《相似三角形》教学设计
三角形相似的判定教学设计(优秀4篇)

三角形相似的判定教学设计(优秀4篇)《相似三角形》数学教案篇一一、教材内容分析《探索三角形相似的条件》是北师大版试验教科书八年级下册第四章第九节的内容,1课时,它是在学生学习了相似三角形的概念基础上,进一步研究三角形相似的条件,是今后进一步研究其他图形的基础。
二、教学目标(知识,技能,情感态度、价值观)1、知识目标:(1)使使学生能通过三角形全等的判定来发现三角形相似的判定。
(2)学生掌握相似三角形判定定理1,并了解它的证明。
(3)使学生初步掌握相似三角形的判定定理1的应用。
2、能力目标:(1)通过尺规作图使学生得到技能的训练;(2)通过公理的初步应用,初步培养学生的逻辑推理能力。
3、情感目标:(1)在公理的形成过程中渗透:实验、观察、类比、归纳;(2)通过知识的纵横迁移感受数学的系统特征。
三、教学重难点:重点:掌握相似三角形判定定理1及其应用。
难点:定理1的证明方法。
四、教学环境及资源准备1、投影片2、观看相关视频五、教学过程教学过程教师活动学生活动设计意图及资源准备(一)、导入新课1、多媒体展示问题,什么叫相似三角形?相似三角形与全等三角形有何联系?2、到目前为止判定三角形相似的方法有几个?3、什么叫相似三角形?相似三角形与全等三角形有何联系?学生回答证明三角形的两种方法通过提问既起到复习旧知识又起到引出新问题的作用(二)、探究新知1新课讲解(1)、做一做,做出两个三角形来试验是否相似。
(2)、师生共同总结:两角对应相等的两个三角形相似。
2应用新知教学例1:已知:△ABC和△DEF中A=40,B=80,E=80,F=60求证:△ABC∽△DEF例2:直角三角形被斜边上的高分成的两个直三角形的与原三角形相似3、例题小结1、学生亲手实践2、学生理解3、边听讲边思考让学生通过亲手实践来体验知识的准确性,理解,消化主要知识例1,例2的练习加强学生,以达对定理的更深一步的理解与掌握。
(三)、随堂练习学生完成教师订正练习应用巩固知识(四)、课时小结通过这节课的学习,你能获得哪些收获?分小组交流后个别回答知识系统化(五)、课后作业习题4.9第1题、第2题。
初中数学《相似三角形》教案

初中数学《相似三角形》教案相似三角形是初中数学中的重要内容,这一课的主要目标是使学生能够理解相似三角形的概念和性质,并能够运用相似三角形的特性解决问题。
以下是本课的教案。
一、教材分析本课所用教材为初中数学教材《数学七年级上册》,第三章“图形的相似与投影”中的“相似三角形”的内容。
本课所讲解的内容包括相似三角形的定义、相似三角形的性质以及相似三角形的判定方法。
二、教学目标1.知识目标-了解相似三角形的定义和性质。
-掌握相似三角形的判定方法。
2.能力目标-能够用相似三角形的性质解决应用问题。
-能够在图形中判断是否存在相似三角形。
3.情感目标-培养学生的观察、思考和解决问题的兴趣。
-培养学生的合作意识和团队合作精神。
三、教学重难点1.教学重点-让学生理解相似三角形的定义及性质。
-培养学生用相似三角形的性质解决问题的能力。
2.教学难点-学生理解相似三角形的判定方法。
-培养学生在图形中判断相似三角形的能力。
四、教学步骤1.导入与引入(15分钟)-利用实例引导学生思考相似三角形的概念,例如:两根相似的饭筷是什么样的?为什么呢?-引入相似三角形的定义,即三角形的对应角相等,对应边成比例。
2.知识讲解(30分钟)-讲解相似三角形的性质:例如对应边成比例、对应角相等、两个相似三角形的比值等。
