概率论与数理统计公式总结
概率论与数理统计公式大全

概率论与数理统计公式大全一、概率基本公式1.事件的概率:对于事件A,在随机试验中发生的次数记为n(A),则事件A的概率为P(A)=n(A)/n,其中n为试验总次数。
2.互斥事件的概率:对于互斥事件A和B,有P(A∪B)=P(A)+P(B)。
3.事件的余事件概率:设事件A为必然事件,全集的概率为P(S)=1,事件A的余事件为A',则有P(A')=1-P(A)。
4.条件概率:对于两个事件A和B,假设事件B已经发生,事件A发生的概率记为P(A,B),则P(A,B)=P(A∩B)/P(B)。
二、随机变量及其概率分布1.离散型随机变量:设X是一个离散型随机变量,其概率函数为P(X=k),其中k为X的取值,概率函数满足P(X=k)≥0,且∑P(X=k)=12. 连续型随机变量:设X是一个连续型随机变量,其概率密度函数为f(x),概率密度函数满足f(x)≥0,且∫f(x)dx = 13. 随机变量的数学期望:对于离散型随机变量X,其数学期望为E(X) = ∑k*P(X=k);对于连续型随机变量X,其数学期望为E(X)=∫xf(x)dx。
4. 随机变量的方差:对于离散型随机变量X,其方差为Var(X) =E(X^2) - [E(X)]^2;对于连续型随机变量X,其方差为Var(X) = E(X^2) - [E(X)]^2三、常见的概率分布1.伯努利分布:表示一次实验成败的概率分布,概率函数为P(X=k)=p^k(1-p)^(1-k),其中0≤p≤12.二项分布:表示n次独立重复的伯努利试验中成功次数的概率分布,概率函数为P(X=k)=C(n,k)*p^k(1-p)^(n-k),其中C(n,k)为组合数。
3. 泊松分布:表示单位时间或单位面积内发生事件次数的概率分布,概率函数为P(X=k) = (lambda^k)/(k!)*e^(-lambda),其中lambda为平均发生率。
4.均匀分布:表示在一个区间内取值相等的概率分布,概率密度函数为f(x)=1/(b-a),其中[a,b]为区间。
概率论与数理统计公式整理

概率论与数理统计公式整理在现代数学中,概率论与数理统计是两个重要的分支。
其中概率论是研究随机事件发生的可能性或概率的科学。
而数理统计则是利用概率论的方法,对已经发生的随机事件进行统计分析和推断。
本文将整理概率论与数理统计中常用的公式。
一、基本概率公式1.概率:$P(A)=\frac{n(A)}{n(S)}$其中,$P(A)$表示事件$A$发生的概率,$n(A)$表示事件$A$所包含的基本事件的个数,$n(S)$表示所有基本事件的个数。
2.加法原理:$P(A\cup B)=P(A)+P(B)-P(A\cap B)$其中,$A$和$B$是两个事件,$A\cup B$表示事件$A$和事件$B$中至少有一个发生的概率,$A\cap B$表示两个事件同时发生的概率。
3.条件概率:$P(B|A)=\frac{P(A\cap B)}{P(A)}$其中,$P(B|A)$表示在事件$A$发生的条件下,事件$B$发生的概率。
4.乘法定理:$P(A\cap B)=P(A)P(B|A)$其中,$P(A\cap B)$表示两个事件同时发生的概率,$P(B|A)$表示在事件$A$发生的条件下,事件$B$发生的概率。
二、概率分布1.离散随机变量的概率分布律:$\sum\limits_{i=1}^{+\infty}{p(x_i)}=1$其中,$p(x_i)$表示离散随机变量取值为$x_i$的概率。
2.连续随机变量的概率密度函数:$\int_{-\infty}^{+\infty}{f(x)}\mathrm{d}x=1$其中,$f(x)$表示连续随机变量在$x$处的概率密度。
3.数学期望:$E(x)=\sum\limits_{i=1}^{+\infty}{x_ip(x_i)}$或$E(x)=\int_{-\infty}^{+\infty}{xf(x)}\mathrm{d}x$其中,$E(x)$表示随机变量$x$的数学期望,$p(x_i)$表示$x_i$这一离散随机变量取到的带权概率。
概率论与数理统计公式总结(湖南大学)

概率论与数论统计第一部分 概率论※随机事件的运算定律交换律:A ∪B=B ∪A A ∩B=B ∩A结合律:A ∪(B ∪C)=(A ∪B)∪C A ∩(B ∩C)=(A ∩B)∩C分配率:A ∩(B ∪C)=(A ∩B)∪(A ∪C) A ∪(B ∩C)=(A ∩B)∪(A ∩C)对偶律:A ∪B=A ∩B A ∩B=A ∩B鄙人之愚见:如果碰到那种很难从正面理解的事件,试着从对立面翻译。
