公开课教学设计(正余弦定理及其应用)

合集下载

《正弦定理和余弦定理的实际运用举例》教学设计

《正弦定理和余弦定理的实际运用举例》教学设计

《正弦定理和余弦定理的实际运用举例》教学设计正弦定理和余弦定理的实际运用举例教学设计简介本教学设计旨在教授正弦定理和余弦定理的实际运用方法。

通过实例演示和练题的形式,帮助学生理解和掌握这两个几何定理的应用场景。

教学目标- 理解正弦定理和余弦定理的概念和原理- 掌握正弦定理和余弦定理在实际问题中的应用方法- 进一步发展解决几何问题的能力教学内容正弦定理- 介绍正弦定理的概念和公式(a/sinA = b/sinB = c/sinC)- 解释正弦定理的几何意义和运用场景- 演示实际问题中如何利用正弦定理求解未知变量余弦定理- 介绍余弦定理的概念和公式(c² = a² + b² - 2abcosC)- 解释余弦定理的几何意义和运用场景- 演示实际问题中如何利用余弦定理求解未知变量实际运用举例- 提供几个实际问题的案例,涉及三角形的边长和角度- 分步引导学生运用正弦定理和余弦定理解决这些问题- 给予学生充足的练机会,以加深对定理应用的理解和熟练度教学步骤1. 引入:复三角形的基本概念和知识点2. 正弦定理:- 介绍正弦定理的公式和使用方法- 演示一个实际问题的解决过程,利用正弦定理求解未知变量- 学生模仿演示并完成相关练题3. 余弦定理:- 介绍余弦定理的公式和使用方法- 演示一个实际问题的解决过程,利用余弦定理求解未知变量- 学生模仿演示并完成相关练题4. 实际运用举例:- 提供几个实际问题的案例,涉及三角形的边长和角度- 分组或个人完成案例分析和解决过程- 学生通过小组或个人报告展示解决思路和结果5. 总结与讨论:- 综合讨论学生的解决思路和方法的优劣- 引导学生总结出正弦定理和余弦定理在解决实际问题中的重要性和应用价值教学评估1. 参与度评估:观察学生在课堂中的积极参与程度和问题解答能力2. 练成绩评估:通过练题的完成情况和准确度,进行学生对正弦定理和余弦定理的理解和应用评估3. 案例分析评估:评估学生在实际问题解决中的思考能力和解决方法的合理性参考资源1. 《高中数学教材》2. 互动教学软件和课件3. 个人和小组练习题。