-结合教材中的习题,引导学生理解相似三角形的重要性质。
3.练习与应用(30分钟)-配备充足的习题和问题,让学生运用所学的知识解决问题。
-给予学生适当的指导,让学生在小组中合作讨论答案。
-学生进行相互检查和讲解,加深对相似三角形的理解。
4.总结与拓展(15分钟)-总结学生学习到的知识,重点强调相似三角形的判定方法和性质。
-给学生拓展一些相关的问题,让学生综合运用所学知识。
五、教学评价与反思1.教学评价-教师根据学生的课堂表现和练习题的完成情况,进行直观式评价。
-学生相互评价,通过小组合作和讲解习题的过程,相互学习和提高。
2.反思与完善-教师在过程中及时发现和解决学生的问题,引导学生更好地理解相似三角形。
《相似三角形》教学设计

《相似三角形》教学设计教学目标:(一)教学知识点1.掌握相似三角形的定义、表示法,并能根据定义判断两个三角形是否相似.2.能根据相似比进行计算. (二)能力训练要求1.能根据定义判断两个三角形是否相似,训练的判断能力.2.能根据相似比求长度和角度,培养的运用能力. (三)情感与价值观要求通过与相似多边形有关概念的类比,渗透类比的教学思想,并领会特殊与一般的关系.教学重点:相似三角形的判定与性质。
教学重点: 相似三角形的定义及运用。
教学过程: 一 知识要点:1、相似形、成比例线段、黄金分割相似形:形状相同、大小不一定相同的图形。
特例:全等形。
相似形的识别:对应边成比例,对应角相等。
成比例线段(简称比例线段):对于四条线段a 、b 、c 、d ,如果其中两条线段的长度的比与另两条线段的长度的比相等,即dcb a (或a :b=c :d ),那么,这四条线段叫做成比例线段,简称比例线段。
黄金分割:将一条线段分割成大小两条线段,若小段与大段的长度之比等于大段与全长之比,则可得出这一比值等于0·618…。
这种分割称为黄金分割,点P 叫做线段AB 的黄金分割点,较长线段叫做较短线段与全线段的比例中项。
例1:(1)放大镜下的图形和原来的图形相似吗? (2)哈哈镜中的形象与你本人相似吗? (3)你能举出生活中的一些相似形的例子吗/例2:判断下列各组长度的线段是否成比例:(1)2厘米,3厘米,4厘米,1厘米(2)1·5厘米,2·5厘米,4·5厘米,6·5厘米(3)1·1厘米,2·2厘米L3·3厘米,4·4厘米(4)1厘米, 2厘米,2厘米,4厘米〢例3:某人下身长90厘米,上身长70厘米,要使整个人看上去成黤金分割,需穿多高的高跟鞋?例4:等腰三角形都相似吗?矩形都相似吗?正方形都相似吗゚2、相似形三角形的判断:(1)两角对应相等(2)两边对应抐比例且夹角相等(3)三边对应成比例3、相似形三角形的性质: (1)对应角相等(2)对应边成比例H3)对应线段之比等于相侼比(4)周长之比等于相似比(5)面积之比等于相似比的平方4、相似形三角形的应用:计算那些不能直接测量的物体的高度或宽度以及等份线段。
九年级数学下册《相似三角形》教案、教学设计

一、教学目标
(一)知识与技能
1.理解并掌握相似三角形的定义,能够识别图形中的相似三角形。
2.掌握相似三角形的性质,如对应角相等、对应边成比例,能够运用性质解决相关问题。
3.学会使用相似三角形的判定方法,如AA、SAS、SSS等,能够判断两个三角形是否相似。
4.能够运用相似三角形的知识解决实际问题,如测量物体的高度、计算角度等。
2.提出问题:询问学生是否知道这些图形中的相似三角形,它们有什么特点?如何判断两个三角形是相似的?
