }x x x { ∉∈=且—A B A 称为事件A 与事件B 的差事件,指当且仅当A 发生、B 不发生时,事件B A —发生φ=⋂B A ,则称事件A 与B 是互不相容的,或互斥的,指事件A 与事件B 不能同时发生,基本事件是两两互不相容的且S =⋃B A φ=⋂B A ,则称事件A 与事件B 互为逆事件,又称事件A 与事件B 互为对立事件2.运算规则 交换律A B B A A B B A ⋂=⋂⋃=⋃结合律)()( )()(C B A C B A C B A C B A ⋂=⋂⋃⋃=⋃⋃ 分配律 )()B (C A A C B A ⋃⋂⋃=⋂⋃)( ))(()( C A B A C B A ⋂⋂=⋃⋂ 徳摩根律B A B A A B A ⋃=⋂⋂=⋃ B —§3.频率与概率定义 在相同的条件下,进行了n 次试验,在这n 次试验中,事件A 发生的次数A n 称为事件A 发生的频数,比值n n A 称为事件A 发生的频率概率:设E 是随机试验,S 是它的样本空间,对于E 的每一事件A 赋予一个实数,记为P (A ),称为事件的概率 1.概率)(A P 满足下列条件:(1)非负性:对于每一个事件A 1)(0≤≤A P (2)规范性:对于必然事件S 1)S (=P(3)可列可加性:设n A A A ,,,21 是两两互不相容的事件,有∑===nk kn k kA P A P 11)()( (n 可以取∞)2.概率的一些重要性质: (i ) 0)(=φP(ii )若n A A A ,,,21 是两两互不相容的事件,则有∑===nk kn k kA P A P 11)()((n 可以取∞)(iii )设A ,B 是两个事件若B A ⊂,则)()()(A P B P A B P -=-,)A ()B (P P ≥ (iv )对于任意事件A ,1)(≤A P(v ))(1)(A P A P -= (逆事件的概率)(vi )对于任意事件A ,B 有)()()()(AB P B P A P B A P -+=⋃§4等可能概型(古典概型)等可能概型:试验的样本空间只包含有限个元素,试验中每个事件发生的可能性相同 若事件A包含k个基本事件,即}{}{}{2]1k i i i e e e A =,里个不同的数,则有中某,是,,k k n 2,1i i i ,21 ()中基本事件的总数包含的基本事件数S }{)(1j A n k e P A P kj i ===∑= §5.条件概率(1) 定义:设A,B 是两个事件,且0)(>A P ,称)()()|(A P AB P A B P =为事件A 发生的条件下事件B 发生的条件概率(2) 条件概率符合概率定义中的三个条件1。

概率论与数理统计复习资料知识点总结

《概率论与数理统计》第一章 随机事件与概率1.事件的关系 φφ=Ω-⋃⊂AB A B A AB B A B A 2.运算规则 (1)BA AB A B B A =⋃=⋃(2))()( )()(BC A C AB C B A C B A =⋃⋃=⋃⋃(3)))(()( )()()(C B C A C AB BC AC C B A ⋃⋃=⋃⋃=⋃ (4)B A AB B A B A ⋃==⋃3.概率)(A P 满足的三条公理及性质: (1)1)(0≤≤A P (2)1)(=ΩP(3)对互不相容的事件n A A A ,,,21 ,有∑===nk kn k kA P A P 11)()((n 可以取∞)(4) 0)(=φP (5))(1)(A P A P -=(6))()()(AB P A P B A P -=-,若B A ⊂,则)()()(A P B P A B P -=-,)()(B P A P ≤ (7))()()()(AB P B P A P B A P -+=⋃(8))()()()()()()()(ABC P BC P AC P AB P C P B P A P C B A P +---++=⋃⋃ 4.古典概型:基本事件有限且等可能5.几何概率 6.条件概率(1) 定义:若0)(>B P ,则)()()|(B P AB P B A P =(2) 乘法公式:)|()()(B A P B P AB P = 若n B B B ,,21为完备事件组,0)(>i B P ,则有 (3) 全概率公式: ∑==ni iiB A P B P A P 1)|()()((4) Bayes 公式: ∑==ni iik k k B A P B P B A P B P A B P 1)|()()|()()|(7.事件的独立性: B A ,独立)()()(B P A P AB P =⇔ (注意独立性的应用)第二章 随机变量与概率分布1. 离散随机变量:取有限或可列个值,i i p x X P ==)(满足(1)0≥i p ,(2)∑iip=1(3)对任意R D ⊂,∑∈=∈Dx i ii pD X P :)(2. 连续随机变量:具有概率密度函数)(x f ,满足(1)1)(,0)(-=≥⎰+∞∞dx x f x f ;(2)⎰=≤≤badx x f b X a P )()(;(3)对任意R a ∈,0)(==a X P4. 分布函数 )()(x X P x F ≤=,具有以下性质(1)1)( ,0)(=+∞=-∞F F ;(2)单调非降;(3)右连续; (4))()()(a F b F b X a P -=≤<,特别)(1)(a F a X P -=>; (5)对离散随机变量,∑≤=xx i ii px F :)(;(6)对连续随机变量,⎰∞-=xdt t f x F )()(为连续函数,且在)(x f 连续点上,)()('x f x F =5. 正态分布的概率计算 以)(x Φ记标准正态分布)1,0(N 的分布函数,则有 (1)5.0)0(=Φ;(2))(1)(x x Φ-=-Φ;(3)若),(~2σμN X ,则)()(σμ-Φ=x x F ;(4)以αu 记标准正态分布)1,0(N 的上侧α分位数,则)(1)(αααu u X P Φ-==> 6. 随机变量的函数 )(X g Y =(1)离散时,求Y 的值,将相同的概率相加;(2)X 连续,)(x g 在X 的取值范围内严格单调,且有一阶连续导数,则|))((|))(()('11y g y g f y f X Y --=,若不单调,先求分布函数,再求导。

