高中数学-对数的运算练习
高中数学人教A版必修第一册课后练习28 对数的运算

高中数学人教A版必修第一册课后练习28对数的运算题组1:夯实基础1.已知log x16=2,则x等于()A.±4 B.4 C.256 D.2解析:∵log x16=2,∴x2=16.∵x>0且x≠1,∴x=4.答案:B2.2log510+log50.25=()A.0 B.1 C.2 D.4解析:原式=log5102+log50.25=log5(100×0.25)=log525=2.答案:C3.若log23=a,则log49=()A.√a B.a C.2a D.a2解析:log49=log29log24=2log232=log23=a,故选B.答案:B4.1 log1419+1log1513等于()A.lg 3 B.-lg 3C.1lg3D.-1lg3解析:原式=lo g1914+lo g1315=log94+log35=log32+log35=log310=1lg3.答案:C5.若2lg(x-2y)=lg x+lg y(x>2y>0),则aa的值为()A.4 B.1或14C.1或4 D.14解析:∵2lg(x-2y)=lg x+lg y(x>2y>0),∴lg(x-2y)2=lg xy,∴(x-2y)2=xy,∴x2-5xy+4y2=0,∴(x-y)(x-4y)=0,∴x=y或x=4y.∵x-2y>0,且x>0,y>0,∴x≠y,∴aa =14.答案:D6.计算:2713+lg 4+2lg 5-e ln 3=__________.解析:由题意得2713+lg 4+2lg 5-e ln 3=(33)13+(lg 4+lg 25)-e ln 3=3+2-3=2.答案:27.log35log46log57log68log79=__________.解析:log35log46log57log68log79=lg5lg3·lg6lg4·lg7lg5·lg8lg6·lg9lg7=lg8lg9lg3lg4=3lg2·2lg3lg3·2lg2=3.答案:38.若2x =3,log 483=y ,则x +2y=__________. 解析:∵2x =3,∴x=log 23.∴x +2y=log 23+2log 483=log 23+2×log 283log 24=log 23+log 283=log 28=3.答案:39.里氏地震等级最早是在1935年由美国加州理工学院的地震学家里克特制定的,它同震源中心释放的能量(热能和动能)大小有关.震级M=23lg E -3.2,其中E (焦耳)为地震时以地震波的形式释放出的能量.如果里氏6.0级地震释放的能量相当于1颗美国在二战投放在广岛的原子弹的能量,那么里氏8.0级大地震所释放的能量相当于______颗广岛原子弹的能量.解析:设里氏8.0级、6.0级地震释放的能量分别为E 2、E 1,则8-6=23(lg E 2-lg E 1),即lg a 2a 1=3,∴a 2a 1=103=1 000.故里氏8.0级大地震所释放的能量相当于1 000颗广岛原子弹. 答案:1 000 10.计算: (1)lg2+lg5-lg8lg50-lg40;(2)lg 12-lg 58+lg 54-log 92·log 43.(3)已知log 53=a ,log 54=b ,用a ,b 表示log 25144.解(1)原式=lg 2×58lg 5040=lg 54lg 54=1.(2)(方法一)原式=lg 1258+lg 54−lg2lg9×lg3lg4=lg (45×54)−lg22lg3×lg32lg2 =lg 1-14=-14.(方法二)原式=(lg 1-lg 2)-(lg 5-lg 8)+(lg 5-lg 4)-lg2lg9×lg3lg4=-lg 2+lg 8-lg 4-lg22lg3×lg32lg2=-(lg 2+lg 4)+lg 8-14=-lg(2×4)+lg 8-14=-14.(3)∵log 53=a ,log 54=b ,∴log 25144=log 512=log 53+log 54=a +B . 11.已知log 2(log 3(log 4x ))=0,且log 4(log 2y )=1.求√a ·a 34的值.解∵log 2(log 3(log 4x ))=0,∴log 3(log 4x )=1.∴log 4x=3.∴x=43=64.由log 4(log 2y )=1,知log 2y=4, ∴y=24=16.因此√a ·a 34=√64×1634=8×8=64.题组2:难点突破1.若lg x-lg y=a,则lg(a2)3-lg(a2)3=()A.3a B.32a C.a D.a2解析:lg(a2)3-lg(a2)3=3(lg a2-lg a2)=3(lg x-lg y)=3A.答案:A2.若2log a(P-2Q)=log a P+log a Q(a>0,且a≠1),则aa的值为()A.14B.4 C.1 D.4或1解析:由2log a(P-2Q)=log a P+log a Q,得log a(P-2Q)2=log a(PQ).由对数运算法则得(P-2Q)2=PQ,即P2-5PQ+4Q2=0,所以P=Q(舍去)或P=4Q,解得aa=4.答案:B3.已知0<a<1,x=log a√2+log a√3,y=12log a5,z=log a√21-log a√3,则()A.x>y>z B.z>y>xC.z>x>y D.y>x>z解析:由题意得x=log a√2+log a√3=log a√6,y=12log a5=log a√5,z=log a√21-log a√3=log a√7,因为0<a<1,又√5<√6<√7,所以log a√5>log a√6>log a√7,即y>x>z,故选D.答案:D4.某种食品因存放不当受到细菌的侵害.据观察,此食品中细菌的个数y与经过的时间t(单位:min)满足关系y=2t,若细菌繁殖到3个,6个,18个所经过的时间分别为t1,t2,t3,则有()A.t1·t2=t3B.t1+t2>t3C.t1+t2=t3D.t1+t2<t3解析:由题意,得2a1=3,2a2=6,2a3=18,则t1=log23,t2=log26,t3=log218,所以t1+t2=log23+log26=log218=t3.答案:C5.2x=5y=m(m>0),且1a +1a=2,则m的值为__________.解析:由2x=5y=m(m>0),得x=log2m,y=log5m,由1a +1a=2,得1log2a+1log5a=2,即log m2+log m5=2,log m(2×5)=2.故有m=√10.答案:√106.已知a>b>1,若log a b+log b a=52,a b=b a,则a=__________,b=__________. 解析:先求出对数值,再利用指数相等列方程求解.∵log a b +log b a=log a b +1log aa =52,∴log a b=2或log a b=12. ∵a>b>1,∴log a b<log a a=1. ∴log a b=12,∴a=b 2. ∵a b =b a ,∴(b 2)b =a a 2,∴b 2b =a a 2. ∴2b=b 2,∴b=2,∴a=4. 答案:4 27.已知(17)a=13,log 74=b ,用a ,b 表示log 4948为__________.解析:由(17)a=13可得a=log 73,由log 74=b 可得b=2log 72,所以log 4948=12(4log 72+log 73)=2a +a2. 答案:a +2a28.设x ,y ,z 均为正数,且3x =4y =6z ,试求x ,y ,z 之间的关系. 解设3x =4y =6z =t ,由x>0,知t>1,故取以t 为底的对数,可得x log t 3=y log t 4=z log t 6=1,∴x=1log a3,y=1log a4,z=1log a6.∵1a −1a =log t 6-log t 3=log t 2=12log t 4=12a , ∴x ,y ,z 之间的关系为1a −1a =12a .9.已知log a (x 2+4)+log a (y 2+1)=log a 5+log a (2xy -1)(a>0,且a ≠1),求log 8aa 的值. 解由对数的运算法则,可将等式化为log a [(x 2+4)·(y 2+1)]=log a [5(2xy -1)],∴(x 2+4)(y 2+1)=5(2xy -1).整理,得x 2y 2+x 2+4y 2-10xy +9=0, 配方,得(xy -3)2+(x -2y )2=0,∴{aa =3,a =2a .∴a a =12.∴log 8aa =log 812=lo g 232-1=-13log 22=-13.。
高中数学:2.2.1对数与对数运算 (24)