3.学生回答:鼓励学生积极思考,回答问题,分享他们的观察和发现。
4.教师总结:根据学生的回答,总结相似三角形的初步概念,为新课的学习做好铺垫。
(二)讲授新知
1.教学内容:详细讲解相似三角形的定义、性质(对应角相等、对应边成比例)及判定方法(AA、SAS、SSS)。
(ቤተ መጻሕፍቲ ባይዱ)情感态度与价值观
1.培养学生积极主动探索数学知识的热情,增强学生学习数学的自信心。
2.培养学生严谨、细致的学习态度,对待数学问题要有耐心和毅力。
3.培养学生善于发现生活中的数学问题,体会数学在现实生活中的应用价值。
4.培养学生的审美观念,欣赏相似三角形在几何图形中的美感。
二、学情分析
九年级的学生已经具备了一定的数学基础,掌握了三角形的基本概念和性质,能够进行简单的几何推理。在此基础上,学习相似三角形的知识,对学生来说是水到渠成的过程。然而,由于相似三角形涉及的概念和性质较为抽象,学生在理解上可能存在一定困难。因此,在教学过程中,教师需要关注以下几点:
(3)单元测试:通过单元测试,检验学生对相似三角形知识的掌握程度,发现并解决学生存在的问题。
数学教案-相似三角形的判定数学教学教案5篇

相似三角形的判定数学教学教案5篇两角对应相等,两个三角形相似。
两边对应成比例且夹角相等,两个三角形相似。
三边对应成比例,两个三角形相似。
三边对应平行,两个三角形相似。
斜边与直角边对应成比例,两个直角三角形相似。
都是三角形相似的判定。
下面是小编为大家整理的相似三角形的判定数学教学教案5篇,希望大家能有所收获!相似三角形的判定数学教学教案1教学目标(一)教学知识点1.掌握相似三角形的定义、表示法,并能根据定义判断两个三角形是否相似.2.能根据相似比进行计算.(二)能力训练要求1.能根据定义判断两个三角形是否相似,训练学生的判断能力.2.能根据相似比求长度和角度,培养学生的运用能力.(三)情感与价值观要求通过与相似多边形有关概念的类比,渗透类比的教学思想,并领会特殊与一般的关系.教学重点相似三角形的定义及运用.教学难点根据定义求线段长或角的度数.教学方法类比讨论法教具准备投影片三张第一张(记作§4.5 A)第二张(记作§4.5 B)第三张(记作§4.5 C)教学过程Ⅰ.创设问题情境,引入新课[师]上节课我们学习了相似多边形的定义及记法.现在请大家回忆一下.[生]对应角相等,对应边成比例的两个多边形叫做相似多边形.相似多边形对应边的比叫做相似比.[师]很好.请问相似多边形指的是哪些多边形呢?[生]只要边数相同,满足对应角相等、对应边成比例的多边形都包括.比如相似三角形,相似五边形等.[师]由此看来,相似三角形是相似多边形的一种.今天,我们就来研究相似三角形.相似三角形的判定数学教学教案2一、教学目标1.使学生了解判定定理1及直角三角形相似定理的证明方法并会应用,掌握例2的结论.2.继续渗透和培养学生对类比数学思想的认识和理解.3.通过了解定理的证明方法,培养和提高学生利用已学知识证明新命题的能力.4.通过学习,了解由特殊到一般的唯物辩证法的观点.二、教学设计类比学习,探讨发现三、重点及难点1.教学重点:是判定定理l及直角三角形相似定理的应用,以及例2的结论.2.教学难点:是了解判定定理1的证题方法与思路.四、课时安排1课时五、教具学具准备多媒体、常用画图工具、六、教学步骤[复习提问]1.什么叫相似三角形?什么叫相似比?2.叙述预备定理.由预备定理的题所构成的三角形是哪两种情况.[讲解新课]我们知道,用相似三角形的定义可以判定两个三角形相似,但涉及的条件较多,需要有三对对应角相等,三条对应边的比也都相等,显然用起来很不方便.那么从本节课开始我们来研究能不能用较少的几个条件就能判定三角形相似呢?上节课讲的预备定理实际上就是一个判定三角形相似的方法,现在再来学习几种三角形相似的判定方法.我们已经知道,全等三角形是相似三角形当相似比为1时的特殊情况,判定两个三角形全等的三个公理和判定两个三角形相似的三个定理之间有内在的联系,不同处仅在于前者是后者相似比等于1的情况,教学时可先指出全等三角形与相似三角形之间的关系,然后引导学生自己用类比的方法找出新的命题,如:问:判定两个三角形全等的方法有哪几种?答:SAS、ASA(AAS)、SSS、HL.问:全等三角形判定中的“对应角相等”及“对应边相等”的语句,用到三角形相似的判定中应如何说?答:“对应角相等”不变,“对应边相等”说成“对应边成比例”.