中考数学试题-2018年中考数学第一轮基础知识点测试试

合集下载

中考数学第一轮复习检测题(五)

中考数学第一轮复习检测题(五)
中考数学第一轮复习检测题(五)
班级 姓名 成绩 一、选择题(本大题共 6 小题,每小题 2 分,共 12 分) 1.3 的相反数是( A.3 2.下列计算正确的是( A.3x2· 4x2=12x2 可知( ) B.乙比甲的成绩稳定 D.无法确定谁的成绩更稳定 ) C. (3,-2) D. (3,2) ) B.-3 ) B.x3· x5=x15 C.x4÷x=x3 D.(x5)2=x7 1 C. 3 1 D.- 3
C.3
A E B
D.2 3
Q O A
P N
(第 5 题)
D
F C (第 6 题)
6.从某个方向观察一个正六棱柱,可看到如图所示的图形,其中四边形 ABCD 为矩形,E、 F 分别是 AB、DC 的中点.若 AD=8,AB=6,则这个正六棱柱的侧面积为( A.48 3 B.96 C.144 D.96 3 )
车辆数 20 16 12 8 4 0 3 8 10 5 3
20.5 30.5 40.5 50.5 60.5 70.5 80.5 车速(千米/时) (第 20 题)
22. (7 分)某花圃用花盆培育某种花苗,经过实验发现每盆的盈利与每盆的株数构成一定 的关系.每盆植入 3 株时,平均单株盈利 4 元;以同样的栽培条件,若每盆每增加 1 株,平均单株盈利就减少 0.5 元.要使每盆的盈利达到 14 元,且尽可能地减少成本, 每盆应该植多少株?
20. (7 分)如图,在等腰梯形 ABCD 中,AD∥BC,M,N 分别是 AD、BC 的中点,E,F 分别是 BM、CM 的中点. (1)求证:△AMB≌△DMC; (2)四边形 MENF 是怎样的特殊四边形?证明你的结论.
E F A M D
B — 2 —
N (第 20 题)

初2018届成都市郫都区中考数学九年级一诊数学试卷(含答案)

初2018届成都市郫都区中考数学九年级一诊数学试卷(含答案)