第二章 2.2 2.2.1 第二课时A 级 基础巩固一、选择题 1.log 29log 23=( B ) A .12B .2C .32D .92[解析] 原式=log 232log 23=2log 23log 23=2.2.lg8+3lg5的值为( D ) A .-3 B .-1 C .1D .3[解析] 原式=lg8+lg53=lg8+lg125=lg1000=lg103=3. 3.若lg2=a ,lg3=b ,则lg12lg15等于( D )A .2a +b 1+a +bB .2a +2b 1+a +bC .2a +b 2-a +bD .2a +b1-a +b[解析]lg12lg15=lg3+2lg2lg3+(1-lg2)=2a +b 1-a +b. 4.已知2x =3,log 483=y ,则x +2y 的值为( A )A .3B .8C .4D .log 48[解析] x +2y =log 23+2log 483=log 49+log 4(83)2=log 4(9×649)=log 464=3,故选A .5.若log 34·log 8m =log 416,则m 等于( D ) A .3 B .9 C .18D .27[解析] 原式可化为:log 8m =2log 34,∴13log 2m =2log 43,∴m 13=3,m =27,故选D . 6.已知2a =5b =M ,且2a +1b =2,则M 的值是( B )A .20B .2 5C .±2 5D .400[解析] ∵2a =5b =M ,∴a =log 2M =lg M lg2,b =log 5M =lg Mlg5,∴1a =lg2lg M, 1b =lg5lg M ,∴2a +1b =2lg2lg M +lg5lg M =lg4+lg5lg M =lg20lg M =2, ∴2lg M =lg20,∴lg M 2=lg20, ∴M 2=20, ∵M >0,∴M =2 5. 二、填空题7.(2019·江苏泰州高一期末测试)计算:34×819+log 23×log 38=__5__.[解析] 原式=223 ×213+log 23×log 323 =2+lg3lg2×lg23lg3=2+lg3lg2×3lg2lg3=2+3=5.8.化简log 2(2+3)+log 2(2-3)=__0__. [解析] log 2(2+3)+log 2(2-3) =log 2[(2+3)·(2-3)]=log 21=0. 三、解答题9.计算下列各式的值:(1)(2019·天津河西区高一期末测试)log 327+lg25+lg4-7 log 73-27-23;(2)(2019·河北沧州市高一期中测试)21+log 23-log 1264+lg0.01+ln e.[解析] (1)原式=log 3332+lg(25×4)-7log 72-(33) -23=32+lg100-2-3-2 =32+2-2-19 =32-19=2518. (2)原式=2×2log 23-log 2-126+lg10-2+lne 12=2×3+6-2+12=212.B 级 素养提升一、选择题1.若x log 34=1,则4x +4-x 的值为( B ) A .83B .103C .2D .1[解析] 由x log 34=1得x =log 43,所以4x +4-x =3+13=103,故选B .2.已知a =log 32,那么log 38-2log 36用a 表示是( A ) A .a -2 B .5a -2 C .3a -(1+a )2D .3a -a 2-1[解析] log 38-2log 36=log 323-2(log 32+log 33) =3log 32-2(log 32+1) =3a -2(a +1)=a -2.故选A . 3.log 2716log 34=( D )A .2B .32C .1D .23[解析] 由公式log an b m =mn log a b ,得原式=log 3342log 34=23log 34log 34=23.4.已知lg a ,lg b 是方程2x 2-4x +1=0的两个实数根,则lg(ab )·(lg ab )2=( B )A .2B .4C .6D .8[解析] 由题意得⎩⎪⎨⎪⎧lg a +lg b =2lg a ·lg b =12, ∴lg(ab )·(lg ab )2=(lg a +lg b )(lg a -lg b )2=2[(lg a +lg b )2-4lg a ·lg b ] =2(4-4×12)=4.二、填空题5.lg 52+2lg2-(12)-1=__-1__.[解析] lg 52+2lg2-(12)-1=lg 52+lg4-2=-1.6.若log a x =2,log b x =3,log c x =6,则log abc x =__1__. [解析] ∵log a x =1log x a =2,∴log x a =12.同理log x c =16,log x b =13.∴log abc x =1log x (abc )=1log x a +log x b +log x c =1.三、解答题7.已知log a 2=m ,log a 3=n . (1)求a 2m-n的值;(2)求log a 18.[解析] (1)因为log a 2=m ,log a 3=n , 所以a m =2,a n =3.所以a 2m -n =a 2m ÷a n =22÷3=43.(2)log a 18=log a (2×32)=log a 2+log a 32=log a 2+2log a 3=m +2n . 8.计算:(1)(log 3312)2+log 0.2514+9log 55-log31;(2)lg25+23lg8+lg5·lg20+(lg2)2.[解析] (1)(log 3312)2+log 0.2514+9log 55-log31=(12)2+1+9×12-0=14+1+92=234. (2)原式=lg25+lg823+lg102·lg(10×2)+(lg2)2=lg25+lg4+(1-lg2)(1+lg2)+(lg2)2=lg(25×4)+1-(lg2)2+(lg2)2=3.9.(2019·北师大附中高一期中测试)计算下列各式的值: (1)2log 32-lg 3329+log 38-log 553;(2)4log 23+log 128-lg 516+lg25-lg(12)-3-ln e 3.[解析] (1)原式=log 34-log 3329+log 38-3=log 3(4×932×8)-3=log 39-3=log 332-3=2-3=-1. (2)原式=4log 49+log 2-123-lg516+lg25-lg8-lne 32=9-3+lg25-(lg 516+lg8)-32=92+lg25-lg(516×8) =92+lg25-lg 52 =92+lg(25×25) =92+lg10=92+1=112.。
对数公式题目

对数公式题目在数学的广袤天地里,对数公式就像是隐藏在神秘森林中的宝藏,等待着我们去发掘和探索。
今天,咱们就一起来聊聊这让人又爱又恨的对数公式题目。
还记得我上高中那会,有一次数学考试,其中有一道对数公式的题目,难倒了班上好多同学。
题目是这样的:已知 log₂x = 3,求 x 的值。
当时我看到这道题,心里也“咯噔”了一下,不过很快就冷静下来,开始在脑海里搜索关于对数公式的知识。
咱先来说说对数公式的基本形式,那就是logₐN = b 可以转化为 aᵇ = N。
就拿刚刚那道题来说,log₂x = 3,那不就是 2³ = x 嘛,所以 x = 8。
这看起来挺简单的,是吧?但实际做题的时候,可没这么轻松。
比如,给你来一道稍微复杂点的:若 log₃(x - 1) + log₃(x + 1) = 1,求 x 的值。
这时候就得先运用对数的运算性质:logₐ(MN) = logₐM +logₐN。
所以 log₃[(x - 1)(x + 1)] = 1,也就是 log₃(x² - 1) = 1,进而得到x² - 1 = 3,解这个方程可得 x = 2 或 x = -2。
但别忘了,对数的真数必须大于 0,所以 x = -2 要舍去,最终答案就是 x = 2。
再比如这道:已知 log₅x + log₅(2x - 1) = 2,求 x 的值。
同样,先运用运算性质得到 log₅[x(2x - 1)] = 2,也就是 x(2x - 1) = 25,展开得到2x² - x - 25 = 0,解这个二次方程,再根据真数大于 0 的条件筛选出正确答案。
做对数公式的题目,有时候就像走迷宫,一个不小心就容易迷失方向。
比如说,在计算过程中,要是忘记了对数的定义域,也就是真数大于 0 这个关键条件,那可就全盘皆输啦。
还有一种常见的题型,是让你化简对数表达式。
像 log₂8 + log₂4 - log₂2 这种,这就得熟练掌握对数的运算法则:logₐM + logₐN =logₐ(MN) ,logₐM - logₐN = logₐ(M/N) 。
高中数学人教A版必修第一册 学案与练习 对数的运算