问:我们知道,一条边是写不出比的,那么你能否由“ASA”或“AAS”,采用类比的方法,引出一个关于三角形相似判定的新的命题呢?答:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.强调:(1)学生在回答中,如出现问题,教师要予以启发、引导、纠正.(2)用类比方法找出的新命题一定要加以证明.如图5-53,在ⅠABC和Ⅰ 中,,.问:ⅠABC和Ⅰ 是否相似?分析:可采用问答式以启发学生了解证明方法.问:我们现在已经学习了哪几个判定三角形相似的方法?答:①三角形的定义,②上一节学习的预备定理.问:根据本命题条件,探讨时应采用哪种方法?为什么?答:预备定理,因为用定义条件明显不够.问:采用预备定理,必须构造出怎样的图形?答:或.问:应如何添加辅助线,才能构造出上一问的图形?此问学生回答如有困难,教师可领学生共同探讨,注意告诉学生作辅助线一定要合理.(1)在ⅠABC边AB(或延长线)上,截取,过D作DEⅠBC交AC于E.“作相似.证全等”.(2)在ⅠABC边AB(或延长线上)上,截取,在边AC(或延长线上)截取AE= ,连结DE,“作全等,证相似”.(教师向学生解释清楚“或延长线”的情况)虽然定理的证明不作要求,但通过刚才的分析让学生了解定理的证明思路与方法,这样有利于培养和提高学生利用已学知识证明新命题的能力.判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.简单说成:两角对应相等,两三角形相似.,,Ⅰ .例1 已知和中,,,.求证:Ⅰ .此例题是判定定理的直拉应用,应使学生熟练掌握.例2 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似.已知:如图5-54,在中,CD是斜边上的高.求证:Ⅰ Ⅰ .该例题很重要,它一方面可以起到巩固、掌握判定定理1的作用;另一方面它的应用很广泛,并且可以直接用它判定直角三角形相似,教材上排了黑体字,所以可以当作定理直接使用.即ⅠⅠⅠⅠ.[小结]1判定定理1的引出及证明思路与方法的分析,要求学生掌握两种辅助线作法的思路.2.判定定理1的应用以及记住例2的结论并会应用.七、布置作业教材P238中A组3、4.相似三角形的判定数学教学教案31、教学引入照顾到了到多数的同学,培养了学生的动手测量和计算能力。
相似三角形的判定教案3篇

相似三角形的判定教案3篇相似三角形的判定教案1最近,我们九年级学完了《相似三角形的判定》的内容,相似三角形是初中数学学习的重点内容,对学生的能力培养与训练,有着重要的地位,而“相似三角形判定定理”又是相似三角形这章内容的重点与难点所在。
在本章教学中,主要教学目标是让学生在亲自操作、探究的过程中,获得三角形相似的判定方法;培养学生提出问题、解决问题的能力。
2013年12月10日,我在九年级二班刚好就上了《相似三角形的判定》第一课时的内容。
在本节课的教学中,我是通过平行线分线段成比例定理引入教学的,先让学生画三条平行线,再画两条相交直线与其相交,从而得出得出了一些线段,并再让学生自己操作:量一量、算一算、比一比,从图形中判断,得出那些结论。
整个教学过程进展较为顺利,基本完成了教学任务。
在本节课的教学中,我认为以下这几个方面做得较好:1、教学引入照顾到了到多数的同学,培养了学生的动手测量和计算能力。
利用三角板画平行线、相交线,通过测量对比,学生基本能全员参与,调动了学生学习的兴趣和积极性。
学生更易于从图形当中得到结论,这样引入能很好的使学生体验到生活中的数学知识。
通过后来练习及作业反馈、九年级四班的同学也比较容易得出了平行线分线段成比例定理这个结论,说明这种引入的方法是成功的。
2、对教学内容进行了合理整合。
把相似三角形的判定方法放到下一节课学习,使学生对相似三角形的识别方法有个整体的认识,然后再利用第二、三节课巩固深入,杜绝传统的“学生在一节课内学完一个知识点就做相应的练习,模仿套用知识而不需选择,当学完全部相似知识点进行综合练习时,容易产生混淆”的现象。
本节课只学习了平行线分线段成比例定理的内容,以及由此演变而形成的“A 字型”图和“X型图”从一开始就摆脱学生的依赖心理,把问题抛给学生,有效的锻炼了学生的思维,同时还利用全等三角形的识别类比相似三角形的识别,学生容易理解。
3、注意到了推理的逻辑性和严密性。
教学设计 北师大版 初中 数学 八年级 下册《相似三角形》