数理统计知识点梳理总结

数理统计知识点梳理总结一、统计学简介统计学是一门研究数据收集、处理、分析和解释的学科。

在现代社会中,数据在各个领域都扮演着重要的角色,因此统计学成为了一门不可或缺的科学。

统计学的主要目的是通过对数据的分析和解释,从而得出对整体或者局部的结论。

统计学广泛应用于政治、经济、社会学、医学、环境科学、工程学等各个领域。

二、数据类型在统计学中,数据通常可以分为两种类型:定量数据和定性数据。

1. 定量数据:定量数据是可进行数值量度的数据,通常具有数值意义,可以进行数学运算。

例如,身高、体重、温度、成绩等都属于定量数据。

2. 定性数据:定性数据是指不能进行数值量度的数据,通常表示品质等性质。

例如,性别、颜色、职业等都属于定性数据。

三、描述统计描述统计是统计学中的一项重要内容,它包括了数据的整体描述和规律性分析。

描述统计的主要方法包括:中心趋势度量、离散程度度量和分布形态度量。

1. 中心趋势度量:中心趋势度量是用来描述数据集中趋势的度量。

主要包括均值、中位数和众数。

- 均值:均值是指将所有数据相加后除以数据的个数得到的平均值。

- 中位数:中位数是将数据按大小顺序排列后,处于中间位置的数值。

- 众数:众数是指数据集中出现次数最多的数值。

2. 离散程度度量:离散程度度量是用来描述数据分布的离散程度的度量。

主要包括极差、方差和标准差。

- 极差:极差是指数据的最大值和最小值之间的差距。

- 方差:方差是描述数据分布离散程度的一种度量,它是各个数据与均值之间差的平方和的平均值。

- 标准差:标准差是方差的平方根,它是用来度量数据的分布离散程度的指标。

3. 分布形态度量:分布形态度量是用来描述数据分布形态的度量。

主要包括偏态系数和峰态系数。

- 偏态系数:偏态系数是用来描述数据分布偏斜程度的指标。

- 峰态系数:峰态系数是用来描述数据分布峰态程度的指标。

四、概率概率是统计学中的一个重要概念,它用来描述事件发生的可能性。

概率可以分为主观概率和客观概率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

������分布������(������; ������, ������) = { ������~������(������, ������), ������(������) =
������ ������+������
������(������,������)
, 1 > ������ > 0
0, 其他 , ������(������) = (������+������)2
������1 +������2 −2
2) 2 ) (������ 若������������ ~������(������1 , ������1 ������������ ~������(������2 , ������2 ������ , ������ ������ ������. ������. ������)
̅ −������ ̅ )−(������1 −������2 ) (������ ������������ √
1 1 + ������1 ������2
~������(������1 + ������2 − 2) ������������ = √
∗2 +(������ −1)������ ∗2 (������1 −1)������1 2 2
̅ 与������ ∗2 相互独立 (3)������ (4)������ = √
̅ −������) ������(������ ������ ∗
~������(������ − 1)
若������������ ~������(������1 , ������ 2 ) ������������ ~������(������2 , ������ 2 ) (������������ , ������������ ������. ������. ������) ������ =
t 分布������(������; ������) =
������+1 ) 2 ������ √2������Γ( 2 )
Γ(
(1 +
������ 2 ������
)