4.3.2 对数的运算1.对数的运算性质如果a>0,且a≠1,M>0,N>0,则(1)log a(MN)=log a M+log a N.即两个正因数积的对数等于同一底数的这两个正因数的对数的和. 这个性质可推广到若干个正因数的积:log a(N1N2…N k)=log a N1+log a N2+…+log a N k(N i>0,i=1,2,3,…,k). 即正因数积的对数等于同一底数的各因数对数的和.=log a M-log a N.(2)log a MN即两个正数商的对数等于同一底数的被除数的对数减去除数的对数.(3)log a M n=nlog a M(n∈R).即正数幂的对数等于幂指数乘同一底数幂的底数的对数.特别地,log a a N=N.2.换底公式及导出公式(a>0,且a≠1;b>0;c>0,且c≠1).(1)换底公式:log a b=log c blog c a.(2)log a b=1log b a(3)log a N=lo g a n N n.(4)nlog a N=lo g a m N n.m对数的运算性质[例1] 计算:(1)(lg 5)2+2lg 2-(lg 2)2; (2)lg3+25lg9+35lg √27-lg √3lg81-lg27;(3)log 535-2log 573+log 57-log 51.8. 解:(1)原式=(lg 5)2+(2-lg 2)lg 2 =(lg 5)2+(1+lg 5)lg 2 =(lg 5)2+lg 2·lg 5+lg 2 =(lg 5+lg 2)lg 5+lg 2 =lg 5+lg 2=1. (2)原式=lg3+45lg3+910lg3-12lg34lg3-3lg3=(1+45+910-12)lg3(4-3)lg3=115.(3)原式=log 5(5×7)-2(log 57-log 53)+log 57-log 595=log 55+log 57-2log 57+2log 53+log 57-2log 53+ log 55 =2log 55=2.(1)利用对数的运算性质进行对数式的化简与计算.一般有两种思路:一是将式中真数的积、商、幂、方根运用对数的运算性质将它们化为对数的和、差、积、商,然后化简求值;二是将式中对数的和、差、积、商逆用对数的运算性质化为真数的积、商、幂、方根,然后化简求值.(2)对数计算问题中,涉及lg 2,lg 5时,常利用lg 2+lg 5=1及lg 2=1-lg 5,lg 5=1-lg 2等解题.针对训练1:计算:(1)lg 14-2lg 73+lg 7-lg 18;(2)lg 2×lg 50+lg 5×lg 20-lg 100×lg 5×lg 2; (3)2lg2+lg31+lg0.6+lg2.解:(1)法一 原式=lg(2×7)-2(lg 7-lg 3)+lg 7-lg(32×2) =lg 2+lg 7-2lg 7+2lg 3+lg 7-2lg 3-lg 2=0. 法二 原式=lg 14-lg(73) 2+lg 7-lg 18=lg 14×7(73) 2×18=lg 1=0.(2)原式=lg 2×(lg 5+1)+lg 5×(2lg 2+lg 5)-2lg 5×lg 2 =lg 2lg 5+lg 2+lg 5lg 5 =lg 5(lg 2+lg 5)+lg 2 =lg 5+lg 2=1. (3)原式=lg4+lg3lg10+lg0.6+lg2=lg12lg12=1.换底公式及其推论的应用类型一 用已知对数式表示对数值[例2] 已知log 37=a ,2b =3,试用a ,b 表示log 1456. 解:因为2b =3,所以b=log 23,即log 32=1b ,log 1456=log 356log 314=log 3(23×7)log 3(2×7)=3log 32+log 37log 32+log 37=3b +a 1b+a =3+ab 1+ab.用已知对数式的值表示不同底数的对数值,首先将待求式用换底公式表示为已知对数式的底数的对数,然后将真数统一为已知对数的真数的乘积的形式.针对训练2:(1)已知log 147=a ,log 145=b ,用a ,b 表示log 3528; (2)已知log 189=a ,18b =5,用a ,b 表示log 3645. 解:(1)log 147=a ,log 145=b , 所以log 3528=log 1428log 1435=log 14(14×2)log 14(5×7)=1+log 14147a+b=2-aa+b.(2)因为log 189=a ,18b =5,所以log 185=b , 所以log 3645=log 1845log 1836=log 189+log 185log 1818+log 182=a+b1+log 18189=a+b 2-a.类型二 应用换底公式及其推论求值 [例3] 计算:(1)log 1627×log 8132; (2)(log 32+log 92)(log 43+log 83). 解:(1)log 1627×log 8132=lg27lg16×lg32lg81=lg 33lg 24×lg 25lg 34=3lg34lg2×5lg24lg3=1516.(2)(log 32+log 92)(log 43+log 83) =(log 32+log 32log 39)(log 23log 24+log 23log 28)=(log 32+12log 32)(12log 23+13log 23)=32log 32×56log 23=54×lg2lg3×lg3lg2=54.(1)换底公式的作用是将不同底数的对数式转化成同底数的对数式,将一般对数转化成自然对数或常用对数来运算.要注意换底公式的正用、逆用及变形应用.(2)当一个题目中同时出现指数式和对数式时,一般需要统一成一种表达形式.针对训练3:计算:(1)log 23×log 34×log 45×log 52; (2)log 89×log 2732;(3)(log 2125+log 425+log 85)(log 52+log 254+log 1258). 解:(1)原式=lg3lg2×lg4lg3×lg5lg4×lg2lg5=1.(2)原式=lo g 2332×lo g 3325=23log 23×53log 32=23×53log 23×log 32=109. (3)原式=(log 253+log 2252+log 235)(log 52+log 5222+log 5323) =(3log 25+log 25+13log 25)(log 52+log 52+log 52)=133×3×(log 25×log 52)=13.指数与对数的综合应用[例4] (1)设3a =4b =36,求2a +1b 的值;(2)已知2x =3y =5z ,且1x +1y +1z=1,求x ,y ,z.解:(1)法一 由3a =4b =36, 得a=log 336,b=log 436,由换底公式得1a =log363,1b=log364,所以2a +1b=2log363+log364=log3636=1.法二由3a=4b=36,两边取以6为底数的对数,得alog63=blog64=log636=2,所以2a =log63,1b=12log64=log62,所以2a +1b=log63+log62=log66=1.(2)令2x=3y=5z=k(k>0),所以x=log2k,y=log3k,z=log5k,所以1x =log k2,1y=log k3,1z=log k5,由1x +1y+1z=1,得log k2+log k3+log k5=log k30=1,所以k=30,所以x=log230=1+log215,y=log330=1+log310,z=log530=1+log56.利用对数式与指数式互化求值的方法(1)在对数式、指数式的互化运算中,要注意灵活运用定义、性质和运算法则,尤其要注意条件和结论之间的关系,进行正确的转化.(2)对于连等式可令其等于k(k>0),然后将指数式用对数式表示,再由换底公式可将指数的倒数化为同底的对数,从而使问题得解.针对训练4:(1)已知log a x=2,log b x=3,log c x=6,求log abc x的值;(2)已知2x=50y=100,求x-1+y-1的值. 解:(1)因为log a x=2,log b x=3,log c x=6,所以lgxlga =2,lgxlgb=3,lgxlgc=6,lg x≠0.则log abc x=lgxlga+lgb+lgc =lgxlgx2+lgx3+lgx6=1.(2)因为2x=50y=100,所以x=log2100,y=log50100,所以x-1+y-1=log1002+log10050=1.典例探究:素数也叫质数,部分素数可写成“2n-1”的形式(n是素数),法国数学家马丁·梅森就是研究素数的数学家中成就很高的一位,因此后人将“2n-1”形式(n是素数)的素数称为梅森素数.已知第20个梅森素数为P=24 423-1,第19个梅森素数为Q=24 253-1,则下列各数中与PQ最接近的数为(参考数据:lg 2≈0.3)( )A.1045B.1051C.1056D.1059解析:PQ =24423-124253-1≈2170.令2170=k,则lg 2170=lg k,所以170lg 2=lg k,又lg 2≈0.3,所以51≈lg k,即k≈1051.