教学设计北师大版初中数学八年级下册《相似三角形》一. 教材分析北师大版初中数学八年级下册《相似三角形》是学生在学习了平面几何基本概念、三角形、四边形等知识后,进一步研究三角形的性质。
相似三角形是初中学段几何学习的重点内容,也是高考中的重要考点。
本节课的内容包括相似三角形的定义、性质、判定和应用。
通过学习相似三角形,学生可以加深对几何图形的理解,提高解决问题的能力。
二. 学情分析学生在学习本节课之前,已经掌握了平面几何基本概念、三角形、四边形等知识。
他们具备一定的观察、分析、推理能力,但对于相似三角形的理解和运用还需加强。
此外,学生对于实际生活中的几何问题感兴趣,但缺乏解决实际问题的经验。
三. 教学目标1.理解相似三角形的定义和性质;2.学会运用相似三角形解决实际问题;3.培养学生的观察能力、分析能力和推理能力;4.激发学生学习几何的兴趣,提高学习积极性。
四. 教学重难点1.相似三角形的定义和性质;2.相似三角形的判定;3.相似三角形在实际问题中的应用。
五. 教学方法1.情境教学法:通过生活实例引入相似三角形,激发学生兴趣;2.启发式教学法:引导学生发现相似三角形的性质,培养学生推理能力;3.实践性教学法:让学生参与实际问题解决,提高运用知识的能力;4.小组合作学习:鼓励学生讨论、交流,共同解决问题。
六. 教学准备1.准备相关的生活实例和图片;2.准备相似三角形的课件和教学素材;3.准备练习题和课后作业。
七. 教学过程1.导入(5分钟)利用生活实例引入相似三角形的概念,如:在同一平面内,有两个三角形,它们的形状相同,但大小不同,这两个三角形叫做相似三角形。
引导学生观察实例,发现相似三角形的特征。
2.呈现(10分钟)利用课件展示相似三角形的定义和性质,让学生直观地理解相似三角形的概念。
同时,通过PPT讲解相似三角形的判定方法,如:AA相似定理、SSS相似定理等。
3.操练(15分钟)让学生分组讨论,每组选择一个实例,运用相似三角形的性质和判定方法进行解答。
冀教版数学九年级上册《25.3 相似三角形》教学设计1

冀教版数学九年级上册《25.3 相似三角形》教学设计1一. 教材分析冀教版数学九年级上册《25.3 相似三角形》是学生在学习了三角形的性质、全等三角形的基础上,进一步探讨相似三角形的性质。
本节内容通过具体的例子引导学生发现相似三角形的性质,培养学生的观察能力、推理能力。
教材以学生为主体,注重引导学生自主探究,发现规律,培养学生的探究精神。
二. 学情分析九年级的学生已经掌握了三角形的基本性质,具备了一定的观察、推理能力。
但学生在学习过程中容易将相似三角形与全等三角形混淆,对相似三角形的性质理解不深。
因此,在教学过程中,教师要注重引导学生区分相似三角形与全等三角形,帮助学生深化对相似三角形性质的理解。
三. 教学目标1.理解相似三角形的定义,掌握相似三角形的性质。
2.能够运用相似三角形的性质解决实际问题。
3.培养学生的观察能力、推理能力、探究精神。
四. 教学重难点1.相似三角形的定义及性质。
2.相似三角形与全等三角形的区别。
五. 教学方法1.情境教学法:通过具体的例子,引导学生发现相似三角形的性质。
2.推理教学法:引导学生运用已知的三角形性质,推理出相似三角形的性质。
3.小组合作学习:学生在小组内讨论、探究,培养学生的合作能力。
六. 教学准备1.教学课件:制作课件,展示相似三角形的例子。
2.练习题:准备相关的练习题,巩固学生对相似三角形性质的理解。
七. 教学过程1.导入(5分钟)利用课件展示一些生活中的相似图形,如姐妹俩的相似衣服、相似的建筑物等,引导学生发现相似图形的特征。
2.呈现(10分钟)呈现两个全等的三角形,通过旋转、平移其中一个三角形,使其与另一个三角形形成相似三角形。
引导学生观察、发现相似三角形的性质。
3.操练(10分钟)学生分组讨论,每组找出几个相似三角形,并归纳出相似三角形的性质。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)学生独立完成练习题,教师批改、讲解,巩固学生对相似三角形性质的理解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《相似三角形》教学设计
教学目标:
(一)教学知识点
1.掌握相似三角形的定义、表示法,并能根据定义判断两个三角形是否相似.
