人教版九年级下册数学全册精优课件

合集下载

人教版九年级数学下册全册课件(共24份)

人教版九年级数学下册全册课件(共24份)

A 的 邻 边 b c o sA 斜 边 c
斜边c
∠A的对边a
锐角A的对边与邻边的比叫做锐 A 角∠A的正切,记作tanA,即
∠A的邻边 b
C
A 的 对 边 a ta n A A 的 邻 边 b
二、新课讲解
在Rt△ABC中,∠C=90°,我们把锐角A 的对边与邻边的比叫做锐角∠A的余切,记 作cotA,即
B C
知 识 点 一
A
二、新课讲解
分析:这个问题可以归结为,在Rt△ABC “在直角三角形中,30°角所对的边 等于斜边的一半”,即
A 的对边 BC 1 斜边 AB 2
知 识 点 一
可得AB=2BC=70m,
也就是说,需要准备 70m长的水管. B
第二十八章 锐角三角函数
28.1 锐角三角函数(1)
一、新课引入
如图:在Rt △ABC中,∠C=90°,
B
角:∠A+ ∠B =90°
勾股定理
A ┌ C
边:AC2 + BC2 = AB2
在直角三角形中,边与角之间有什么关 系呢?
一、新课引入
直角三角形ABC可以简记为Rt△ABC; 直角∠C所对的边AB称为斜边,用c表示; 直角边BC称为 ∠A的对边,用a表示;
想一想acacabac在rtabc中c90我们把锐角a的邻边与斜边的比叫做锐角a的余弦记作cosa即结论cos的邻边斜边锐角a的对边与邻边的比叫做锐角a的正切记作tana即的对边的邻边a的邻边斜边在rtabc中c90我们把锐角a的对边与邻边的比叫做锐角a的余切记作cota即的邻边的对边锐角a的正弦余弦正切余切都叫做的锐角三角函数

8
4 8 = = sinA = AB 10 5

人教版九年级下册数学全册精优教学课件

人教版九年级下册数学全册精优教学课件

y 12 3. 4
你可以从中归纳出用待定系数法求反比例函数
解析式的一般步骤吗?
比例函数解析式的一般
步骤是:(1)设,即设所求的反比例函数解析 式为 y k(k≠0).(2)代,即将已知条件中对应的
x x、y值代入 y k 中得到关于k的方程.(3)解,即解
x 方程,求出k的值.(4)定,即将k值代入 y k 中,
x 确定函数解析式.
第四部分 知识小结
知识小结
概念 反 比 例 函 数
解析式
一般地,形如 y kx(k 为常数, k ≠ 0)的函数,叫做反比例函数, 其中 x 是自变量,y 是函数.
求解析式时, ①设 y k ,
x ②由已知条件求出 k .
1
九年级数学下册(RJ)教学课件
第二十六章 反比例函数
第一节 反比例函数 第一课时 反比例函数的意义
1 1. 情景导学
2 2. 新课目标
Contents
目录
3. 新课进行时 4. 知识小结 5. 随堂演练
6. 课后作业
第一部分 情景导学
情景导学
刘翔在2004年雅典奥运会110 m 栏比赛中以12.91s的成 绩夺得金牌,被称为中国“飞人” .如果刘翔在比赛中 跑完全程所用的时间为t s,平均速度为v m/s .你能写出v 与t之间的关系式吗?
第三部分 新课进行时
新课进行时
核心知识点一 反比例函数的定义
问题1 京沪线铁路全 程为 1 463 km,某次列车 的平均速度 v(单位:km/h )随此次列车的全程运行 时间 t(单位:h)的变化 而变化.
(1)平均速度 v,运行时间 t 存在什么数量关系? (2)这两个变量间有函数关系吗?试说明理由 (3)你能写出 v 关于 t 的解析式吗?

