电力系统稳态分析电力系统潮流分析与计算
电力系统中的潮流计算与分析

电力系统中的潮流计算与分析摘要本文介绍了电力系统中的潮流计算与分析,潮流计算是电力系统计算的基础,通过对电力系统中的电流、电压和功率进行计算和分析,可以有效地评估电力系统的稳定性和安全性。
在本文中,我们讨论了潮流计算的原理和方法,并介绍了一种基于改进的高斯-赛德尔迭代算法的潮流计算方法。
同时,我们还介绍了一种基于Python语言的潮流计算程序的设计和实现,该程序可以对电力系统进行潮流计算和分析,并生成相关的报告和图表。
最后,我们利用该程序对IEEE 14节点测试系统进行了潮流计算和分析,并分析了系统的稳定性和安全性。
关键词:电力系统;潮流计算;高斯-赛德尔迭代算法;Python语言AbstractThis paper introduces the load flow calculation and analysis in power system. Load flow calculation is the basis of power system calculation. By calculating and analyzing the current, voltage and power in the power system, the stability and safety of the power system can be effectively evaluated. In this paper, we discuss the principles and methods of load flow calculation, and introduce an improved Gauss-Seidel iterative algorithm based load flow calculation method. At the same time, we also introduce the design and implementation of a load flow calculation program based on the Python language. The program can perform load flow calculation and analysis on the power system, and generate relevant reports and charts. Finally, we use the program to perform load flow calculation and analysis on the IEEE 14-bus test system, and analyze the stability and safety of the system.Keywords: power system; load flow calculation; Gauss-Seidel iterative algorithm; Python language一、引言电力系统是现代工业和生活的基础设施之一,它承担着输送和分配电能的重要任务。
电力系统稳态分析--潮流计算

电力系统稳态分析摘要电力系统潮流计算是研究电力系统稳态运行情况的一种重要的分析计算,它根据给定的运行条件及系统接线情况确定整个电力系统各部分的运行状态:各母线的电压,各元件中流过的功率,系统的功率损耗。
所以,电力系统潮流计算是进行电力系统故障计算,继电保护整定,安全分析的必要工具。
本文介绍了基于MATLAB软件的牛顿—拉夫逊法和P—Q分解法潮流计算的程序,该程序用于计算中小型电力网络的潮流。
在本文中,采用的是一个5节点的算例进行分析,并对仿真结果进行比较,算例的结果验证了程序的正确性和迭代法的有效性。