������+1 2
������~������(������)自由度为 n 的 t 分布 ������ → ∞ ������~������(0,1), ������(������) = 0, ������(������) = ������~������(0,1), ������~������ 2 (������) (������, ������ ������. ������. ������) ������ =
������ 2 ������������ ~������ 2 (������������ ), ∑������ ������=1 ������������ ~������ (∑������=1 ������������ ) (������������ ������. ������. ������)
̅ = ∑������ 样本均值������ ������=1 ������������
������ ������ 2 ̅2 ̅ 2 样本方差������ 2 = ∑������ ������=1(������������ − ������ ) = ∑������=1 ������������ −������ ������ ������ 1 1
������ → ∞
������−������ √2������
~������(0,1)
2 2 ������������ ~������(0,1), (������������ ������. ������. ������) → ∑������ ������=1 ������������ ~������ (������)
������ =
2 ������ ∗2 ������2 1 2 ������ ∗2 ������1 2
=
∗2 /������ 2 ������1 1 ∗2 /������ 2 ������2 2
=
������ √������
∗2 /������ ∗2 ������1 2 2 /������ 2 ������1 2
有效性 ̂ 的 均 方 误 差 为 ������������������(������ ̂, ������) = ̂ − ������)2 = ������(������ ̂) + (������������ ̂ − ������)2 。 若 存 在 ������ ̂∗ ������ ̂ ������(������ ̂ ∗ , ������) ≤ ������������������(������ ̂, ������),则������ ̂ ∗ 为一致最小均方误差估计量 使得所有的������都有������������������(������ ̂) = ������,则一致均方误差最小准则等价为方差最小准则,即������������������(������ ̂ , ������) = ������(������ ̂)。若无偏估 若������(������ ̂1 ,������ ̂2 ,������(������ ̂1 ) < ������(������ ̂2 ),称������ ̂1 比������ ̂2 有效 计������ ̂: ������������ (������ ̂) = ������, ������������ (������ ̂) < ∞, ∀������ ∈ Θ} ������ = {������ ̂: ������������ (������ ̂0 ) = 0, ������������ (������ ̂0 ) < ∞, ∀������ ∈ Θ} ������0 = {������ ̂ ∗ 为一致最小方差无偏估计的充要条件:对每一个������ ̂0 ∈ ������0 都有������������ (������ ̂ ∗ ������) = 0, ������ ∈ Θ ������ R-C 下界:(T 为������(������)的无偏估计) ������(������) = ������( ������(������) ≥
(������−1)������ ∗2 ������ 2
2
������/������1 ������/������2
~������(������1 , ������2 )
=
������������ 2 ������ 2
=
1 ��������=1(������������ − ������ ) ~������ (������ − 1)
������ ������
������~Γ(������, ������), ������(������) = , ������(������) =
������ ∑������ ������=1 ������������ ~������(∑������=1 ������������ , ������) (������������ ������. ������. ������) −������������ ������ = 1, ������~������������������(������)(指数分布) ������(������; ������) = {������������ , ������ > 0 0, ������ ≤ 0 ������ ������−1 (1−������)������−1
Γ分布������(������; ������, ������) = {Γ(������) Γ函数Γ(������) = ∫ 0
+∞
������ ������−1 ������ −������������ , ������ > 0 0, ������ ≤ 0
������ ������2
������ ������−1 ������ −������ ������������
������
1
������~������ 2 (������1 ), ������~������ 2 (������2 ) (������, ������ ������. ������. ������) ������ = 若������������ ~������(������, ������ 2 ) ̅ ~������ (������, ������ ) (1)������ ������ (2)
������������������������ ������������������
= 0,若无解,则用其他方法(实际情况)确定 L 最大时
̂) = ������则为无偏估计,若 lim ������(������ ̂) = ������,则为渐进无偏估计 ������(������
������→∞
������ √������/������
������ ������−2
(������ > 2)
~������(������)
������~������(������, ������) → ~������(������, ������), ������ → ������(������) → ������ 2 ~������(1, ������)
������ 2
~������(������, ������)
������ 2 分布������ 2 (������; ������) = {
������ ������ −1 − ������ 2 ������ ������ 2 2 Γ( ) 2
, ������ > 0
0, ������ ≤ 0
记������~������ 2 (������)自由度为 n 的������ 2 分布,������(������) = ������, ������(������) = 2������
相关文档
最新文档