※条件概率与概率公式1. 条件概率公式:P (A |B )=P(AB)P(B)2. 乘法公式:P (A B C D …)=P (A )P (B |A )P (C |AB )P (D |ABC )3. 全概率公式:P (A )=∑P (B i )P(A|B i )∞i=14. 贝叶斯公式:P (B i |A )=P (B i )P(A|B i )∑P(A |B j )P(B j )∞i=1鄙人之愚见:除了第一个以外,其他的都太抽象,强烈建议不要去记他们,而是去做题,不然小心思维混乱。
我现在压根不明白他们是什么意思,但是如果做题的话就会无意中用到。
※离散型随机变量的常见分布1. 两点分布与二项分布X~B(n,p)2. 泊松分布若X~B(n,p),当n →∞,X~P(λ),λ=npP(λ)=λk e −λk!※连续型随机变量及其常见分布1. 概率密度函数是分布函数的导数,分布函数是概率密度函数的可变上限定积分。
2. 零概率事件并不都是不可能事件,几乎必然发生的事件也并不都是必然事件。
3.分布函数的定义域一定是从-∞→∞,值域一定是从0→1,右连续[P(X)=P(X+0)],且单调不减,自己做题要注意。
4.分布函数不仅仅只有离散型和连续型两种。
5.均匀分布:概率密度函数满足f (x )={1b−a (a ≤x ≤b )0 (其他)X~U(a,b)6. 指数分布:概率密度函数满足f(x){λe −λ(x ≥0)0(x <0)X~E(λ) λ>0 7. 正态分布:X~ N(μ,ϭ2)正态分布函数的标准化:一般的正态分布N(μ,ϭ2)的分布函数F(x)与标准正态分布N(0,1)的分布函数ϕ(x)之间有如下关系:F(x)=ϕ(x−μϭ)3ϭ原则:0.6826 0.9574 0.99738.对于一般的连续型随机变量,有如下定理设X 为连续型随机变量,f x (x )为X 的概率密度,若y=g(x)为严格单调的连续函数,且反函数x=h(y)有连续导数,则Y=g(x)为连续型随机变量,且概率密度为 f x (y)=f x [(h(y) ) * |h`(y)|]若g(x)分段严格单调,对应反函数h i (y) 则有f x (y)=∑f x i [(h i (y) ) * |h i `(y)|]※二维随机变量的联合分布与边缘分布1.二维随机变量的分布函数和概率密度函数依然拥有一维随机变量的那些性质,只是更麻烦些。
概率论与数理统计公式整理(超全版)

(13)乘法 公式
P( A1 A2 „ An ) P( A1) P( A2 | A1) P( A3 | A1 A2) „„ P( An | A1 A2 „ An 1) 。
①两个事件的独立性 设事件 A 、 B 满足 P( AB) P( A) P( B) ,则称事件 A 、 B 是相互独立的。
F ( ) lim F ( x) 0 ,
x
F ( ) lim F ( x) 1 ;
x
F ( x 0) F ( x) ,即 F (x) 是右连续的; P( X x) F ( x) F ( x 0) 。
xk x
x
对于离散型随机变量, F ( x)
F ( x) f ( x)dx
x
,
则称 X 为连续型随机变量。 f (x) 称为 X 的概率密度函数或密度函数,简称概 率密度。 密度函数具有下面 4 个性质: 1° 2°
f ( x) 0 。
f ( x)dx 1
。
(3)离散 与连续型 随机变量 的关系
P( X x) P( x X x dx) f ( x)dx
德摩根率: i 1 (10)加法 公式 (11)减法 公式
Ai Ai
i 1
A B A B , A B A B
P(A+B)=P(A)+P(B)-P(AB) 当 P(AB)=0 时,P(A+B)=P(A)+P(B) P(A-B)=P(A)-P(AB) 当 B A 时,P(A-B)=P(A)-P(B) 当 A=Ω 时,P( B )=1- P(B) 定义 设 A、B 是两个事件,且 P(A)>0,则称
概率论与数理统计公式整理(超全免费版)

P( B | A)
P( AB) P( A) P( B) P( B) P( A) P( A)
(14)独立 性
若事件 A 、 B 相互独立,则可得到 A 与 B 、 A 与 B 、 A 与 B 也都相互独 立。 必然事件 和不可能事件 Ø 与任何事件都相互独立。 Ø 与任何事件都互斥。 ②多个事件的独立性 设 ABC 是三个事件,如果满足两两独立的条件, P(AB)=P(A)P(B);P(BC)=P(B)P(C);P(CA)=P(C)P(A) 并且同时满足 P(ABC)=P(A)P(B)P(C) 那么 A、B、C 相互独立。 对于 n 个事件类似。 设事件 B1, B 2,, Bn 满足 1° B1, B 2,, Bn 两两互不相容, P( Bi ) 0(i 1,2,, n) ,