所以与PQ最接近的数为1051.故选B.应用探究:已知lg 3≈0.477 1,由此可以推断32 022是几位整数.( ) A.963 B.964 C.965 D.966解析:因为lg 3≈0.477 1,令32 022=t,所以lg t=2 022×lg 3,则lg t≈2 022×0.477 1=964.696 2,所以可以推断32 022是965位整数.故选C.1.log210-log25等于( B )A.0B.1C.log25D.2解析:log210-log25=log2105=log22=1.故选B.2.log483+4log482等于( A )A.1B.2C.6D.48解析:log483+4log482=log483+log4816=log48(3×16)=1.故选A.3.log912-log32等于( C )A.√3B.2√3C.12D.3解析:原式=log912-log94=log93=12.故选C.4.已知3a=5b=M,且1a +1b=2,则M= .解析:3a=5b=M,则a=log3M,b=log5M,1 a +1b=log M3+log M5=log M15=2.所以M2=15,又M>0,M=√15. 答案:√15[例1] (2021·陕西渭南月考)lg 5(lg 8+lg 1 000)+(√3lg 2)2+lg16+lg 600等于( )A.10B.2C.5D.6解析:原式=lg 5(3lg 2+3)+3(lg 2)2-lg 6+lg 6+2=3lg 2lg 5+3lg 5+3(lg 2)2+2=3lg 2(lg 5+lg 2)+3lg 5+2=3lg 2+3lg 5+2=3(lg 2+lg 5)+2=3+2=5.故选C.[例2] 已知log 23=a ,3b =7,则log 2156等于( ) A.ab+3a+ab B.3a+b a+ab C.ab+3a+bD.b+3a+ab解析:log 23=a ,3b =7,即log 37=b , 则log 2156=log 356log 321=log 3(7×23)log 3(3×7)=b+3a 1+b =ab+3a+ab.故选A.[例3] 设P=1log 211+1log 311+1log 411+1log 511,则( )A.0<P<1B.1<P<2C.2<P<3D.3<P<4 解析:P=1log 211+1log 311+1log 411+1log 511=log 112+log 113+log 114+log 115 =log 11(2×3×4×5)=log 11120.所以log 1111=1<log 11120<log 11121=2.故选B. [例4] 若2a =3,3b =4,4c =ab ,则abc 等于( ) A.12 B .1 C.2 D.4解析:根据题意,2a =3,3b =4, 则a=log 23,b=log 34,则有ab=log23×log34=lg3lg2×lg4lg3=2,则c=log4ab=log42=12,故abc=1.故选B.[例5] 已知log3a+log3b=log3(a+b)+1,则a+4b的最小值是( ) A.12 B.18 C.24 D.27解析:由log3a+log3b=log3(a+b)+1,可得log3(ab)=log3[3(a+b)],a,b>0.可得ab=3(a+b),所以3a +3b=1,则a+4b=(a+4b)(3a +3b)=3(1+4+ab+4ba)≥3(5+2√ab·4ba)=27,当且仅当a=2b=9时,取等号.故选D.选题明细表基础巩固1.lo g√24等于( D )A.12 B.14C.2D.4解析:lo g√24=lo g√2(√2)4=4.故选D.2.2log510+log50.25等于( C )A.0B.1C.2D.4解析:2log 510+log 50.25=log 5102+log 50.25=log 5(102×0.25)=log 525=2.故选C.3.(2021·浙江诸暨模拟)已知x ,y 为正实数,则( B ) A.lg(x 2·y)=(lg x)2+lg y B.lg(x ·√y )=lg x+12lg yC.e ln x+ln y =x+yD.e ln x ·ln y =xy解析:x ,y 为正实数,对于A ,lg(x 2·y)=lg x 2+lg y=2lg x+lg y ,故A 错误; 对于B ,lg(x ·√y )=lg x+lg √y =lg x+12lg y ,故B 正确;对于C ,e ln x+ln y =e ln x ·e ln y =xy ,故C 错误; 对于D ,xy=e ln x ·e ln y =e ln x+ln y ,故D 错误.故选B. 4.若log 34·log 8m=log 416,则m 等于( D ) A.3 B.9 C.18 D.27 解析:原式可化为log 8m=2log 34,lgm 3lg2=2lg4lg3,即lg m=6lg2×lg32lg2=lg 27,m=27.故选D.5.(2021·北京月考)log 38+log 32-4log 36= . 解析:原式=3log 32+log 32-4(log 32+log 33)=4log 32-4log 32-4=-4. 答案:-46.(2021·浙江杭州期中)若a=log 23,3b =2,则2a +2-a = , ab= .解析:因为a=log 23,所以2a =3,2-a =13,所以2a +2-a =3+13=103,因为3b =2,所以b=log 32, 所以ab=log 23·log 32=1. 答案:103 1能力提升7.(2022·河北沧州模拟)生物入侵指生物由原生存地侵入到另一个新的环境,从而对入侵地的生态系统造成危害的现象.若某入侵物种的个体平均繁殖数量为Q ,一年四季均可繁殖,繁殖间隔T 为相邻两代间繁殖所需的平均时间.在物种入侵初期,可用对数模型K(n)=λln n 来描述该物种累计繁殖数量n 与入侵时间K(单位:天)之间的对应关系,且Q=Tλ+1,在物种入侵初期,基于现有数据得出Q=9,T=80.据此,累计繁殖数量比现有数据增加3倍所需要的时间约为(ln 2≈0.69,ln 3≈1.10)( C )A.6.9天B.11.0天C.13.8天D.22.0天 解析:因为Q=Tλ+1,Q=9,T=80,所以9=80λ+1,解得λ=10.设初始时间为K 1,初始累计繁殖数量为n ,累计繁殖数量增加3倍后的时间为K 2,则K 2-K 1=λln(4n)-λln n=λln 4=20ln 2≈13.8天.故 选C.8.(多选题)已知正实数x ,y ,z 满足4x =25y =100z ,则下列正确的选项有( BD ) A.xy=z B.1x +1y =1zC.x+y=zD.xz+yz=xy解析:设正实数x ,y ,z 满足4x =25y =100z =t , 则x=log 4t ,y=log 25t ,z=log 100t , 所以1x=log t 4,1y=log t 25,1z=log t 100,所以1x +1y =1z,所以yz+xz=xy.故选BD.9.已知lg a ,lg b 是方程6x 2-4x-3=0的两根,则(lg ba) 2的值为( D )A.49B.139C.149D.229解析:因为lg a ,lg b 是方程6x 2-4x-3=0的两根,所以lg a+lg b=23,lg alg b=-12,所以(lg b a) 2=(lg a+lg b)2-4lg alg b=(23) 2-4×(-12)=229.故选D.10.计算:(1)ln(2e 2)+log 37×log 781-ln 2-log 2√2-log 2√8; (2)lg 2×lg 2 500+8×(lg √5)2+2log 49+log 29×log 34. 解:(1)原式=ln2e 22+log 381-log 24=2+4-2=4.(2)原式=lg 2×lg(52×102)+8×(12lg 5) 2+2log 23+2lg3lg2×2lg2lg3=lg 2×(2lg 5+2)+2(lg 5)2+3+4 =2lg 2+2lg 2×lg 5+2(lg 5)2+7 =7+2lg 5(lg 2+lg 5)+2lg 2 =7+2lg 5+2lg 2 =7+2=9.11.已知log a 2=m ,log a 3=n. (1)求a 2m-n 的值; (2)用m ,n 表示log a 18. 解:(1)因为log a 2=m ,log a 3=n , 所以a m =2,a n =3. 所以a 2m-n =a 2m ÷a n =22÷3=43.(2)log a 18=log a (2×32)=log a 2+log a 32=log a 2+2log a 3=m+2n.应用创新12.对于任意实数x ,[x]表示不超过x 的最大整数.例如[-1.52]=-2, [2.094]=2,记{x}=x-[x],则{log 23}+{log 210}-{log 215}等于( D ) A.-6 B.-1 C.1 D.0解析:因为1<log 23<2,3<log 210<4,3<log 215<4, 所以{log 23}=log 23-1=log 232,{log 210}=log 210-3=log 2108,{log 215}=log 215-3=log 2158,则{log 23}+{log 210}-{log 215}=log 232+log 2108-log 2158=log 2(32×108×815)=log 21=0.故选D.。