关键词:电力系统潮流计算;MATLAB;牛顿—拉夫逊法;P-Q分解法;目次1 绪论 01.1背景及意义 01.2相关理论 01。
3本文的主要工作 (1)2 潮流计算的基本理论 (2)2。
1节点的分类 (2)2。
2基本功率方程式(极坐标下) (2)2.3本章小结 (3)3 潮流计算的两种算法 (4)3。
1牛顿—拉夫逊算法 (4)3.2PQ分解算法 (10)3。
3本章小结 (14)4 算例 (15)4.1系统模型 (15)4.2结果分析 (15)4。
3本章小结 (18)结论 (19)参考文献 (20)附录 (21)1 绪论1。
1背景及意义电力系统稳态分析是研究电力系统运行和规划方案最重要和最基本的手段。
电力系统稳态分析根据给定的发电运行方式和系统接线方式来确定系统的稳态运行状态,其中潮流计算针对电力系统的各种正常的运行方式进行稳态分析.潮流计算是根据给定的电网结构、参数和发电机、负荷等元件的运行条件,确定电力系统各部分稳态运行状态参数的计算.通常给定的运行条件有系统中各电源和负荷点的功率、枢纽点电压、平衡点的电压和相位角。
待求的运行状态参量包括电网各母线节点的电压幅值和相角,以及各支路的功率分布、网络的功率损耗等.电力系统潮流计算问题在数学上是一组多元非线性方程式求解问题,其解法都离不开迭代.潮流计算方法的改进过程中,经历了高斯-赛德尔迭代法、阻抗法、分块阻抗法、牛顿-拉夫逊法、改进牛顿法、P—Q分解法等。
电力系统中的潮流计算与稳定分析

电力系统中的潮流计算与稳定分析潮流计算与稳定分析是电力系统中重要的技术手段,用于预测和评估电力系统的运行状态和稳定性。
本文将从潮流计算和稳定分析的基本概念、方法和工程应用等方面进行探讨。
一、潮流计算潮流计算是电力系统中对电压、电流、功率等变量进行分析和计算的过程。
其目的是求解电网中的电压和功率分布,以评估系统的稳定性、计算线路功率损耗、定位设备故障并提供临界信息等。
潮流计算的结果可用于电力系统的规划、设计和运行管理等方面。
潮流计算的基本思想是基于节点法和分支法建立电力系统的节点电压与功率平衡方程。
通过构造节点电压相位差和功率平衡方程组,利用牛顿-拉夫逊法、高尔顿法等迭代计算方法,求解节点电压和功率未知量。
潮流计算的关键是确定等值负荷、节点类型、线路参数、发电机数据和变压器等参数。
潮流计算在电力系统规划中的应用非常重要。
通过潮流计算,可以评估系统的稳定性和可靠性,确定线路容量和电压降、决策最优的网络配置、分析运行状态和故障查找、以及进行负荷预测和管理等。
二、稳定分析稳定分析是对电力系统中的电压、电流和功率等参数进行分析和评估,以判断系统在外部扰动或负荷变化下的稳定性。
稳定分析的主要目的是查找系统中存在的潜在问题,并提出相关措施来确保系统的稳定工作。
稳定分析主要包括动态稳定分析和静态稳定分析。
动态稳定分析主要研究系统在负荷扰动、短路故障或设备故障等异常情况下的稳定性。
通过建立系统的等值模型,利用数值方法进行仿真和分析,得到系统的过渡过程和稳定状态的参数。
静态稳定分析主要研究系统在负荷变化、电压偏差或设备调整等正常情况下的稳定性。
通过潮流计算等方法,评估系统的电压稳定裕度、功率裕度和负荷响应等指标。
稳定分析在电力系统的运行和规划中起着重要的作用。
通过稳定分析,可以预测系统的稳定界限和临界条件,确定并改进控制策略,提高系统的稳定性和响应速度,降低发生事故的概率和风险,并进行设备选型和容量决策等。
三、工程应用潮流计算和稳定分析在电力系统工程中有着广泛的应用。
电力系统潮流分析与计算设计(P Q分解法)

电力系统潮流分析与计算设计(P Q分解法)电力系统潮流分析与计算设计(p-q分解法)摘要潮流排序就是研究电力系统的一种最基本和最重要的排序。
最初,电力系统潮流排序就是通过人工手算的,后来为了适应环境电力系统日益发展的须要,使用了交流排序台。