F ( ) lim F ( x) 0 ,
x
F ( ) lim F ( x) 1 ;
x
F ( x 0) F ( x) ,即 F ( x) 是右连续的; P( X x) F ( x) F ( x 0) 。
xk x
x
对于离散型随机变量, F ( x)
P(a X b) F (b) F (a)
可以得到 X 落入区间 ( a, b] 的概率。分布
函数 F ( x) 表示随机变量落入区间(– ∞,x]内的概率。 分布函数具有如下性质: 1° 2° 3° 4° 5°
0 F ( x) 1,
x ;
F ( x) 是单调不减的函数,即 x1 x2 时,有 F ( x1) F ( x2) ;
A、B 同时发生:A B,或者 AB。A B=Ø,则表示 A 与 B 不可能同时发生,
概率论与数理统计公式整理(超全免费版)

( 4 )随 如果一个试验在相同条件下可以重复进行,而每次试验的 机 试 验 可能结果不止一个,但在进行一次试验之前却不能断言它 和 随 机 出现哪个结果,则称这种试验为随机试验。 事件 试验的可能结果称为随机事件。
( 5 )基 在一个试验下,不管事件有多少个,总可以从其中找出这
1
本事件、 样一组事件,它具有如下性质: 样 本 空 ①每进行一次试验,必须发生且只能发生这一组中的一个 间 和 事 事件; 件 ②任何事件,都是由这一组中的部分事件组成的。 这样一组事件中的每一个事件称为基本事件, 用 来表示。 基本事件的全体,称为试验的样本空间,用 表示。 一个事件就是由 中的部分点(基本事件 )组成的集合。 通常用大写字母 A,B,C,„表示事件,它们是 的子集。
第 1 章 随机事件及其概率
n Pm
m! (m n)!
从 m 个人中挑出 n 个人进行排列的可能
( 1 )排 数。 列组合 公式
n Cm
m! n!(m n)!
从 m 个人中挑出 n 个人进行组合的可能
数。 加法原理(两种方法均能完成此事) :m+n 某件事由两种方法来完成, 第一种方法可由 m 种方法完成, 第二种方法可由 n 种方法来完成,则这件事可由 m+n 种方 ( 2 )加 法来完成。 法和乘 乘法原理(两个步骤分别不能完成这件事) : m ×n 法原理 某件事由两个步骤来完成, 第一个步骤可由 m 种方法完成, 第二个步骤可由 n 种方法来完成,则这件事可由 m×n 种 方法来完成。 ( 3 )一 重复排列和非重复排列(有序) 些 常 见 对立事件(至少有一个) 排列 顺序问题
P Ai P( Ai ) i 1 i 1
概率论与数理统计公式大全

概率论与数理统计公式概率公式整理1.随机事件及其概率吸收律:AAB A AA A =∪=∅∪Ω=Ω∪)(A B A A A A A =∪∩∅=∅∩=Ω∩)()(AB A B A B A −==−反演律:B A B A =∪BA AB ∪=∩∪n i i n i iA A 11===∪∩n i i n i i A A 11===2.概率的定义及其计算)(1)(A P A P −=若B A ⊂)()()(A P B P A B P −=−⇒对任意两个事件A ,B ,有)()()(AB P B P A B P −=−加法公式:对任意两个事件A ,B ,有)()()()(AB P B P A P B A P −+=∪)()()(B P A P B A P +≤∪)()1()()()()(2111111n n n n k j i k j i n j i j i n i i n i i A A A P A A A P A A P A P A P ⋯⋯∪−≤<<≤≤<≤==−+++−=∑∑∑3.条件概率()=A B P )()(A P AB P 乘法公式())0)(()()(>=A P A B P A P AB P ()())0)(()()(12112112121>=−−n n n n A A A P A A A A P A A P A P A A A P ⋯⋯⋯⋯w w w .k h d a w .c o m 课后答案网全概率公式∑==n i i AB P A P 1)()()()(1i ni i B A P B P ⋅=∑=Bayes 公式)(A B P k )()(A P AB P k =∑==n i i i k k B A P B P B A P B P 1)()()()(4.随机变量及其分布分布函数计算)()()()()(a F b F a X P b X P b X a P −=≤−≤=≤<5.