4.2.2对数运算法则练习题-2021-2022学年高中数学人教版B版(2019)必修第二册

对数运算法则一、选择题1.设a ,b ,c 均为不等于1的正实数,则下列等式中恒成立的是( ) A .log a b ·log c b =log c a B .log a b ·log c a =log c b C .log a (bc )=log a b ·log a cD .log a (b +c )=log a b +log a c2.lg 2516-2lg 59+lg 3281等于( ) A .lg 2 B .lg 3 C .lg 4D .lg 53.设a =log 32,则log 38-2log 36用a 表示的形式是( ) A .a -2 B .3a -(1+a )2 C .5a -2D .-a 2+3a -14.计算log 225·log 322·log 59的结果为( ) A .3 B .4 C .5D .65.若x =60,则1log 3x +1log 4x +1log 5x 的值为( )A .1B .12C .2D .-1二、填空题6.已知3a =2,3b =15,则32a -b =________. 7.计算100⎝⎛⎭⎫12lg 9-lg 2-log 98·log 433=________. 8.若log a b ·log 3a =4,则b 的值为________. 三、解答题9.计算下列各式的值: (1)12lg 3249-43lg 8+lg 245. (2)lg 52+23lg 8+lg 5·lg 20+(lg 2)2.10.已知log a x +3log x a -log x y =3(a >1). (1)若设x =a t ,试用a ,t 表示y ;(2)若当0<t ≤2时,y 有最小值8,求a 和x 的值.素养达标11.已知f (x )=x +log 2x9-x,则f (1)+f (2)+f (3)+…+f (8)的值为( ) A .37 B .6 C .36D .912.(多选题)若a >0,且a ≠1,x ∈R ,y ∈R ,且xy >0,则下列各式不恒成立的是( )A .log a x 2=2log a xB .log a x 2=2log a |x |C .log a (xy )=log a x +log a yD .log a (xy )=log a |x |+log a |y |13.log 425-2log 410+log 45·log 516的值是________.14.已知函数f (x )=⎩⎨⎧3x +1,x <1,ax 2-x ,x ≥1,f (f (0))=3a ,则a =________;f (log 2a )=________.15.已知log a (x 2+4)+log a (y 2+1)=log a 5+log a (2xy -1)(a >0且a ≠1),求log 8yx 的值.一、选择题1.设a ,b ,c 均为不等于1的正实数,则下列等式中恒成立的是( ) A .log a b ·log c b =log c a B .log a b ·log c a =log c b C .log a (bc )=log a b ·log a cD .log a (b +c )=log a b +log a cB [利用对数的换底公式进行验证,log a b ·log c a =log c blog ca ·log c a =log cb ,则B 正确.]2.lg 2516-2lg 59+lg 3281等于( ) A .lg 2 B .lg 3 C .lg 4D .lg 5A [法一:lg 2516-2lg 59+lg 3281=(lg 25-lg 16)-2(lg 5-lg 9)+(lg 32-lg 81)=2lg 5-4lg 2-2lg 5+4lg 3+5lg 2-4lg 3=lg 2.法二:lg 2516-2lg 59+lg 3281=lg ⎝ ⎛⎭⎪⎫2516÷2581×3281=lg 2.故选A .] 3.设a =log 32,则log 38-2log 36用a 表示的形式是( ) A .a -2 B .3a -(1+a )2 C .5a -2 D .-a 2+3a -1A [∵a =log 32,∴log 38-2log 36=3log 32-2(log 32+1) =3a -2(a +1)=a -2.]4.计算log 225·log 322·log 59的结果为( ) A .3 B .4 C .5D .6D [原式=lg 25lg 2·lg22lg 3·lg 9lg 5=2lg 5lg 2·32 lg 2lg 3·2lg 3lg 5=6.] 5.若x =60,则1log 3x +1log 4x +1log 5x 的值为( )A .1B .12 C .2D .-1A [1log 360+1log 460+1log 560=log 603+log 604+log 605=log 60(3×4×5)=1.]二、填空题6.已知3a =2,3b =15,则32a -b =________.20 [∵3a =2,3b =15,两边取对数得a =log 32,b =log 315=-log 35, ∴2a -b =2log 32+log 35=log 320,∴32a -b =20.] 7.计算100⎝⎛⎭⎫12lg 9-lg 2-log 98·log 433=________.2 [100⎝⎛⎭⎫12lg 9-lg 2-log 98·log 433=10lg 9÷10lg 4-lg 8lg 9·13lg 3lg 4=94-3lg 22lg 3·13lg 32lg 2=94-14=2.]8.若log a b ·log 3a =4,则b 的值为________.81 [log a b ·log 3a =lg b lg a ·lg a lg 3=lg b lg 3=4,所以lg b =4lg 3=lg 34,所以b =34=81.]三、解答题9.计算下列各式的值: (1)12lg 3249-43lg 8+lg 245. (2)lg 52+23lg 8+lg 5·lg 20+(lg 2)2.[解] (1)原式=12(lg 25-lg 72)-43lg 232+12lg(72×5)=52lg 2-lg 7-2lg 2+lg 7+12lg 5=12lg 2+12lg 5=12(lg 2+lg 5)=12.(2)原式=2lg 5+2lg 2+lg 5(2lg 2+lg 5)+(lg 2)2 =2lg 10+(lg 5+lg 2)2=2+(lg 10)2=2+1=3. 10.已知log a x +3log x a -log x y =3(a >1). (1)若设x =a t ,试用a ,t 表示y ;(2)若当0<t ≤2时,y 有最小值8,求a 和x 的值. [解] (1)由换底公式,得log a x +3log a x -log a ylog ax =3(a >1),所以log a y =(log a x )2-3log a x +3. 当x =a t 时,log a x =t , 所以log a y =t 2-3t +3. 所以y =a t 2-3t +3(t ≠0). (2)由(1)知y =a(t -32)2+34,因为0<t ≤2,a >1, 所以当t =32时,y min=a 34=8.所以a =16,此时x =a 32=64.素养达标11.已知f (x )=x +log 2x9-x,则f (1)+f (2)+f (3)+…+f (8)的值为( ) A .37 B .6 C .36D .9C [∵f (x )=x +log 2x9-x,∴f (x )+f (9-x )=⎝ ⎛⎭⎪⎫x +log 2x 9-x +⎝ ⎛⎭⎪⎫9-x +log 29-x x =9.∴f (1)+f (2)+f (3)+…+f (8)=[f (1)+f (8)]+[f (2)+f (7)]+[f (3)+f (6)]+[f (4)+f (5)]=9×4=36.]12.(多选题)若a >0,且a ≠1,x ∈R ,y ∈R ,且xy >0,则下列各式不恒成立的是( )A .log a x 2=2log a xB .log a x 2=2log a |x |C .log a (xy )=log a x +log a yD .log a (xy )=log a |x |+log a |y |AC [∵xy >0,∴A 中,若x <0,则不成立;C 中,若x <0,y <0也不成立,故选AC .]13.log 425-2log 410+log 45·log 516的值是________. 