2021年人教版初中九年级下册数学全册完整课件

2021年人教版初中九年级下册数学全册完整课件
复习题26
27.2 相似三角形
27.2.1 相似三角形的判 定 27.2.2 相似三角形的性 质 27.2.3 相似三角形应用 举例 27.3 位似
8.2 解直角三角形及其应 用 小结、构建知识体系
复习题28
29.2 三视图
29.3 课题学习 制作立体 模型 小结、构建知识体系
复习题29
小结、构建知识体系
第40页的1、2、3题
课堂小结
1、反比例函数的意义
一般地,形如 y (kk为常数,k≠0) 的函数称为反比例函数。x
2、待定系数法求反比例解析式。
1函、数函,数其中y k53=x 中,3 y,是自x变的量x反的比例
取值范围是 x05 。
2、已知 y (k 4)x k 5
是反比例函数,则k= .
复习题27
(每一课都有两套不同的课件!)
17.1.1 反比例函数的意义
1、理解反比例函数的意义,能 利用定义解决与概念相关问题; 2、熟练应用待定系数法求反比 例函数解析式。
写出下列问题中的函数关系 (1)一辆式以60km/h匀速行驶的汽车,它
行驶的距离S(单位:km)随时间t(单位: h)的变化而变化 _______S_=_6_0t
(1)自变量x≠0;
(2)k为常数,k ≠0;
(3)y是x的反比例函数;
(4) 的变形:
yk
y
x
k
1
,y
kx1,
x
xy= k, xy-k=0。
1、下列哪个等式中的y是x的反比例函数? 如果是请指出K的值
(1)y 5 x
(4) y 2 x
(2) y 4x (3)y 2x2
(5) y 2x1(6)y x 2

新人教版九年级数学下册全册课件(精选600页优质课)ppt

新人教版九年级数学下册全册课件(精选600页优质课)ppt

2 y x
1.当 1m= 时,关于x的函数 2 y=(m+1)xm -2是反比例函数?
分析:


m2-2=-1
m+1≠0 m=±1

m≠-1
1 已知y 1与 成反比例, 且当x 1时y 4, 求y与x x2 的函数表达式,并判断 是哪类函数?
k k 11 kk x 解:由题意知 y y x 22 1 x 2 x 2 3 k 4 1 k 1 3 k 4 1 k 1 由 x=1 时, 3k 4 1 k 3k1 4 1 11 3y=4 k 4 k k1
11
40
5.5
60
3.67
80
2.75
100
2.2
当R越来越大时,I怎样变化?当R越来越小呢? (3)变量I是R的函数吗?为什么?
做一做
运动中的数学
行程问题中的函数关系
京沪高速公路全长约为1262km, 汽车沿京沪高速公路从上海驶 往北京,汽车行完全程所需的时 间t(h)与行驶的平均速度 v(km/h)之间 有怎样的关系?变 量t是v的函数吗?为什么?
___ 。
6
2-|m| y = (m3) x 已知函数 是反比例函数,则 -3 m = ___ 。
【待定系数法求反比例函数的表达式】
例1:已知y是x的反比例函数,当x=2时,y=6 (1)写出y与x的函数关系式; (2)求当x=4时,y的值. 变式:y是x-1的反比例函数,当x=2时,y=-6. (1)写出y与x的函数关系式. (2)求当y=4时x的值.
k1 k2
人教版九年级数学下册
26.2 实际问题与反比例函数 第2课时

新人教版九年级数学下全册优质教学课件(2019年春)

新人教版九年级数学下全册优质教学课件(2019年春)

(2)某住宅小区要种植一个面积为1000m2的矩形草坪,草坪的长为y (单位:m)随宽x(单位:m)的变化而变化.
首页
(3)住宅小区要种植一块面积为 1 000 m2的矩形草坪,草坪 的长 y(单位:m)随宽 x(单位:m)的变化而变化.
x
y
2.观察上面各函数关系式有什么特点,完成下面填空.
上面的函数关系式,都具有______ 分式 的形式,其中__是常 分子 数.
2 1.5 1.2
1
1.2 1.5
2
3
6
-6 -3 -2 -1.5-1.2 -1 …
(2)根据表中x,y的数值在坐标平面中描点(x,y);
首页
(3) 如图,再用平滑曲线顺次连接各点,就得到y = x2 的图象.
y y
6 5 4 3 2 1 -6 -5 -4 -3 -2 -1 -1 -2 -3 -4 -5 -6
6
y=6 x
y= 6 x
5 4
3
2 1 0 1 2 3 4 5 6
x
-6
-5
-4
-3
-2
-1 -1 -2
0
1
2
3
4
5
6
x
-3
-4 -5 -6
归纳:
形状: 反比例函数的图象是由两支曲线组成的.因此称反比例函数的 图象为双曲线.图象关于原点对称.
位置:
6 的两支曲线分别位于第一、三象限内. x 6 函数 y 的两支曲线分别位于第二、四象限内. x
课堂小结
k y 一般地,形如 (k 为常数,且 k ≠ 0)的函数,叫做反比例 x
函数,其中 x 是自变量,y 是函数.
Hale Waihona Puke 自变量 x 的取值范围是不等于 0 的一切实数. 反比例函数有时也写成 y kx1或xy k (k为常数,k 0)的形式 .