初2018届成都市郫都区中考数学九年级一诊试卷(考试时间:120分钟满分150分)A卷(共100分)一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.如图摆放的圆锥、圆柱、三棱柱、球,其主视图、左视图、俯视图都相同的是()A.B.C.D.2.一元二次方程5x2﹣4x﹣3=0的二次项系数与一次项系数分别为()A.5,﹣1 B.5,4 C.5x2,﹣4x D.5,﹣43.已知=,则的值是()A.B.C.﹣D.﹣4.如图,在平面直角坐标系中,点A的坐标为(4,3),那么cosα的值是()A.B.C.D.5.若m是一元二次方程x2﹣5x﹣2=0的一个实数根,则2018﹣m2+5m的值为()A.2015 B.2016 C.2017 D.20186.下列哪种光线形成的投影不是中心投影()A.探照灯B.太阳C.手电筒D.路灯7.如图所示,阳光中学教学楼前喷水池喷出的抛物线形水柱,其解析式为y=﹣(x﹣2)2+6,则水柱的最大高度是()A.2 B.4 C.6 D.2+8.函数y=中,自变量x的取值范围是()A.x>5 B.x<5 C.x≥5 D.x≤59.小红上学要经过两个十字路口,每个路口遇到红、绿灯的机会都相同,小红希望上学时经过每个路口都是绿灯,但实际这样的机会是()A.B.C.D.10.在同一坐标系中,一次函数y=ax+b与二次函数y=ax2+b的大致图象为()A.B.C.D.二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.若反比例函数y=的图象在第一、三象限内,则k的取值范围为.12.抛物线y=x2+2x﹣2向右平移2个单位长度,所得抛物线的对称轴为直线.13.如图,河两岸分别有A、B两村,测得A、B、D在一直线上,A、C、E在一条直线上,BC∥DE,DE=100m,BC=70m,BD=30m,则A、B两村间的距离为.14.在一个不透明的口袋中装有4个红球和若干个白球,它们除颜色外其他完全相同,通过多次摸球试验后发现,摸到红球的频率稳定在25%附近,则口袋中白球可能有个.三、解答题(本大题共6个小题,共54分,解答过程写在答题卡上)15.(12分)(1)计算:||+﹣2tan45°﹣2sin60°(2)解方程:x2﹣6x+5=016.(6分)如图是由6个小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置小立方块的个数,请按要求画出该几何体的主视图与左视图.17.(8分)如图,一艘核潜艇在海面下500米A点处测得俯角为31°正前方的海底C点处有黑匣子信号发出,继续在同一深度直线航行3000米后再次在B点处测得俯角为62°正前方的海底C点处有黑匣子信号发出,求海底黑匣子C点处距离海面的深度CH.(参考数据:sin62°≈0.88,cos62°≈0.47,tan62°≈1.88)18.(8分)端午节那天,小贤回家看到桌上有一盘粽子,其中有豆沙粽、肉粽各1个,蜜枣粽2个,这些粽子除馅外无其他差别.(1)小贤随机地从盘中取出一个粽子,取出的是肉粽的概率是多少?(2)小贤随机地从盘中取出两个粽子,试用画树状图或列表的方法表示所有可能的结果,并求出小贤取出的两个都是蜜枣粽的概率.19.(10分)如图,在平面直角坐标系xOy中,一次函数y=kx+b的图象与反比例函数y=图象交于点A (1,5)和点B(n,1).(1)求m,n的值;(2)设直线AB与x轴交于点C,求△AOC的面积;(3)若图中一次函数的函数值小于反比例函数的函数值,直接写出x的取值范围.20.(10分)如图,已知矩形ABCD中,过对角线AC的中点O作AC的垂线,分别交射线AD和CB于点E、F,交DC于点G,交AB于点H,连接AF,CE.(1)求证:四边形AFCE是菱形;(2)若=,△DGE的面积是2,求△CGF的面积;(3)如果OF=2GO,求证:GO2=DG•GC.B卷(共50分)一、填空题(本大题共5分,每小题4分,共20分,答案写在答题卡上)21.已知三角形的3条中位线分别为3cm、4cm、6cm,则这个三角形的周长是.22.已知x1,x2是关于x的方程x2+ax﹣2b=0的两实数根,且x1+x2=﹣2,x1•x2=﹣2,则b a的值为.23.已知函数y=(k﹣3)x2+2x+1的图象与x轴有两个交点,则k的取值范围是.24.从﹣2、﹣1、0、1这四个数中随机抽取一个记为a,则使关于x的不等式组有解,且使关于x的一次函数y=的图象与反比例函数y=的图象有1个交点的概率是.25.如图,正方形ABCD的边长为2,E,F分别是AB,BC的中点,AF与DE,DB分别交于点M、N,则S △MND:S△AFD的值为.二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)26.(8分)受益于国家支持新能源汽车发展和“一带一路”发展战略等多重利好因素,我市某汽车零部件生产企业的利润逐年提高,据统计,2015年利润为2亿元,2017年利润为2.88亿元.(1)求该企业从2015年到2017年利润的年平均增长率;(2)若保持年平均增长率不变,该企业2018年的利润能否超过3.4亿元?27.(10分)如图,在△ABC中,已知AB=AC=5,BC=6,且△ABC≌△DEF,将△DEF与△ABC重合在一起,△ABC不动,△DEF运动,并满足:点E在边BC上沿B到C的方向运动,且DE始终经过点A,EF与AC交于M点.