正余弦定理的应用举例教案

正余弦定理的应用举例教案

正余弦定理的应用举例教案一、教学目标1. 理解正余弦定理的概念及其在几何中的应用。

2. 学会运用正余弦定理解决实际问题,提高解决问题的能力。

3. 培养学生的逻辑思维能力和团队协作能力。

二、教学内容1. 正余弦定理的定义及公式。

2. 正余弦定理在直角三角形中的应用。

3. 正余弦定理在非直角三角形中的应用。

4. 正余弦定理解决实际问题举例。

三、教学重点与难点1. 教学重点:正余弦定理的定义及公式,正余弦定理在几何中的应用。

2. 教学难点:正余弦定理在非直角三角形中的应用,解决实际问题。

四、教学方法1. 采用讲授法讲解正余弦定理的定义及公式。

2. 利用案例分析法讲解正余弦定理在直角三角形和非直角三角形中的应用。

3. 利用小组讨论法解决实际问题。

五、教学过程1. 引入:通过讲解正弦、余弦的概念,引导学生理解正余弦定理的背景。

2. 讲解:详细讲解正余弦定理的定义及公式,结合实际例子,让学生理解并掌握定理的应用。

3. 练习:布置练习题,让学生运用正余弦定理解决直角三角形和非直角三角形的问题。

4. 案例分析:分析实际问题,引导学生运用正余弦定理进行解决,培养学生的解决问题的能力。

5. 小组讨论:让学生分组讨论,分享各自的解题思路和方法,培养学生的团队协作能力。

6. 总结:对本节课的主要内容进行总结,强调正余弦定理在几何中的应用及其重要性。

7. 作业布置:布置课后作业,巩固所学知识。

六、教学评估1. 课堂练习:通过课堂练习,了解学生对正余弦定理的理解和应用情况。

2. 课后作业:布置有关正余弦定理应用的作业,收集并批改,分析学生的掌握情况。

3. 小组讨论:观察学生在小组讨论中的表现,了解他们的合作能力和问题解决能力。

七、教学反思1. 教师应根据学生的反馈,及时调整教学方法和进度。

2. 对于学生的共性问题,应加强讲解和辅导。

3. 鼓励学生积极参与课堂和课后实践,提高他们的实际应用能力。

八、拓展与延伸1. 引导学生思考正余弦定理在其他领域的应用。

初中数学教案余弦定理与正弦定理的应用

初中数学教案余弦定理与正弦定理的应用

初中数学教案余弦定理与正弦定理的应用初中数学教案余弦定理与正弦定理的应用一、引言在初中数学学习中,我们经常会遇到利用几何知识解决实际问题的情况。

而余弦定理和正弦定理作为几何知识的重要部分,具有广泛的应用价值。

本教案旨在通过具体的例子,让学生理解并能够熟练应用余弦定理和正弦定理。

二、教学目标1. 掌握余弦定理和正弦定理的概念和公式;2. 理解余弦定理和正弦定理的应用场景;3. 能够灵活运用余弦定理和正弦定理解决实际问题。

三、教学内容1. 余弦定理的应用余弦定理是用来求解三角形边长或角度的定理,其公式为:c^2 = a^2 + b^2 - 2ab*cos∠C示例题目1:已知三角形ABC,边长分别为a=5cm,b=7cm,∠C=60°,求边c的长度。

解答思路:根据余弦定理的公式,将已知的数值代入计算,有:c^2 = 5^2 + 7^2 - 2*5*7*cos60°c^2 = 25 + 49 - 70*cos60°c^2 = 74 - 70*0.5c^2 = 74 - 35c^2 = 39因此,c≈6.24cm示例题目2:已知三角形ABC,边长分别为a=8cm,b=9cm,c=10cm,求∠A的大小。

解答思路:根据余弦定理的公式,将已知的数值代入计算,有:8^2 = 9^2 + 10^2 - 2*9*10*cos∠A64 = 81 + 100 - 180*cos∠A180*cos∠A = 181 - 64cos∠A = 117/180∠A ≈ 51.32°2. 正弦定理的应用正弦定理是用来求解三角形边长或角度的定理,其公式为:a/sin∠A = b/sin∠B = c/sin∠C示例题目3:已知三角形ABC,∠A=45°,∠B=60°,AC=8cm,求边AB与BC的长度。

解答思路:根据正弦定理的公式,将已知的数值代入计算,有:AB/sin45° = 8/sin60°AB = 8*sin45°/sin60°AB ≈ 8*0.7071/0.8660 ≈ 6.928cmBC/sin60° = 8/sin45°AB = 8*sin60°/sin45°AB ≈ 8*0.8660/0.7071 ≈ 9.398cm四、教学方法1. 结合实际生活进行示例分析,增加学生的兴趣;2. 组织学生小组合作,共同解决问题,培养合作意识;3. 引导学生总结规律,归纳定理应用方法。

正弦定理教案优秀5篇

正弦定理教案优秀5篇

正弦定理教案优秀5篇《正弦定理、余弦定理》教学设计篇一一、教学内容:本节课主要通过对实际问题的探索,构建数学模型,利用数学实验猜想发现正弦定理,并从理论上加以证实,最后进行简单的应用。

二、教材分析:1、教材地位与作用:本节内容安排在《普通高中课程标准实验教科书。

数学必修5》(A 版)第一章中,是在高二学生学习了三角等知识之后安排的,显然是对三角知识的应用;同时,作为三角形中的一个定理,也是对初中解直角三角形内容的直接延伸,而定理本身的应用(定理应用放在下一节专门研究)又十分广泛,因此做好该节内容的教学,使学生通过对任意三角形中正弦定理的探索、发现和证实,感受“类比--猜想--证实”的科学研究问题的思路和方法,体会由“定性研究到定量研究”这种数学地思考问题和研究问题的思想,养成大胆猜想、善于思考的品质和勇于求真的精神。