人教版年九年级数学下册全册课件共份ppt22

人教版年九年级数学下册全册课件共份ppt22

人教版年九年级数学下册全册课件共 份ppt22 (PPT 优秀课 件)
人教版年九年级数学下册全册课件共 份ppt22 (PPT 优秀课 件)
四、强化训练
解:梯形CDEF和梯形EFAB相似, 由此可得: CD EF EF AB
CD 4, AB 9
4 EF EF 9 EF 6 EF 是梯形的边长
答:四边形A1B1C1D1中最长的边长是15cm。
人教版年九年级数学下册全册课件共 份ppt22 (PPT 优秀课 件)
人教版年九年级数学下册全册课件共 份ppt22 (PPT 优秀课 件)
四、强化训练
4、如图,AB∥EF∥CD,CD=4, AB=9,若梯形CDEF与梯形EFAB相似, 求EF的长.

认真阅读课本第36至38页的内容,完 成下面练习并体验知识点的形成过程.
例1、图(1)的△A1B1C1是由正△ABC放大后 得到的,观察这两个图形,它们的对应角有 什么关系?对应边又有什么关系呢?
二、新课讲解
相 似
知多 识边 点形 一的
性 质
解:△A1B1C1和△ABC相似
A __=_A1
B_=__B1
2
A. 3
3
B. 2
C.
2 5
4
D. 9
3
2、已知2a-3b=0,b≠0,则a∶b=___2__.
人教版年九年级数学下册全册课件共 份ppt22 (PPT 优秀课 件)
人教版年九年级数学下册全册课件共 份ppt22 (PPT 优秀课 件)
四、强化训练
3、已知四边形ABCD和四边形A1B1C1D1相似,四 边形ABCD的最长边和最短边的长分别是10cm和 4cm,如果四边形A1B1C1D1的最短边的长是6cm, 那么四边形A1B1C1D1中最长的边长是多少?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(1) 写出 y 关于 x 的函数解析式; (2) 当 x = 7 时,求 y 的值.
解:(1) 设 y k ,因为当 x = 3 时,y =4 , x 1
所以有 4 k ,解得 k =16,因此 y 16 .
31
x 1
(2) 当 x = 7 时,y 16 2. 7 1
三 建立简单的反比例函数模型
之间的关系式,并指出它是什么函数. A
解:因为菱形的面积等于两条对角线长
乘积的一半,
所以 S菱形ABCD

1 2
xy
180.
B
D
所以变量 y与 x 之间的关系式为 y 360 ,
x
它是反比例函数.
C
当堂练习
1. 下列函数中,y 是 x 的反比例函数的是
(A)
A. y 1
2x
B.
y


1 x2
C. y 1
2 x
D. y 1 1
x
2. 生活中有许多反比例函数的例子,在下面的实例中,
x 和 y 成反比例函数关系的有
生活中我们常常通过控制电阻的变化来实现舞台 灯光的效果. 在电压 U 一定时,当 R 变大时,电流 I 变小,灯光就变暗,相反,当 R 变小时,电流 I 变大, 灯光变亮. 你能写出这些量之间的关系式吗?
当杂技演员表演滚钉板的节目时,观众们看到密
密麻麻的钉子,都为他们捏一把汗,但有人却说钉子 越多,演员越安全,钉子越少反而越危险,你认同吗? 为什么?
y 1000 . x
(3) 已知北京市的总面积为1.68×104 km2 ,人均占 有面积 S (km2/人) 随全市总人口 n (单位:人) 的 变化而变化. S 1.68104 . n
问题:观察以上三个解析式,你觉得它们有什么共 同特点?
v 1463, y 1000, S 1.68104 .
1. 当m= ±1 时,y 2x m 2 是反比例函数. 2. 已知函数 y (k 2)(k 1) 是反比例函数,则
x
k 必须满足 k≠2 且 k≠-1 .
二 确定反比例函数的解析式
例2 已知 y 是 x 的反比例函数,并且当 x=2时,y=6.
(1) 写出 y 关于 x 的函数解析式;
例3 人的视觉机能受运动速度的影响很大,行驶中司机 在驾驶室内观察前方物体是动态的,车速增加,视野
变窄. 当车速为 50km/h 时,视野为 80 度,如果视野 f
(度) 是车速 v (km/h) 的反比例函数,求 f 关于 v 的函数
解析式,并计算当车速为100km/h 时视野的度数.
解:设
f