随着电子数字计算机的发生,1956年ward等人基本建设了实际可取的计算机潮流排序程序。
这样,就为日趋繁杂的大规模电力系统提供更多了极其有力的排序手段。
经过几十年的时间,电力系统潮流排序已经发展得十分明朗。
潮流排序就是研究电力系统稳态运转情况的一种排序,就是根据取值的运转条件及系统接线情况确认整个电力系统各个部分的运转状态,例如各母线的电压、各元件中穿过的功率、系统的功率损耗等等。
电力系统潮流排序就是排序系统动态平衡和静态平衡的基础。
在电力系统规划设计和现有电力系统运转方式的研究中,都须要利用电力系统潮流排序去定量的比较供电方案或运转方式的合理性、可靠性和经济性。
电力系统潮流计算分为离线计算和在线计算,离线计算主要用于系统规划设计、安排系统的运行方式,在线计算则用于运行中系统的实时监测和实时控制。
两种计算的原理在本质上是相同的。
实际电力系统的潮流技术主要使用pq水解法。
1974年,由scottb.在文献(@)中首次提出pq分解法,也叫快速解耦法(fastdecoupledloadflow,简写为fdlf)。
本设计就是使用pq水解法排序电力系统潮流的。
关键词:电力系统潮流排序pq水解法第一章概论1.1详述电力系统潮流计算是研究电力系统稳态运行情况的一种计算,它是根据给定的运行条件及系统接线情况确定整个电力系统各个部分的运行状态,如各母线的电压、各元件中流过的功率、系统的功率损耗等等。
电力系统潮流计算是计算系统动态稳定和静态稳定的基础。
在电力系统规划设计和现有电力系统运行方式的研究中,都需要利用电力系统潮流计算来定量的比较供电方案或运行方式的合理性、可靠性和经济性。
电力系统稳态分析

已知末端电压和末端负荷功率
U1
U2 sL
求变压器的功率损耗和首端功率,如图所示:
s1
sZT
sL
U1 YT sYT
U2
变压器中的功率损耗计算
1)变压器阻抗支路上的功率损耗:
SZT
S2 U2
2
ZT
P22 Q22
U
2 2
RT jXT
P22 Q22
U
2 2
RT
j
P22 Q22
U
2 2
XT
s'1 IT s2 sL
j 1
电力网稳态分析的运行变量
1.不可控变量( p ):负荷功率
~ SL
2.控制变量(u ):电源功率
~ SF
x
3.状态变量( ):节点电压向量 Ui
则节点功率方程可表示为:
f (x,u, p) 0
电力网节点性质的分类
PQ节点:已知 Pi , Qi,待求 Ui ,i 。
PV节点:已知 Pi ,U i,待求 Qi ,i 。
平衡节点:已知 Ui ,i ,待求 Pi , Qi。
牛顿-拉夫逊法的一般概念
核心:
把非线性方程式(组)的求解过程变成反 复对相应的线性方程式(组)的求解过程,通 常称为逐次线性化过程。
3.4 配电网潮流计算的特点
1、辐射形配电网的支路数一定小于节点数,节点 导纳矩阵的稀疏度很高。
2、电压配电网线路电阻较大,一般不满足R<<X, 因此通常不能采用快速解耦法进行网络潮流计算。
S1 P1 jQ1 Z R jX
1
2
U1
I
U2
电压降落
采用同样的方法可得:
U P1R Q1 X j P1 X Q1R
电力系统的稳态和动态分析方法

电力系统的稳态和动态分析方法随着电力系统规模的不断扩大和智能化水平的不断提高,电力系统的稳态和动态分析方法也越来越成为电力工程研究的一个重要内容。
电力系统的稳态和动态分析方法是电力工程研究中的重要组成部分,本文将分别介绍稳态分析和动态分析的相关内容。
一、电力系统的稳态分析方法电力系统的稳态分析是指在电力系统运行稳定的条件下,利用电力系统的电路原理、物理量关系、稳态等方面的基本原理和理论来对电力系统进行分析和计算。
在电力系统的稳态分析中,常见的计算和分析方法有:节点电压法、潮流计算法、振荡能力计算法、暂态稳定计算法等。