2、教学重点和难点:重点是正弦定理的发现和证实;难点是三角形外接圆法证实。

三、教学目标:1、知识目标:把握正弦定理,理解证实过程。

2、能力目标:(1)通过对实际问题的探索,培养学生数学地观察问题、提出问题、分析问题、解决问题的能力。

(2)增强学生的协作能力和数学交流能力。

(3)发展学生的创新意识和创新能力。

3、情感态度与价值观:(1)通过学生自主探索、合作交流,亲身体验数学规律的发现,培养学生勇于探索、善于发现、不畏艰辛的创新品质,增强学习的成功心理,激发学习数学的爱好。

(2)通过实例的社会意义,培养学生的爱国主义情感和为祖国努力学习的责任心。

四、教学设想:本节课采用探究式课堂教学模式,即在教学过程中,在教师的启发引导下,以学生独立自主和合作交流为前提,以“正弦定理的发现”为基本探究内容,以四周世界和生活实际为参照对象,为学生提供充分自由表达、质疑、探究、讨论问题的机会,让学生通过个人、小组、集体等多种解难释疑的尝试活动,将自己→←所学知识应用于对任意三角形性质的深入探讨。

让学生在“活动”中学习,在“主动”中发展,在“合作”中增知,在“探究”中创新。

正弦定理和余弦定理的运用教案

正弦定理和余弦定理的运用教案

正弦定理和余弦定理的运用教案正文:正弦定理和余弦定理的运用教案一、教学目标1. 理解正弦定理和余弦定理的含义和基本公式;2. 掌握正弦定理和余弦定理在解决三角形相关问题中的应用方法;3. 培养学生的逻辑思维能力和解决实际问题的能力。

二、教学重点1. 正弦定理的推导和应用;2. 余弦定理的推导和应用。

三、教学难点1. 正弦定理和余弦定理的理解和记忆;2. 通过具体问题实际运用,使学生深入理解定理的应用方法。

四、教学准备1. 教材:三角函数学科教材;2. 工具:投影仪、黑板、粉笔、直尺、量角器。

五、教学过程Ⅰ. 导入(10分钟)1. 教师简要复习三角比的概念和计算方法;2. 教师引导学生思考:在已知某一角的情况下,如何确定三角形的边长呢?Ⅱ. 正弦定理的推导和应用(20分钟)1. 教师通过投影仪展示正弦定理的基本公式:a/sinA = b/sinB =c/sinC;2. 教师讲解正弦定理的推导过程,并与学生一同完成推导;3. 教师给出具体问题,引导学生运用正弦定理解决问题,并逐步引导学生总结出应用方法。

Ⅲ. 余弦定理的推导和应用(20分钟)1. 教师通过投影仪展示余弦定理的基本公式:c² = a² + b² - 2abcosC;2. 教师讲解余弦定理的推导过程,并与学生一同完成推导;3. 教师给出具体问题,引导学生运用余弦定理解决问题,并逐步引导学生总结出应用方法。

Ⅳ. 正弦定理和余弦定理的综合应用(25分钟)1. 教师给出一些复合问题,要求学生结合正弦定理和余弦定理解决问题;2. 学生分组讨论、解答问题,并在黑板上展示解题过程;3. 教师组织学生展示解题思路和方法,并针对不同解题方法进行及时点评。

Ⅴ. 拓展应用(15分钟)1. 教师布置一些拓展性应用题,要求学生在课后完成;2. 学生自主学习拓展内容,并在下节课讲解时与教师进行互动讨论。

Ⅵ. 总结与作业(10分钟)1. 教师对本节课的要点进行总结,并强调正弦定理和余弦定理的重要性;2. 布置作业:完成课后习题,复习和巩固所学知识。

高中数学:正弦定理、余弦定理及应用教案苏教版必修

高中数学:正弦定理、余弦定理及应用教案苏教版必修

教案:高中数学——正弦定理、余弦定理及应用教案编写者:教学目标:1. 理解正弦定理、余弦定理的定义及几何意义;2. 掌握正弦定理、余弦定理的应用方法;3. 能够运用正弦定理、余弦定理解决实际问题。