1 [log 425-2log 410+log 45·log 516=log 425-log 4100+lg 5lg 4×lg 16lg 5=log 425100+lg 16lg 4 =log 4 14+log 416=-1+2=1.]14.已知函数f (x )=⎩⎨⎧3x +1,x <1,ax 2-x ,x ≥1,f (f (0))=3a ,则a =________;f (log 2a )=________.2 1 [f (0)=30+1=2, ∴f (f (0))=f (2)=4a -2=3a ,∴a =2,f (log 2a )=f (log 22)=f (1)=2×12-1=1.]15.已知log a (x 2+4)+log a (y 2+1)=log a 5+log a (2xy -1)(a >0且a ≠1),求log 8yx 的值.[解] 由对数的运算法则,可将等式化为 log a [(x 2+4)·(y 2+1)]=log a [5(2xy -1)], 所以(x 2+4)(y 2+1)=5(2xy -1). 整理得x 2y 2+x 2+4y 2-10xy +9=0, 配方得(xy -3)2+(x -2y )2=0, 所以⎩⎨⎧xy =3,x =2y ,所以y x =12.所以log 8y x =log 812=log 232-1=-13.。
最新人教版高中数学必修第一册第4章指数函数与对数函数4.3.2对数的运算

4.3.2 对数的运算 课后训练巩固提升A.log a x 2=2log a xB.log a x 2=2log a |x|C.log a (xy )=log a x+log a y xy )=log a |x|+log a |y|xy>0,所以x>0,y>0或x<0,y<0.若x<0,则A 不成立;若x<0,y<0,则C 也不成立,故选AC . a=log 32,则log 38-2log 36=( ) A.a-2 B.5a-2+a )2 D.3a-a 2-138-2log 36=3log 32-2(log 32+log 33)=3a-2(a+1)=a-2. 3.若log 513×log 36×log 6x=2,则x 等于( ) A.9B.19C.25D.125由对数换底公式得-lg3lg5×lg6lg3×lgxlg6=2,即lg x=-2lg 5,解得x=5-2=125.4.若lg a ,lg b 是方程2x 2-4x+1=0的两根,则(lg a b )2=()A.14 B.12 D.2lg a+lg b=2,lg a ·lg b=12.所以(lg a b )2=(lg a-lg b )2=(lg a+lg b )2-4lg a ·lg b=22-4×12=2.5.若2.5x =1 000,0.25y =1 000,则1x −1y =( ) A.13B.3C.-13D.-3x=log 2.51 000,y=log 0.251 000,所以1x =log 1 0002.5,1y =log 1 0000.25,所以1x −1y =log 1 0002.5-log 10000.25=log 1 00010=lg10lg1 000=13.lg √20= .√5+lg √20=lg √100=lg 10=1. 7.计算log 2125×log 318×log 519的值为 .=lg 125lg2×lg 18lg3×lg 19lg5 =)×(-3lg2)×(-2lg3)lg2×lg3×lg5=-12.128.已知4a =5b =10,则1a +2b = .4a =5b =10,∴a=log 410,1a =lg 4,b=log 510,1b =lg 5,∴1a +2b =lg 4+2lg 5=lg 4+lg 25=lg 100=2.:(1)(log 3312)2+log 0.2514+9log 5√5-lo g√31;(2)2lg2+lg31+12lg0.36+13lg8.(log 3312)2+log 0.2514+9log 5√5-lo g√31=(12)2+1+9×12-0=14+1+92=234. (2)2lg2+lg31+12lg0.36+13lg8=2lg2+lg31+12lg0.62+13lg 23=2lg2+lg31+lg0.6+lg2=2lg2+lg31+lg6-lg10+lg2=2lg2+lg3lg6+lg2=2lg2+lg3lg2+lg3+lg2=2lg2+lg32lg2+lg3=1.log 23=a ,log 37=b ,用a ,b 表示log 4256.log 23=a ,所以1a =log 32.又因为log 37=b , 所以log 4256=log 356log 42=log 37+3log 32log 7+log 2+1=b+3a b+1a +1=ab+3ab+a+1.1.计算(log 32+log 23)2-3log 23−2log 32的值是( )B.log 36C.2D.1=(log 32)2+2log 32·log 23+(log 23)2-(log 32)2-(log 23)2=2. 2.若lg x-lg y=t ,则lg (x 2)3-lg (y 2)3=( ) A.3tB.32tC.tD.t 2(x 2)3-lg (y 2)3=3lg x 2-3lg y 2=3lg xy =3(lg x-lg y )=3t.a ,b ,c 满足16a =505b =2 020c =2 018,则下列式子正确的是( ) A.1a +2b =2c B.2a +2b =1cC.1a +1b =2cD.2a+1b=2c,得42a =505b =2 020c =2 018,所以2a=log 42 018,b=log 5052 018,c=log 2 0202 018,所以12a =log 20184,b =log 2 018505,1c=log 2 0182 020,而4×505=2 020,所以12a +1b =1c ,即1a +2b =2c ,故选A .4.方程log 2x+1log(x+1)2=1的解是x= .log 2x+log 2(x+1)=1,即log 2[x (x+1)]=1,即x (x+1)=2,解得x=1或x=-2.又{,x +1>0,即x >0,≠1,所以x=1.x ,y ,z 都是大于1的正数,m>0,且log x m=24,log y m=40,log (xyz )m=12,则log z m 的值24,log y m=40,∴log m x=124,log m y=140.又log m (xyz )=log m x+log m y+log m z=112,∴log m z=12-log m x-log m y=112−124−140=160. 60.log 23×log 34×log 45×…×log (k+1)(k+2)(k ∈N *)为整数的k 称为“企盼数”,则在区间[1,1 000]上“企盼数”共有 个.log 23×log 34×log 45×…×log (k+1)(k+2)=lg3lg2×lg4lg3×…×lg (k+2)lg (k+1)=log 2(k+2)为整数,可知k+2=2n (n ∈∈[1,1 000],所以k+2=22,23,…,29,故k ∈{2,6,14,30,62,126,254,510},所以在区间[1,1 000]上共有”.7.已知4a =8,2m =9n =36,且1m+12n=b ,试比较1.5a 与0.8b 的大小.4a =8,∴22a =23,∴2a=3,即a=32.=9n =36,∴m=log 236,n=log 936. 又1m +12n =b ,∴b=1log 236+12log 936=log 362+12log 369=log 362+log 363=log 366=12.∵y=1.5x 在R 上单调递增,y=0.8x 在R 上单调递减,∴1.5a =1.532>1.50=1,0.8b =0.812<0.80=1, ∴1.5a >0.8b .8.甲、乙两人解关于x 的方程log 2x+b+c log x 2=0,甲写错了常数b ,得到根14,18;乙写错了常数c ,得到根12,64.求原方程的根. (log 2x )2+b log 2x+c=0.∵甲写错了常数b ,得到的根为14和18, ∴c=log 214×log 218=6.∵乙写错了常数c ,得到的根为12和64, ∴b=-(log 212+log 264)=-(-1+6)=-5. ∴原方程为(log 2x )2-5log 2x+6=0,即(log 2x-2)(log 2x-3)=0.∴log 2x=2或log 2x=3,即x=4或x=8.。
(统编版)2020高中数学第三章Ⅰ3.2对数与对数函数3.2.1对数及其运算同步训练新人教B版必修2