离散型随机变量(1)0–1分布1,0,)1()(1=−==−k p p k X P k k (2)二项分布),(p n B 若P (A )=pnk p p C k X P k n k k n ,,1,0,)1()(⋯=−==−*Possion 定理0lim >=∞→λn n np 有⋯,2,1,0!)1(lim ==−−−∞→k k e p p C k k n n k n k n n λλ(3)Poisson 分布)(λP ⋯,2,1,0,!)(===−k k e k X P kλλw w w .k h d a w .c o m 课后答案网6.连续型随机变量(1)均匀分布),(b a U ⎪⎩⎪⎨⎧<<−=其他,0,1)(b x a ab x f ⎪⎪⎩⎪⎪⎨⎧−−=1,,0)(ab a x x F (2)指数分布)(λE ⎪⎩⎪⎨⎧>=−其他,00,)(x e x f x λλ⎩⎨⎧≥−<=−0,10,0)(x e x x F x λ(3)正态分布N (µ,σ2)+∞<<∞−=−−x e x f x 222)(21)(σµσπ∫∞−−−=x t t e x F d 21)(222)(σµσπ*N (0,1)—标准正态分布+∞<<∞−=−x e x x 2221)(πϕ+∞<<∞−=Φ∫∞−−x t e x x t d 21)(22π7.多维随机变量及其分布二维随机变量(X ,Y )的分布函数∫∫∞−∞−=xy dvdu v u f y x F ),(),(w w w .k h d a w .c o m 课后答案网边缘分布函数与边缘密度函数∫∫∞−+∞∞−=xX dvdu v u f x F ),()(∫+∞∞−=dv v x f x f X ),()(∫∫∞−+∞∞−=yY dudv v u f y F ),()(∫+∞∞−=du y u f y f Y ),()(8.连续型二维随机变量(1)区域G 上的均匀分布,U (G )⎪⎩⎪⎨⎧∈=其他,0),(,1),(G y x A y x f (2)二维正态分布+∞<<−∞+∞<<∞−×−=⎥⎥⎦⎤⎢⎢⎣⎡−+−−−−−−y x e y x f y y x x ,121),(2222212121212)())((2)()1(21221σµσσµµρσµρρσπσ9.二维随机变量的条件分布0)()()(),(>=x f x y f x f y x f X X Y X 0)()()(>=y f y x f y f Y Y X Y ∫∫+∞∞−+∞∞−==dy y f y x f dy y x f x f Y Y X X )()(),()(∫∫+∞∞−+∞∞−==dxx f x y f dx y x f y f X X Y Y )()(),()()(y x f Y X )(),(y f y x f Y =)()()(y f x f x y f Y X X Y =)(x y f X Y )(),(x f y x f X =)()()(x f y f y x f X Y Y X =w w w .k h d a w .c o m 课后答案网10.随机变量的数字特征数学期望∑+∞==1)(k kk p x X E ∫+∞∞−=dx x xf X E )()(随机变量函数的数学期望X 的k 阶原点矩)(k X E X 的k 阶绝对原点矩)|(|k X E X 的k 阶中心矩)))(((k X E X E −X 的方差)()))(((2X D X E X E =−X ,Y 的k +l 阶混合原点矩)(l k Y X E X ,Y 的k +l 阶混合中心矩()l k Y E Y X E X E ))(())((−−X ,Y 的二阶混合原点矩)(XY E X ,Y 的二阶混合中心矩X ,Y 的协方差()))())(((Y E Y X E X E −−w ww .k h d a w .c o m 课后答案网X ,Y 的相关系数XY Y D X D Y E Y X E X E ρ=⎟⎟⎠⎞⎜⎜⎝⎛−−)()())())(((X 的方差D (X )=E ((X -E (X ))2))()()(22X E X E X D −=协方差()))())(((),cov(Y E Y X E X E Y X −−=)()()(Y E X E XY E −=())()()(21Y D X D Y X D −−±±=相关系数)()(),cov(Y D X D Y X XY =ρw w w .k h d a w .c o m 课后答案网。
概率论与数理统计公式汇总

1 n
n i 1
X
k i