1.节点电压法节点电压法的原理是将电力系统分为若干个节点,每个节点都有一个电压值,而连通节点的支路则称为分支。
通过节点电压法可以得到电力系统节点电压的取值以及各节点的功率平衡等数据,这些数据对于电力系统的计算和研究具有很大的意义。
2.潮流计算法潮流计算法是指通过潮流方程对电力系统中电能转移过程的计算和分析,从而得出系统中各个节点的电压和相应的重要参数,如线路功率、变压器参数、线路阻抗等。
潮流计算法对电力系统的负荷预测、电力系统可靠性分析和电能质量分析等方面都有重要的应用价值。
3.振荡能力计算法振荡能力计算法主要是针对电力系统因意外故障或突发事故等造成系统失稳而陷入大规模振荡的情况,通过让系统达到最大振荡能力或者避免系统失稳来保证电力系统的安全运行。
这种分析方法往往需要大量的计算和分析,因此计算的准确性和系统的可靠性既是前提也是目标。
4.暂态稳定计算法暂态稳定计算法是指在电力系统运行中出现暂态稳定现象时,通过各种加速运算的方法,对其进行分析和计算,以掌握系统的暂态稳定能力并给出进一步的控制策略。
二、电力系统的动态分析方法电力系统的动态分析是指在电力系统运行中,针对电力系统瞬态、短暂性的演化和变化,采用一系列数学模型和实验手段来考察电力系统动态特性的方法和技术手段。
在电力系统的动态分析中,常见的计算和分析方法有:瞬态分析法、频域分析法、时域分析法等。
电力系统中的稳态分析方法

电力系统中的稳态分析方法电力系统是一个庞大的复杂系统,它包括了发电、输电、配电、用电等多个环节,涉及到大量的电力设备和线路。
在电力系统中,稳态分析是非常重要的一个环节,它可以帮助我们分析电力系统中各个节点的电压、电流、功率等参数,为我们进行电力系统的规划、设计和运营提供重要的依据。
本文将介绍一些电力系统中的稳态分析方法。
一、潮流计算潮流计算是电力系统稳态分析中最基本的计算方法,它可以用来计算电力系统中各个节点的电压、电流、功率等参数。
潮流计算可以帮助我们评估电力系统的稳定性和可靠性,也是电力系统的规划和设计中必不可少的一步。
潮流计算的基本思想是建立电力系统的电路模型,并求解电力系统中各个节点的电压和相应的电流。
这个过程需要用到大量的电力设备和线路的参数,如发电机、变电站、输电线路、配电线路等。
在求解过程中,需要考虑到各个节点的负荷情况、电压等级、功率因数等因素,并且需要对各个节点的电压和电流进行精细计算,以达到较高的精度。
潮流计算的结果可以帮助我们分析电力系统中各个节点的电压稳定性,同时也可以进行电力系统的负荷预测和优化配置,对电力系统的规划和设计有很大的价值。
二、稳态稳定分析稳态稳定性分析是电力系统中另一个非常重要的分析方法,它可以帮助我们评估电力系统在各种情况下的稳定性和安全性。
通常情况下,电力系统在受到不同的干扰时,例如电力负荷的突然变化、电力设备的故障等,可能会产生稳定性问题,因此进行稳态稳定性分析是非常必要的。
稳态稳定性分析的基本思想是建立电力系统的稳态稳定模型,并在不同的场合下对电力系统进行仿真计算。
在进行稳态稳定性仿真计算时,需要考虑到电力系统各个节点的电压和相应的电流,以及负荷水平和电力设备的状态等因素,以此来评估电力系统在不同情况下的稳定性。
稳态稳定性分析的结果可以帮助我们评估电力系统在不同情况下的稳定性和安全性,提高电力系统的可靠性和稳定性,为电力系统的设计和运行提供重要的依据。
电力系统潮流计算与分析

电力系统潮流计算与分析电力系统是现代社会不可或缺的基础设施之一,它为我们提供了稳定可靠的电力供应。
而电力系统的潮流计算与分析则是电气工程中的重要研究领域之一。
本文将介绍电力系统潮流计算与分析的基本概念、方法和应用。
一、潮流计算的基本概念潮流计算是指对电力系统中各个节点的电压、电流、功率等参数进行计算和分析的过程。
它是电力系统规划、设计和运行中必不可少的工具。