3.2.1 对数及其运算5分钟训练1.对数式x=ln2化为指数式是( ) A.x e =2 B.e x=2 C.x 2=e D.2x=e 答案:B2.以下说法不正确的是( )A.0和负数没有对数B.对数值可以是任意实数C.以a(a >0,a≠1)为底1的对数等于0D.以3为底9的对数等于±2 答案:D3.有以下四个结论:①lg(lg10)=0;②ln(lne)=0;③若10=lgx,则x=100;④若e=lnx,则x=e 2.其中正确的是( )A.①③B.②④C.①②D.③④ 答案:C 4.log 2487+log 212-21log 242=_____________.答案:21- 解法一:487log 2+log 212-21log 242 =21(log 27-log 248)+log 24+log 23-21log 26-21log 27 =21-log 21621-log 23+2+log 23-2121-log 23=21-.解法二:原式=log 2(21)67112347(-=⨯⨯⨯.10分钟训练 1.式子)5log 211(22+的值为( )A.52+B.52C.2+25 D.1+25答案:B 解析:原式=5222)52(log )5log 1(22==+.2.下列四个命题中,真命题是( )A.lg2lg3=lg5B.lg 23=lg9C.若log a M+N=b ,则M+N=a bD.若log 2M+log 3N=log 2N+log 3M ,则M=N 答案:D解析:在对数运算的性质中,与A 类似的一个正确等式是lg2+lg3=lg6;B 中的lg 23表示(lg3)2,它与lg32=lg9不是同一个意义;C 中的log a M+N 表示(log a M)+N ,它与log a (M+N)不是同一意义;D 中等式可化为log 2M-log 2N=log 3M-log 3N ,即log 2NMN M 3log =,所以M=N. 3.已知11.2a=1 000,0.011 2b=1 000,那么ba 11-等于( ) A.1 B.2 C.3 D.4 答案:A解法一:用指数解.由题意11.2=a 11000,0.011 2=b11000, ∴两式相除得0112.02.11100011=-ba =1 000.∴ba 11-=1. 解法二:用对数解.由题意,得a×lg11.2=3,b×lg0.011 2=3,∴b a 11-=31(lg11.2-lg0.011 2)=1. 4.若lnx-lny=a,则ln(2x )3-ln(2y )3等于( )A.2aB.aC.23aD.3a答案:D 解析:ln(2x )3-ln(2y )3=3(ln 2x -ln 2y)=3(lnx-ln2-lny+ln2)=3a. 5.已知lg6=0.778 2,则102.778 2=______________.答案:600解析:∵lg6=0.778 2,∴100.778 2=6.∴102.778 2=102·100.778 2=100×6=600.6.(1)已知3a=2,用a 表示log 34-log 36; (2)已知log 32=a,3b=5,用a 、b 表示log 330. 解:(1)∵3a=2,∴a=log 32. ∴log 34-log 36=log 332=log 32-1=a-1. (2)∵3b=5, ∴b=log 35. 又∵log 32=a,∴log 330=21log 3(2×3×5) =21(log 32+log 33+log 35)=21(a+b+1). 30分钟训练1.已知a 、b 、c 为非零实数,且3a =4b =6c,那么( ) A.b ac 111+= B.ba c 122+=C.b ac 221+= D.ba c 212+= 答案:B解析:设3a=4b=6c=k ,则a=log 3k ,b=log 4k ,c=log 6k ,得a 1=log k 3,b1=log k 4,c 1=log k 6.所以ba c 122+=. 2.设x 、y 为非零实数,a>0且a≠1,则下列各式中不一定成立的个数是( )①log a x 2=2log a x ②log a 3>log a 2 ③log a |x·y|=log a |x|·log a |y| ④log a x 2=2log a |x| A.1 B.2 C.3 D.4 答案:C解析:①②③不一定成立,④一定成立.3.(探究题)已知f(x 6)=log 2x,那么f(8)的值为( ) A.34 B.8 C.18 D.21 答案:D解析:设t=x 6,则x=61t ,所以f(t)=log 261t ,f(8)=log 2212log 821261==. 4.已知函数f (x )=⎩⎨⎧≤>,0,3,0,log 3x x x x 则f [f (91)]的值是( )A.9B.91C.-9D.91- 答案:B 解析:f(91)=log 391=-2,f(-2)=3-2=91.5.(创新题)已知集合M={(x,y)|xy=1,x >1},在映射f:M→N 作用下,点(x,y)与点(log 2x,log 2y)相对应,设u=log 2x,v=log 2y,则N 的集合为( ) A.{(u,v)|u+v=0} B.{(u,v)|u+v=0,u >0} C.{(u,v)|u+v=1} D.{(u,v)|u+v=1,v >0} 答案:B解析:∵x>1,∴log 2x >0. 又∵xy=1,∴x=y1. 于是log 2x=log 2y1=-log 2y, 从而log 2x+log 2y=0.6.已知log 23=a,log 37=b,则log 1456=_________________. 答案:abab++13解析:由log 23=a,log 37=b,得log 27=ab.log 1456=abab++=++=⨯⨯=137log 17log 3)72(log )87(log 14log 56log 222222.7.式子n a n ana aa a 1log 1log log ++(a >0,a≠1)的化简结果是_______________. 答案:-n解析:原式=n aaa na na na 1log log log 11=++--log a a-nlog a a-n 1log a a=n 1-n-n1=-n. 8.已知a 、b 均为正实数,且a 2+b 2=7ab,试证明213lg =+b a (lga+lgb). 证明:∵a 2+b 2=7ab,∴(a+b)2=9ab.∵a>0,b >0,∴ab ba =+3. ∴21lg 3lg ==+ab b a (lga+lgb).9.已知二次函数f(x)=(lga)x 2+2x+4lga 的最大值为3,求a 的值.解:∵二次函数f(x)有最大值,∴lga<0.又[f(x)]max =aa a a lg 1lg 4lg 44lg 162-=-=3,∴4lg 2a-3lga-1=0. ∴lga=1或lga=41-. ∵lga<0, ∴lga=41-. ∴a=4110-.10.2005年3月28日在印度尼西亚苏门答腊岛附近发生里氏8.2级地震,日本气象厅测得为里氏8.5级.科学家常以里氏震级为度量地震的强度.若设N 为地震时所散发出来的相对能量程度,那么里氏震级m 可以定义为m=lgN ,试比较8.2级和8.5级地震的相对能量程度. 解:设8.2级和8.5级地震的相对能量程度分别为N 1和N 2,由题意得⎩⎨⎧==,lg 5.8,lg 2.821N N 因此lgN 2-lgN 1=0.3, 即12lgN N =0.3,∴12N N =100.3≈2. 因此,8.5级地震的相对能量程度约为8.2级地震的相对能量程度的2倍.。
【名师点睛】高中数学 必修一 对数运算及对数函数练习题(含答案)

07课 对数运算1.下列式子中正确的个数是( )①log a (b 2-c 2)=2log a b -2log a c ②(log a 3)2=log a 32③log a (bc)=(log a b)·(log a c) ④log a x 2=2log a xA.0B.1C.2D.3 2.log 22的值为( )A.- 2B. 2C.-12D.123.如果lgx=lga +2lgb -3lgc ,则x 等于( )A.a +2b -3cB.a +b 2-c 3C.ab 2c 3D.2ab 3c4.计算2log 510+log 50.25=( )A.0B.1C.2D.4 5.已知a=log 32,那么log 38-2log 36用a 表示为( )A.a -2B.5a -2C.3a -(1+a)2D.3a -a 2-16.已知f(log 2x)=x ,则f(12)=( )A.14B.12C.22 D. 2 7.设lg2=a ,lg3=b ,则log 512等于( )A.2a +b 1+aB.a +2b 1+aC.2a +b 1-aD.a +2b1-a8.已知log 72=p ,log 75=q ,则lg2用p 、q 表示为( )A.pqB.q p +qC.pp +qD.pq1+pq 9.设方程(lgx)2-lgx 2-3=0的两实根是a 和b ,则log a b +log b a 等于()A.1B.-2C.-103D.-410.计算:log 6[log 4(log 381)]=________.11.