,
k
1,2
(5)样本 k
阶中心距: Bk
Mk
1 n
n
(Xi
i 1
X )k ,k
2,3
3、三大抽样分布
(1) 2 分布:设随机变量 X1, X 2 X n 相互独立,且都服从标准正态分布 N (0,1) ,
则随机变量
2
X
2 1
X
2 2
k
(
x1
,
x2
,
,
xn
)
4.估计量的评价标准
无偏性 设 (x1, x2,L , xn) 为未知参数 的估计量。若 E( )= ,
估
则称 为 的无偏估计量。
计
量
设 1 1(x1, x,2 ,L , xn) 和 2 2 (x1, x,2 ,L , xn) 是 未 知 参
7、协方差和相关系数的性质
(1) Cov( X , X ) D( X ) Cov( X ,Y ) Cov(Y , X )
(2) Cov( X1 X 2 ,Y ) Cov( X1,Y ) Cov( X 2 ,Y )
Cov(aX c,bY d ) abCov( X ,Y )
P(A∪B)=P(A)+P(B)-P(AB) 当 P(AB)=0 时,P(A∪B)=P(A)+P(B) P(A-B)=P(A)-P(AB), B A 时 P(A-B)=P(A)-P(B)
条件概率公式 P(B A) P( AB) P( A)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
概率论与数理统计公式总结Prepared on 22 November 2020第一章P(A+B)=P(A)+P(B)- P(AB)特别地,当A 、B 互斥时, P(A+B)=P(A)+P(B)条件概率公式概率的乘法公式全概率公式:从原因计算结果Bayes 公式:从结果找原因第二章二项分布(Bernoulli 分布)——X~B(n,p)泊松分布——X~P(λ)概率密度函数怎样计算概率均匀分布X~U(a,b)指数分布X~Exp (θ)分布函数 对离散型随机变量对连续型随机变量分布函数与密度函数的重要关系:二元随机变量及其边缘分布 分布规律的描述方法联合密度函数 联合分布函数联合密度与边缘密度)()()|(B P AB P B A P =)|()()(B A P B P AB P =)|()(A B P A P =∑==nk k k B A P B P A P 1)|()()(∑==nk kki i k B A P B P B A P B P A B P 1)|()()|()()|(),...,1,0()1()(n k p p C k X P kn k k n=-==-,,...)1,0(!)(===-k e k k X P k,λλ1)(=⎰+∞∞-dx x f )(b X a P ≤≤⎰=≤≤badxx f b X a P )()()0(1)(/≥=-x e x f x θθ∑≤==≤=xk k X P x X P x F )()()(⎰∞-=≤=xdtt f x X P x F )()()(⎰∞-=≤=xdtt f x X P x F )()()(),(y x f ),(y x F 0),(≥y x f 1),(=⎰⎰+∞∞-+∞∞-dxdy y x f 1),(0≤≤y x F },{),(y Y x X P y x F ≤≤=)(1)(b x a ab x f ≤≤-=)()('x f x F =离散型随机变量的独立性连续型随机变量的独立性第三章数学期望离散型随机变量,数学期望定义连续型随机变量,数学期望定义●E(a)=a,其中a为常数●E(a+bX)=a+bE(X),其中a、b为常数●E(X+Y)=E(X)+E(Y),X、Y为任意随机变量随机变量g(X)的数学期望常用公式方差定义式常用计算式常用公式当X、Y相互独立时:方差的性质D(a)=0,其中a为常数D(a+bX)=b2D(X),其中a、b为常数当X、Y相互独立时,D(X+Y)=D(X)+D(Y) 协方差与相关系数⎰+∞∞-=dy y x fxfX ),()(⎰+∞∞-=dx y x f yfY) ,()(}{}{},{jYPiXPjYiXP=====)()(),(yfxfyxfYX=∑+∞-∞=⋅=kk kP xXE)(⎰+∞∞-⋅=dxxfxXE)()(∑=kkkp xgXgE)())((∑∑=i jij i p xXE)(dxdyyxxfXE⎰⎰=),()()()()(YEXEYXE+=+∑∑=i jijjipy