k v
.
由题意知,当
v
=50时,f
=80,
所以 80 k . 解得 k =4000. 因此 f 4000 .
50
v
当 v=100 时,f =40.
所以当车速为100km/h 时视野为40度.
例4 如图,已知菱形 ABCD 的面积为180,设它的两
条对角线 AC,BD的长分别为x,y. 写出变量 y与 x
提示:因为 y 是 x 的反比例函数,所以设 y k . x
把 x=2 和 y=6 代入上式,就可求出常数 k 的值.
解:设
y

k x
.
因为当
x=2时,y=6,所以有 6

k. 2
解得
k
=12.
因此
y

12 . x
(2) 当 x=4 时,求 y 的值. 解:把 x=4 代入 y 12 ,得
x y 12 3.
4
方法总结:用待定系数法求反比例函数解析式的一 般步骤:①设出含有待定系数的反比例函数解析式, ②将已知条件(自变量与函数的对应值)代入解析式, 得到关于待定系数的方程;③解方程,求出待定系 数; ④写出反比例函数解析式.
练一练 已知 y 与 x+1 成反比例,并且当 x = 3 时,y = 4.
练一练 下列函数是不是反比例函数?若是,请指出 k 的值.
y 3x1 yx
3 y 1
11x
是,k = 3 不是 是,k 1
11
y 3x 1
不是
y

1 x2
不是
典例精析
例1 已知函数 y 2m2 m 1 x2m23m3 是反比例函数,
求 m 的值.
解:因为 y 2m2 m 1 x2m23m3 是反比例函数,
所以
2m2 + 3m-3=-1, 2m2 + m-1≠0.
解得 m =-2.
方法总结:已知某个函数为反比例函数,只需要根 据反比例函数的定义列出方程(组)求解即可,如本 题中 x 的次数为-1,且系数不等于0.
练一练
t
x
n
都具有 分式 的形式,其中 分子 是常数.
一般地,形如 y k (k为常数,k ≠ 0) 的函数, x
叫做反比例函数,其中 x 是自变量,y 是函数.
思考:反比例函数 y k (k≠0) 的自变量 x 的取值范 x
围是什么?
因例为如,x 作在为前分面母得,到不的能第等一于个零解,析因式此v自变14量63 x
1
第二十六章
九年级数学下(RJ) 教学课件
反比例函数
26.1 反比例函数
26.1.1 反比例函数
导入新课
讲授新课
当堂练习
课堂小结
学习目标
1. 理解并掌握反比例函数的概念. (重点) 2. 从实际问题中抽象出反比例函数的概念,能根据已知
条件确定反比例函数的解析式. (重点、难点)
导入新课
情境引入 欣赏视频:
的中取,值t 的范取围值是范所围有是非t零>实0,数且. 当
t
t 取每一个确定的
值时但,实v 都际有问唯题一中确,定应的根值据与具其体对情应况.来确定反比例
函数自变量的取值范围.
想一想:反比例函数除了可以用 y k (k ≠ 0) 的形式 x
表示,还有没有Leabharlann 他表达方式?反比例函数的三种表达方式:(注意 k ≠ 0) y k, x y kx1, xy k.
讲授新课
一 反比例函数的概念
合作探究 下列问题中,变量间具有函数关系吗?如果有,
请写出它们的解析式. (1) 京沪线铁路全程为1463 km,某次列车的平均速
度v (单位:km/h) 随此次列车的全程运行时间 t (单位:h) 的变化而变化;
v 1463. t
(2) 某住宅小区要种植一块面积为 1000 m2 的矩形草 坪,草坪的长 y (单位:m) 随宽 x (单位:m)的 变化而变化;
相关文档
最新文档