2.能根据相似比进行计算. (二)能力训练要求
1.能根据定义判断两个三角形是否相似,训练学生的判断能力.
2.能根据相似比求长度和角度,培养学生的运用能力. (三)情感与价值观要求
通过与相似多边形有关概念的类比,渗透类比的教学思想,并领会特殊与一般的关系.
教学重点:相似三角形的判定与性质。
教学重点: 相似三角形的定义及运用。
教学过程: 一 知识要点:
1、相似形、成比例线段、黄金分割
相似形:形状相同、大小不一定相同的图形。
特例:全等形。
相似形的识别:对应边成比例,对应角相等。
成比例线段(简称比例线段):对于四条线段a 、b 、c 、d ,如果其中两条线段的长度的比与另两条线段的长度的比相等,即
d
c
b a (或a :b=
c :
d ),那么,这四条线段叫做成比例线段,简称比例线段。
黄金分割:将一条线段分割成大小两条线段,若小段与大段的长度之比等于大段与全长之比,则可得出这一比值等于0·618…。
这种分割称为黄金分割,点P 叫做线段AB 的黄金分割点,较长线段叫做较短线段与全线段的比例中项。
例1:(1)放大镜下的图形和原来的图形相似吗? (2)哈哈镜中的形象与你本人相似吗? (3)你能举出生活中的一些相似形的例子吗/
例2:判断下列各组长度的线段是否成比例: (1)2厘米,3厘米,4厘米,1厘米
(2)1·5厘米,2·5厘米,4·5厘米,6·5厘米 (3)1·1厘米,2·2厘米L3·3厘米,4·4厘米 (4)1厘米, 2厘米,2厘米,4厘米〢
例3:某人下身长90厘米,上身长70厘米,要使整个人看上去成黤金分割,需穿多高的高跟鞋?
例4:等腰三角形都相似吗? 矩形都相似吗?
゚ 2、相似形三角形的判断: (1)两角对应相等
(2)两边对应抐比例且夹角相等 (3)三边对应成比例 3、相似形三角形的性质: (1)对应角相等 (2)对应边成比例
H3)对应线段之比等于相侼比 (4)周长之比等于相似比 (5)面积之比等于相似比的平方 4、相似形三角形的应用:
计算那些不能直接测量的物体的高度或宽度以及等份线段。
例题
中,G 是BC 延长线上一点,AG 交BD 于点E ,交DC 于点F ,试找出图中所有的相似三角形
二、同步练习:
1.已知:AB=2,M 是的黄金分割点,
(1) 求AM 的长;(2)求AM :MB
B
G
2.已知:x:y:z=2:3:4, 求:
z y x z y x -+++(2)z
y x z
y x 3223-+-+(3)若2x-3y+z=-2求x,y,z 的
3.已知:k d
b a c
d c a b d c b a c b a d =++=++=++=++,求k 的值。
4.如图:已知CD ∥EF ∥GH ∥AB ,AB=16,CD=10,DE ∶EG ∶GA=1∶2∶3,求EF+GH 。
5.如图,在直角坐标系中有两点A (4,0),B (0,2),如果点C 在x 轴上,(C 与A 不重合),当由点B ,O ,C 组成的三角形与三角形AOB 相似时,求点C 的坐标?
三、课堂小结
有学生自己总结本堂课所学到的知识点有哪些?
四、布置作业(略)
N
D A
B
C E F M
G H X。