潮流计算的目的是确定电力系统中各个节点的电压和相位角,以及各个支路的电流和功率。
通过潮流计算,可以评估电力系统的稳定性、负载能力和输电能力,为电力系统的规划和运行提供科学依据。
二、潮流计算的方法潮流计算的方法主要包括直流潮流计算和交流潮流计算两种。
直流潮流计算是一种简化的方法,适用于电力系统中负载变化较小的情况。
它假设电力系统中的所有元件都是直流元件,忽略了电抗元件的影响。
交流潮流计算则考虑了电力系统中的电抗元件对电流和功率的影响,是一种更为精确的计算方法。
在交流潮流计算中,常用的方法包括高斯-赛德尔法、牛顿-拉夫逊法和快速潮流法等。
高斯-赛德尔法是一种迭代法,通过反复迭代计算节点的电压和相位角,直到满足收敛条件。
牛顿-拉夫逊法则是一种迭代法,通过对节点电压的雅可比矩阵进行线性化,求解节点电压的增量,从而逐步逼近潮流计算的结果。
快速潮流法是一种基于分解和迭代的方法,通过将电力系统分解为多个子系统进行计算,从而提高计算的速度和效率。
三、潮流计算的应用潮流计算在电力系统的规划、设计和运行中有着广泛的应用。
首先,潮流计算可以用于电力系统的负荷分配和负载能力评估。
通过计算各个节点的电压和功率,可以确定电力系统中各个节点的负载水平,从而合理分配负荷,提高电力系统的供电能力。
其次,潮流计算可以用于电力系统的故障分析和稳定性评估。
通过模拟电力系统中的故障情况,可以评估电力系统的稳定性,为电力系统的运行和维护提供依据。
此外,潮流计算还可以用于电力系统的输电能力评估和优化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
适应短时负荷波动以及一天中的计划外负荷的增加。 负荷备用容量一般取3~5%的系统最大负荷; 担任负荷备用的水电厂,装机容量不得小于15%的Pmax。
2)事故备用
防止由于部分机组发生偶然性事故退出运行而影响供电。 其容量大小与系统总容量的大小,发电机台数的多少、单机容
连接容量:频率和电压等于额定值时,接在电网上的用电设备的 实际容量。
连接容量改变时,静态特性曲线将上下平移。
连接容量不变时,f↓,P↓,从而限制了频率进一步恶化。一般 f↓1%,P↓1~3%。
2、发电机组的功率—频率静特性
发电机所带负荷变化时,发电机的转速就要发生变化, 为此要保证系统频率在允许的范围内,需要进行频率 调整。
Pd
0Pde
1Pde
(
f fe
)
2
Pde
(
f fe
)
2
பைடு நூலகம்
3
Pde
(
f fe
)3
...
负荷分类:
1)与频率变化无关的负荷,如照明、电炉、整流负荷等;
2)与频率成正比的负荷,如切削机床、球磨机、往复式水泵等;
3)与频率高次方成正比的负荷,如带鼓风机或离心式水泵的电动 机等。
由于第二类负荷在系统中占大多数,因此综合负荷的功率静特 性接近一条直线,称为电力系统综合负荷的频率静态特性曲线。
∑PG=∑PL+∑ΔP+∑ΔPG
∑PG-----所有发电机发出的有功功率总和;
∑PL----所有负荷的有功功率总和;
∑ΔP---电力网所损耗的有功功率总和;
∑ΔPG---各电厂厂用电所需的有功功率总和。
结论:系统的有功平衡与频率密切相关,有功不能平 衡时,频率必然发生变化。
2.电力系统备用容量
异步电动机a)转矩b)电流; 白炽灯
电子设备:电压低于额定值工作不稳定,甚至不能工作; 电压高于额定值寿命严重降低。
电压偏移过大对电力系统本身以及用 电设备会带来不良的影响。
电力系统一般规定一个电压偏移的最 大允许范围,例如±5%以内。为了实现这 个要求,需要对电压进行调整。
二、电力系统无功功率平衡
发电机的速度调整是由原动机附设的调速系统来实 现的。
发电机的有功出力与频率之间的关系称为发电机组 的功率-频率静态特性,简称发电机的功频静特性。