教学重点:1. 正弦定理、余弦定理的定义及几何意义;2. 正弦定理、余弦定理的应用方法。

教学难点:1. 正弦定理、余弦定理在实际问题中的应用。

教学准备:1. 教师准备PPT、教案、例题及练习题;2. 学生准备笔记本、文具。

教学过程:一、导入(5分钟)1. 复习初中阶段学习的三角函数知识,引导学生回顾正弦、余弦函数的定义及图像;2. 提问:如何利用三角函数解决几何问题?引出正弦定理、余弦定理的学习。

二、正弦定理(15分钟)1. 讲解正弦定理的定义:在一个三角形中,各边和它所对角的正弦的比相等;2. 解释正弦定理的几何意义:三角形任意一边的长度等于这一边所对角的正弦值乘以对边的长度;3. 举例说明正弦定理的应用方法,如已知三角形两边和一边的对角,求第三边的长度;4. 引导学生通过PPT上的例题,理解并掌握正弦定理的应用。

三、余弦定理(15分钟)1. 讲解余弦定理的定义:在一个三角形中,各边的平方和等于两边的平方和减去这两边与它们夹角的余弦的乘积的二倍;2. 解释余弦定理的几何意义:三角形任意一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦值的乘积的两倍;3. 举例说明余弦定理的应用方法,如已知三角形两边和它们的夹角,求第三边的长度;4. 引导学生通过PPT上的例题,理解并掌握余弦定理的应用。

四、应用练习(15分钟)1. 给学生发放练习题,要求学生在纸上完成;2. 学生在纸上完成练习题,教师巡回指导;3. 选取部分学生的作业进行讲解和点评。

1. 回顾本节课学习的正弦定理、余弦定理的定义及应用;2. 强调正弦定理、余弦定理在解决几何问题中的重要性;3. 提醒学生课后复习巩固,做好预习准备。

教学反思:本节课通过讲解正弦定理、余弦定理的定义及几何意义,让学生掌握了这两个重要定理的应用方法。

高中数学《正余弦定理应用举例》公开课优秀教学设计

高中数学《正余弦定理应用举例》公开课优秀教学设计

高中数学《正余弦定理应用举例》公开课优秀教学设计本节课是一节实际应用课,主要研究正弦定理、余弦定理及三角形中的几何计算。

通过解决实际问题,引领学生认识问题、分析问题并最终解决问题。

二、教学目标设置根据学生的认知水平,确定本节课的教学目标:知识与技能:能够运用正弦定理、余弦定理等知识和方法解决有关测量距离的实际问题,了解测量的方法和意义。

在各种应用问题中,抽象或构造出三角形,标出已知量、未知量,确定解三角形的方法,搞清利用解斜三角形可解决的各类应用问题和基本图形和基本等量关系。

过程与方法:采用启发与尝试的方法,让学生在解决实际问题中学会正确识图、画图、想图,帮助学生逐步构建知识框架。

通过解三角形的应用的研究,提高解决实际问题的能力,让学生体会具体问题可以转化为抽象的数学问题,以及数学知识在生产、生活实际中所发挥的重要作用。

情感、态度、价值观:激发学生研究数学的兴趣,并体会数学的应用价值。

培养学生运用图形、数学符号表达题意和应用转化思想解决数学问题的能力。

进一步培养学生研究数学、应用数学的意识及观察、归纳、类比、概括的能力。

三、学生学情分析本节课的教学对象是XXX高二年级的学生。

学生已经研究了正弦定理和余弦定理,能够运用解决一些三角形问题,但在运用正弦定理和余弦定理解三角形的时候不能将实际问题转化成数学问题,构造模型的能力有待提高。

难点:1.实际问题中抽象出一个或几个三角形,然后逐个解决三角形,得到实际问题的解。

2.根据题意建立数学模型,画出示意图。

突破策略:1.在探索概念阶段,让学生和老师共同完成例1,让学生体会实际问题建立数学模型,解答数学模型,再得到实际问题解的过程。

2.在应用概念阶段,通过对解答过程的分析,帮助学生掌握在实际问题中找寻可解三角形的实际过程。

3.教师启发引导,组织学生交流研讨,展现思维过程。

五、教学过程设计教学过程】一、创设情境,明确目标。

在古代,天文学家没有先进的仪器,却能够估算出地球和月亮之间的距离。

1正余弦定理及应用教案(精简版)