xXYE)(dxdyyxxyfXYE⎰⎰=),()()()()(,YEXEXYEYX=独立时与当()⎰+∞∞-⋅-=dxxfXExXD)()()(2[]22)()()(XEXEXD-=))}())(({(2)()()(YEYXEXEYDXDYXD--++=+)()()(YDXDYXD+=+)()()(),(YEXEXYEYXCov-=)()(),(YDXDYXCovXY=ρ[][]{})()()()()(YEXEXYEYEYXEXE-=--协方差的性质独立与相关 独立必定不相关 相关必定不独立 不相关不一定独立 第四章 正态分布标准正态分布的概率计算标准正态分布的概率计算公式)()()(a a Z P a Z P Φ=<=≤)(1)()(a a Z P a Z P Φ-=>=≥)()()(a b b Z a P Φ-Φ=≤≤1)(2)()()(-Φ=-Φ-Φ=≤≤-a a a a Z a P一般正态分布的概率计算一般正态分布的概率计算公式第五章卡方分布t 分布F 分布正态总体条件下 样本均值的分布:样本方差的分布:两个正态总体的方差之比())()()(),(22X D X E X E X X Cov =-=),(),(Y X abCov bY aX Cov =),(),(),(Z Y Cov Z X Cov Z Y X Cov +=+),(~2σμN X 222)(21)(σμσπ--=x e x f 2)(,)(σμ==X D X E )(1)(a a -Φ-=Φ)1,0(~),(~2N X Z N X σμσμ-=⇔)()()(σμ-Φ=<=≤a a X P a X P )(1)()(σμ-Φ-=>=≥a a X P a X P )()()(σμσμ-Φ--Φ=≤≤a b b X a P )(~)1,0(~212n X N X ni i χ∑=,则若())(~1),,(~21222n Y N Y ni iχμσσμ∑=-则若),(~//),(~),(~21212212n n F n V n U n V n U 则若χχ),(~2nN X σμ)1,0(~/N nX σμ-)1(~)1(222--n S n χσ)1(~/--n t ns X μ)1,1(~//2122212221--n n F SS σσ则若),(~),1,0(~2n Y N X χ)(~/n t nY X点估计:参数的估计值为一个常数 矩估计 最大似然估计似然函数均值的区间估计——大样本结果正态总体方差的区间估计两个正态总体均值差的置信区间 大样本或正态小样本且方差已知两个正态总体方差比的置信区间);(1θi ni x f L ∏==);(1θi ni x p L ∏==⎪⎭⎫ ⎝⎛±n z x σα2/正态分布的分位点—大样本要求样本容量—代替准差通常未知,可用样本标标准差—样本均值—2/)50()(ασz n ns x>⎪⎪⎭⎫ ⎝⎛-±n p p z p )1(2/α正态分布的分位点—大样本要求样本容量—样本比例—2/)50(αz n np >已知准差小样本、正态总体、标σ⎪⎭⎫ ⎝⎛±n z x σα2/未知准差小样本、正态总体、标σ⎪⎭⎫ ⎝⎛-±n s n t x )1(2/α分布的分位点的自由度为—t n n t 1)1(2/--α()⎪⎪⎭⎫ ⎝⎛+±-2221212/21n n z x x σσα⎪⎪⎭⎫ ⎝⎛----)1,1(/,)1,1(/212/2221212/2221n n F S S n n F S S αα第七章 假设检验的步骤① 根据具体问题提出原假设H0和备择假设H1② 根据假设选择检验统计量,并计算检验统计值③ 看检验统计值是否落在拒绝域,若落在拒绝域则拒绝原假设,否则就不拒绝原假设。
不可避免的两类错误第1类(弃真)错误:原假设为真,但拒绝了原假设第2类(取伪)错误:原假设为假,但接受了原假设单个正态总体的显着性检验 ● 单正态总体均值的检验➢ 大样本情形——Z 检验➢ 正态总体小样本、方差已知——Z 检验➢ 正态总体小样本、方差未知—— t 检验● 单正态总体方差的检验➢ 正态总体、均值未知——卡方检验单正态总体均值的显着性检验 统计假设的形式双边检验左边检验右边检验单正态总体均值的Z 检验拒绝域的代数表示双边检验左边检验右边检验比例——特殊的均值的Z 检验100::)1(μμμμ≠=H H 0100::)2(μμμμ<≥H H 0100::)3(μμμμ>≤H H nX Z /0σμ-=代替)未知时用(大样本情形S σ2/αZ Z ≥αZ Z ≥np p p p Z /)1(000--=—样本比例——总体比例—p p 0αZ Z -≤单正态总体均值的 t 检验单正态总体方差的卡方检验拒绝域 双边检验左边检验 右边检验nS X t /0μ-=2022)1(σχSn -=22/1222/2ααχχχχ-≤≥或22/12αχχ-≤22/2αχχ≥。