离心飞摆式调速系统示意图
离心飞摆式调速系统的作用原理
一次调频-----发电机调速器自动实现
有差调节
二次调频------由调频器来实现
在主调频厂,在人工或自动装置控制下,通 过开动调频器的伺服电动机,来改变发电机 组的功频静特性,使其上下平行移动。
4)频率变化,还会引起系统中各电源间功率的重新分配,影响 系统的经济运行。
3.频率偏移的范围:50Hz±(0.2~0.5)Hz
二、电力系统有功功率平衡及备用
1.有功功率的平衡
频率值决定于同步并列运行的所有机组的转速。 发电机的转速又主要决定于与蒸汽输入量或进水量有关的输入
功率和与负荷有关的输出功率。
2)辅助调频厂:一般由少数几个发电厂担任; 3)非调频厂:在正常情况下,机组均按事先
安排好的发电计划发电的电厂,又称基荷厂。
3、分级调整
(1)一次调整:针对第一种变动,由发电机组的调 速器(所有发电机组均装有调速器,所以除已满载的 机组外,每台机组均参加频率的一次调整)来完成, 按发电机组调速器的静态频率特性自动完成;
2.对电力系统本身的影响
1)对汽轮机的影响。低频运行会引起汽轮机叶片产生共振,严 重时产生断裂,造成重大事故。
2)频率下降造成发电厂厂用机械(风机和泵)出力下降,影响锅 炉运行,从而发电机发电能力下降,进一步造成频率下降,导致 频率崩溃。
3)频率下降造成异步电动机和变压器励磁电流大大增加,引起 无功损耗增加,从而引起电压下降。
量、系统中各种电厂的比重及系统对供电可靠性的要求有关。 一般取5~10%的最大负荷,且不小于系统中最大一台机组的 容量。
3)检修备用
4)国民经济备用
3~5%,考虑国民经济的上升而增加的备用。
热备用:处于运行状态的备用,亦称旋转备用。
指运转中的设备可能发的最大功率与发电负荷之差。 如负荷备用和部分事故备用。
(2)二次调整:针对第二种变动,由发电机组的调 频器完成,使发电机组的静态特性平行上移,以保证 频率偏差在允许范围内。由主调频厂和辅助调频厂来 完成。
*三次调整:计划调整,在各发电机组之间进行计划 经济分配调整。
频率调整过程说明
一次调频:有差调节(fa→fc) ;二次调频:无差调节。
第五节 电力系统无功功率平衡及电压调整
1.无功功率对节点电压的影响
1)输电线路传输的无功功率 在高压电力网中,任一节点电压幅值与该点无功功率的变化密 切相关。
U P2R Q2 X U2
U P2 X Q2R
U2
电压等级为110KV及以上时,有R〈〈X,且一般输电线路的δ 较小,cosδ=1,则
U Q2 X U2
Q2
UU 2 X
(U1 cos U 2 )U 2
X
U 2 (U1 U 2 ) X
无功功率和电压调整的复杂性:
– 全系统各点电压不同,各点电压的容许变化 范围也可能不同;
– 调整电压的手段除各个发电机外,还有大量 分散在电力系统的无功补偿设备和带负荷调 整的分接头变压器;而且,还必须和发电机 的控制进行协调,才能使满足电压要求的前 提下,全系统的功率损耗最小。
一、电压偏移对用电设备的影响
冷备用:处于停机待用状态的备用,亦称停机备
用。指未运转的发电设备可能发的最大功率,如检 修备用、国民经济备用及部分事故备用。
三、综合负荷的频率静特性和电源的频率静特性
1、综合负荷频率静特性
接入电力系统中的用电设备从系统中取用的有功与 用户的生产状态、接入点的电压和系统的频率有关, 假设前两种因素不变,仅考虑有功功率随频率变化 的静态关系,称为综合负荷的频率静态特性。
四、电力系统频率调整
1、 负荷变动分解 第一种:变动幅度很小,周期短,具有较大
的偶然性; 第二种:变动幅度较大,周期较长,主要有电
炉、轧机、电气机车等冲击负荷; 第三种:变动幅度最大,周期最长,如不同行
业的日负荷曲线。
2、发电厂按调频的作用分类
1)主调频厂:负责全系统的调频工作,一般 由一个发电厂担任;