1正余弦定理及应用教案(精简版)

卓越个性化教案 GFJW0901学生姓名 年级 授课时间 教师姓名 课时课题解三角形教学目标 1掌握正余弦定理及应用2 掌握三角形面积公式3解三角形 重 点 正弦定理余弦定理综合应用,解三角形 难 点正弦定理余弦定理综合应用,解三角形【知识点梳理】 1.内角和定理:在ABC ∆中,A B C ++=π;sin()A B +=sin C ;cos()A B +=cos C -面积公式:111sin sin sin 222ABC S ab C bc A ac B∆===在三角形中大边对大角,反之亦然.2.正弦定理:在一个三角形中,各边和它的所对角的正弦的比相等.形式一:R C c B b A a 2sin sin sin === (解三角形的重要工具)形式二:⎪⎩⎪⎨⎧===C R c B R b A R a sin 2sin 2sin 2 (边角转化的重要工具)形式三:::sin :sin :sin a b c A B C =形式四:sin ,sin ,sin 222a b c A B C R R R ===3.余弦定理:三角形任何一边的平方等于其他两边的平方的和减去这两边与它们夹角的余弦的积的两倍..形式一:2222cos a b c bc A =+- 2222cos b c a ca B =+- (解三角形的重要工具)2222cos c a b ab C =+-形式二:222cos 2b c a A bc +-=222cos 2a c b B ac +-=222cos 2a b c C ab +-=二、方法归纳(1)已知两角A 、B 与一边a ,由A +B +C =π及sin sin sin a b cA B C ==,可求出角C ,再求b 、c .(2)已知两边b 、c 与其夹角A ,由a 2=b 2+c 2-2b c cosA ,求出a ,再由余弦定理,求出角B 、C . (3)已知三边a 、b 、c ,由余弦定理可求出角A 、B 、C .(4)已知两边a 、b 及其中一边的对角A ,由正弦定理sin sin a bA B =,求出另一边b 的对角B ,由C=π-(A+B),求出c ,再由sin sin a c A C =求出C ,而通过sin sin a bA B =求B 时,可能出一解,两解或无解的情况。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解三角形教学设计
四川泸县二中吴超
教学目标
1.知识与技能
掌握正、余弦定理,能运用正、余弦定理解三角形,并能够解决与实际问题有关的问题。

2.过程与方法
通过小组讨论,学生展示,熟悉正、余弦定理的应用。

3.情感态度价值观
培养转化与化归的数学思想。

教学重、难点
重点:正、余弦定理的应用
难点: 正、余弦定理的实际问题应用
拟解决的主要问题
这部分的核心内容就是正余弦定理的应用。

重点突出三类问题:
(1)是围绕利用正、余弦定理解三角形展开的简单应用
(2)是三角函数、三角恒等变换等和解三角形的综合应用
(3)是围绕解三角形在实际问题中的应用展开
教学流程
教学过程
一、知识方法整合
1、正弦定理:在C ∆AB 中,a 、b 、c 分别为角A 、B 、C 的对边,R 为C ∆AB 的外接圆的半径,则有 = = =
2、三角形面积公式:C S ∆AB = = =
3、余弦定理:C ∆AB 中2a = 2b = 2c =
4、航海和测量中常涉及如仰角、俯角、方位角等术语
5、思想与能力:代数运算能力,分类整合,方程思想、化归与转化思想等
二、典例探究
例1 [2012·四川卷](小组讨论,熟悉定理公式的应用)
如图,正方形ABCD 的边长为1,延长BA 至E ,使AE=1,连接EC 、ED 则sin∠CED=_______(尝试多法)
解3:等面积法 解4:观察角的关系,两角和正切公式
解5:向量数量积定义 练1:在△ABC 中,sin 2A ≤sin 2B +sin 2C -sin B sin C ,则A 的取值范围是( )
A.⎝ ⎛⎦⎥⎤0,π6
B.⎣⎢⎡⎭⎪⎫π6,π
C.⎝ ⎛⎦⎥⎤0,π3
D.⎣⎢⎡⎭
⎪⎫π3,π 解1:由正弦定理a 2≤b 2+c 2-bc ,由余弦定理可知bc ≤b 2+c 2-a 2=2bc cos A ,即152
CDE CD EC ED =∆==1解:中,,,222310210EC ED CD EC ED +-∠•∴=cos CED 101102-∴∠∠sin CED cos CED 0215135CD EC EDC ==∠=解:,, sin sin CD EC CED EDC =∠∴∠
sin 1010CD EDC EC •∠∴∠=sin CED
有cos A ≥12,所以角A 的取值范围为⎝ ⎛⎦
⎥⎤0,π3,选择C.
解2:∵sin 2A=sin 2(B+C)=[sinBcosC+cosBsinC] 2
=sin 2Bcos 2C+2sinBsinCcosBcosC+cos 2Bsin 2C ≤sin 2B+sin 2C-sinBsinC
∴sinBsinC (1+2cosBcosC )≤2sin 2B sin 2C1+2cosBcosC ≤2sinB sinC(sinBsinC ≠0)
2(cosBcosC-sinB sinC)+1= 2cos(B+C)+1≤0∴cosA≥12, A ∈ ⎝ ⎛⎦
⎥⎤0,π3 小结:已知两边和一边对角或已知两角一边用正弦定理;已知两边及其夹角或已知三边用余弦定理。