使对数式log (x -1)(3-x)有意义的x 的取值范围是________.12.已知5lgx=25,则x=________,已知log x 8=32,则x=________.13.计算:(1)2log 210+log 20.04=________; (2)lg3+2lg2-1lg1.2=________;(3)lg 23-lg9+1=________; (4)13log 168+2log 163=________; (5)log 6112-2log 63+13log 627=________.14.计算:log 23·log 34·log 45·log 56·log 67·log 78= 15.设log 89=a ,log 35=b ,则lg2=________.16.已知log 34·log 48·log 8m=log 416,求m 的值.17.设4a =5b=m ,且1a +2b=1,求m 的值.18.计算(lg 12+lg1+lg2+lg4+lg8+……+lg1024)·log 210.19.已知lg(x +2y)+lg(x -y)=lg2+lgx +lgy ,求xy的值.20.若25a =53b =102c,试求a 、b 、c 之间的关系.21.已知二次函数f(x)=(lga)x 2+2x +4lga 的最大值是3,求a 的值.指数函数练习题1.函数f(x)=ln(x2-x)的定义域为( )A.(0,1)B.[0,1]C.(-∞,0)∪(1,+∞)D.(-∞,0]∪[1,+∞)2.在同一直角坐标系中,函数f(x)=x a(x>0),g(x)=log a x的图象可能是( )3.函数的单调减区间为()A. B.C. D.4.设全集U=R,A={x|<2},B={x|},则右图中阴影部分表示的集合为( )A.{x|1≤x<2}B.{x|x≥1}C.{x|0<x≤1}D.{x|x≤1}5.计算所得的结果为()A.1B.2.5C.3.5D.46.设, 则()A. B. C. D.7.设全集,集合,,则 ( )A. B. C. D.8.已知集合,则( )A. B. C. D.9.已知f(x)是定义在R上的偶函数,在区间[0,+∞)上为增函数,且,则不等式的解集为()A. B. C. D.10.已知x, y为正实数, 则( )A.2lg x+lg y=2lg x+2lg yB.2lg(x+y) =2lg x·2lg yC.2lg x·lg y=2lg x+2lg yD.2lg(xy) =2lg x·2lg y11.已知集合A={x|0<log4x<1}, B={x|x≤2}, 则A∩B=( )A.(0,1)B.(0,2]C.(1,2)D.(1,2]12.设a=log36, b=log510, c=log714, 则( )A.c> b> aB.b> c> aC.a> c> bD.a> b> c13.若a=log43,则2a+2-a=________.14.已知4a=2,lg x=a,则x=________.15.函数f(x) =lg(x-2) 的定义域是.16.函数f(x) =的定义域为.17.函数f(x) =log5(2x+1)的单调增区间是.18.函数f (x)=的定义域为.19.关于x的不等式|log2x|>4的解集为.20. 函数的定义域为___________ .21. .22.已知函数.(Ⅰ)当a=3时,求函数在上的最大值和最小值;(Ⅱ)求函数的定义域,并求函数的值域. (用a表示)答案[答案] 1.C[答案] 2.D[答案] 3.D[答案] 4.A[答案] 5.A[答案] 6.C[答案] 7.B[答案] 8.C[答案] 9.C[答案] 10.D[答案] 11.D[答案] 12.D[答案] 13.[答案] 14.[答案] 15. (2,+∞)[答案] 16.[3, +∞)[答案] 17.(-0.5,+∞)[答案] 18.{x|0<x≤}[答案] 19.[答案] 20.[-0.25,0)∪(0.75,1][答案] 21.4。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学-对数的运算练习
【选题明细表】
知识点、方法题号
对数的运算性质1,6,8,10,11,13
换底公式2,7
附加条件的对数式求值3,4,5,9
与对数有关的方程问题12
1.下列等式成立的是( C )
(A)log2(8-4)=log28-log24
(B)=log2
(C)log28=3log22
(D)log2(8+4)=log28+log24
解析:由对数的运算性质易知C正确.
2.计算(log54)·(log1625)等于( B )
(A)2 (B)1 (C)(D)
解析:(log54)·(log1625)=×=×=1.故选B.
3.设lg 2=a,lg 3=b,则log125等于( A )
(A)(B)(C)(D)
解析:因为lg 2=a,lg 3=b,则log125==.故选A.
4.如果lg 2=m,lg 3=n,则等于( C )
(A)(B)
(C)(D)
解析:因为lg 2=m,lg 3=n,
所以===.故选C.
5.若lg x=m,lg y=n,则lg -lg()2的值为( D )
(A)m-2n-2 (B)m-2n-1
(C)m-2n+1 (D)m-2n+2
解析:因为lg x=m,lg y=n,
所以lg -lg()2=lg x-2lg y+2=m-2n+2.故选D.
6.(2017·上海高一月考)若lo2=a,则log123= .
解析:lo2=a,可得2log32=a,
log123===.
答案:
7.已知3a=5b=A,若+=2,则A= .
解析:因为3a=5b=A>0,所以a=log3A,b=log5A.
由+=log A3+log A5=log A15=2,
得A2=15,A=.
答案:
8.计算下列各题:
(1)0.008 +()2+(-16-0.75;
(2)(lg 5)2+lg 2·lg 50+.
解:(1)原式=(0.34++-24×(-0.75)=0.3+2-3+2-2-2-3=0.55.
(2)原式=(lg 5)2+lg 2·lg(2×52)+2·
=(lg 5)2+lg 2·(lg 2+2lg 5)+2
=(lg 5+lg 2)2+2=1+2.
9.已知lg 2=a,lg 3=b,则log36等于( B )
(A) (B) (C) (D)
解析:log36===,故选B.
10.化简+log2,得( B )
(A)2 (B)2-2log23
(C)-2 (D)2log23-2
解析:==2-log23,所以原式=2-log23+log23-1=2-2log23.
11.下列给出了x与10x的七组近似对应值:
组号一二三四五六七
x 0.301 03 0.477 11 0.698 97 0.778 15 0.903 09 1.000 00 1.079 18 10x 2 3 5 6 8 10 12
假设在上表的各组对应值中,有且仅有一组是错误的,它是第组.
解析:由指数式与对数式的互化可知,
10x=N⇔x=lg N,
将已知表格转化为下表:
组号一二三四五六七
N 2 3 5 6 8 10 12
lg N 0.301 03 0.477 11 0.698 97 0.778 15 0.903 09 1.000 00 1.079 18 因为lg 2+lg 5=0.301 03+0.698 97=1,
所以第一组、第三组对应值正确.
又显然第六组正确,
因为lg 8=3lg 2=3×0.301 03=0.903 09,
所以第五组对应值正确.
因为lg 12=lg 2+lg 6=0.301 03+0.778 15=1.079 18,
所以第四组、第七组对应值正确.
所以只有第二组错误.
答案:二
12.已知a,b,c是△ABC的三边,并且关于x的二次方程x2-2x+lg(c2-b2)-2lg a+1=0有等根,试判断△ABC的形状.
解:由题意知Δ=0,
即(-2)2-4[lg(c2-b2)-2lg a+1]=0,
2lg a-lg(c2-b2)=0,
lg =0,=1,a2+b2=c2,
故△ABC是直角三角形.
13.地震的震级R与地震释放的能量E的关系为R=(lg E-11.4).A地地震级别为9.0级,B地地震级别为8.0级,那么A地地震的能量是B地地震能量的倍.
解析:由R=(lg E-11.4),得R+11.4=lg E,
故E=1.
设A地和B地地震能量分别为E1,E2,
则==1=10.
即A地地震的能量是B地地震能量的10倍.
答案:10
【教师备用】求值:
(1)2log2-lg 2-lg 5+;
(2)lg 14-2lg+lg 7-lg 18;
(3)计算:.
解:(1)2log2-lg 2-lg 5+=2×-lg 10+()=1-1+=.
(2)lg 14-2lg+lg 7-lg 18=lg[14÷()2×7÷18]=lg 1=0.
(3)分子=lg 5(3+3lg 2)+3(lg 2)2=3lg 5+3lg 2(lg 5+
lg 2)=3,
分母=(lg 6+2)-lg 6+1=3, 所以原式=1.。