(1)化角为边,用余弦定理及其变形求解。

(2)化边为角,用正弦定理及三角恒等变换求解。

(3)遇齐次式,优先考虑正弦定理.
(4)注重几何知识的应用
(5)在化简恒等式时,不要轻易约去因式.
例2在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且
322cos cos sin(A )sinB cos(A C)25
A B B B ---++=- (1)求cos A 的值;
(2)
若a =,b =5,求向量BA 在BC 方向上的投影. 分析:(1)先降次,然后进行三角恒等变换;
(2)先作出三角形,分析已知量,利用正余弦定理求解;
(3)向量乘积的几何意义
解:(1)由22cos 2A B -cos B -sin(A -B )sin B +cos(A +C )=35
-,得[cos(A -B )+1]cos B -sin(A -B )sin B -cos B =35
-, 即cos(A -B )cos B -sin(A -B )sin B =35
-. 则cos(A -B +B )=35-,即cos A =35
-. (2)由cos A =35-,0<A <π,得sin A =45
, 由正弦定理,有sin sin a b A B
=, 所以,sin B
=sin 2
b A a =由题知a >b ,则A >B ,故π4
B =.
根据余弦定理,有2=52+c 2-2×5c ×35⎛⎫- ⎪⎝⎭
,解得c =1或c =-7(舍去).
67°30°46m
B A
故向量BA 在BC 方向上的投影为|BA |cos B =22
. 点评:体现运算求解能力,化归与转化等数学思想
讨论展示
如图,从气球A 上测得正前方的河流的两
岸B ,C 的俯角分别为67,30,此时气球
的高是46m ,则河流的宽度BC 约等于____m.
(用四舍五入法将结果精确到个位.参考数据:sin 670.92≈,cos670.39≈,sin 370.60≈,cos370.80≈,3 1.73≈)
解:如图92AC = 0000sin(18067)sin(6730)AC BC =-- 00sin 37920.660sin 670.92
AC BC •⨯∴=≈= 小结:应用解三角形知识解决实际问题一般分为下列四步:
(1)分析——准确理解题意,分清已知与所求,画出示意图
(2)建模——根据已知条件与求解目标,把已知量与求解量尽量集中在有关的三角形中,建立数学模型
(3)求解——运用正弦定理、余弦定理有序的解出三角形。

(4)检验——检验解出的结果是否具有实际意义,对结果进行取舍,得出正确答案.
三、总结提升
1.边角互化:熟练使用正、余弦定理
2.转化与化归思想:解三角形问题是历年高考的热点,常与三角恒等变换等相结合考查正弦、余弦定理的应用。

解题的实质是将三角形中的问题转化为代数问题或方程问题,在此过程中也常利用三角恒等变换知识进行有关的转化.可以说,三角形问题的核心就是转化与化归.
四、布置作业
解三角形练习题单。

相关文档
最新文档