(1)求证:△ABE∽△ECM;(2)探究:在△DEF运动过程中,重叠部分能否构成等腰三角形?若能,求出BE的长;若不能,请说明理由;(3)当线段BE为何值时,线段AM最短,最短是多少?28.(12分)如图,在平面直角坐标系中,抛物线F1:y=ax2+bx﹣4(a≠0)与x轴交于点A(﹣1,0)和点B(3,0),将抛物线F1沿x轴翻折得到抛物线F2,抛物线F2与y轴交于点C.(1)求抛物线F1和抛物线F2的解析式;(2)若点P是抛物线F2在第一象限的图象上的一个动点,过点P作PE平行于y轴交直线BC于点E,求PE 的最大长度及△PCB的最大面积;(3)若点Q在抛物线F1上,且到∠OCB的两边的距离相等,求点Q的坐标.参考答案与试题解析1.【解答】解:球的三视图是大小相同的圆,而圆锥、圆柱、三棱柱的三视图都不完全相同.所以主视图、左视图、俯视图都完全相同的是球.故选:D.2.【解答】解:一元二次方程5x2﹣4x﹣3=0的二次项系数和一次项系数分别为5,﹣4,故选:D.3.【解答】解:∵=,∴a=5k,b=13k,∴=,故选:A.4.【解答】解:由点A的坐标为(4,3),那么OA==5,∴cosα的值为A的横坐标:OA=4:5,故选:B.5.【解答】解:∵m是一元二次方程x2﹣5x﹣2=0的一个实数根,∴m2﹣5m﹣2=0,即m2﹣5m=2,∴2018﹣m2+5m=2018﹣(m2﹣5m)=2018﹣2=2016.故选:B.6.【解答】解:中心投影的光源为灯光,平行投影的光源为阳光与月光,在各选项中只有B选项得到的投影为平行投影,故选B.7.【解答】解:∵抛物线形水柱,其解析式为y=﹣(x﹣2)2+6,∴水柱的最大高度是:6.故选:C.8.【解答】解:根据题意得:x﹣5≥0解得:x≥5故选:C.9.【解答】解:共4种情况,有1种情况每个路口都是绿灯,所以概率为.故选:A.10.【解答】解:A、由一次函数y=ax+b的图象可得:a>0,此时二次函数y=ax2+b的图象应该开口向上,故A错误;B、由一次函数y=ax+b的图象可得:a<0,b>0,此时二次函数y=ax2+b的图象应该开口向下,顶点的纵坐标大于零,故B正确;C、由一次函数y=ax+b的图象可得:a<0,b<0,此时二次函数y=ax2+b的图象应该开口向下,故C错误;D、由一次函数y=ax+b的图象可得:a<0,b>0,此时二次函数y=ax2+b的图象应该开口向下,故D错误;故选:B.二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.【解答】解:∵反比例函数y=的图象在第一、三象限内,∴k﹣5>0,解得 k>5.故答案为:k>5.12.【解答】解:∵y=x2+2x﹣2=(x+1)2﹣3,∴向右平移2个单位长度后抛物线解析式为y=(x﹣1)2+3,∴所得抛物线的对称轴为直线 x=1.故答案是:x=1.13.【解答】解:∵BC∥DE,∴△ABC∽△AED,∴=,即=,解得,AB=70,故答案为:70.14.【解答】解:设白球个数为:x个,∵摸到红色球的频率稳定在25%左右,∴口袋中得到红色球的概率为25%,∴=,解得:x=12,故白球的个数为12个.故答案为:12.三、解答题(本大题共6个小题,共54分,解答过程写在答题卡上)15.【解答】解:(1)原式=2﹣+3﹣2×1﹣2×=;(2)(x﹣5)(x+1)=0,x﹣5=0或x+1=0,所以x1=5,x2=1.16.【解答】解:如图所示:17.【解答】解:在△ABC中∠CAG=31°,∠CBG=62°,∴BC=AB=3000m,在Rt△BCG中,∠BCD=62°,∴sin∠CBG=,∴CG=0.88×3000≈2640 (m),∴CH=CG﹣GH=2640+500=3140(m),∴海底黑匣子C点处距离海面的深度CH为3140m.18.【解答】解:(1)∵有豆沙粽、肉粽各1个,蜜枣粽2个,∴随机地从盘中取出一个粽子,取出的是肉粽的概率是:;(2)如图所示:,一共有12种可能,取出的两个都是蜜枣粽的有2种,故取出的两个都是蜜枣粽的概率为:=.19.【解答】解:(1)∵点A(1,5)在反比例函数y=图象上,∴m=1×5=5,∴反比例函数的解析式为y=,∵点B(n,1)在反比例函数y=的图象上,∴n=5.(2)∵点A(1,5)和点B(5,1)在直线y=kx+b上∴,解得,∴直线AB的解析式为y=﹣x+6,∴点C的坐标为(6,0),OC=6,∴△AOC的面积=×6×5=15,(3)观察图象可知:当图中一次函数的函数值小于反比例函数的函数值,x的取值范围为:0<x<1或x >5.20.【解答】证明:(1)∵四边形ABCD是矩形,∴AD∥BC,∴∠EAC=∠ACF,在△EOA和△FOC中,,∴△EOA≌△FOC(ASA).∴AE=CF,OE=OF.∴四边形AFCE是平行四边形.∵AC⊥EF,∴四边形AFCE是菱形;(2)∵四边形AFCE是菱形∴AE∥CF,AE=CF.∴△DGE∽△CGF.∴=()2.∵=,△DGE的面积是2,∴=()2.∴S△CGF=18;(3)∵∠EDG=∠COG=90°,∠EGD=∠CGO,∴△EGD∽△CGO.∴EG:DG=CG:GO.∵OF=2GO,∴EG=GO.∴GO2=DG•GC.一、填空题(本大题共5分,每小题4分,共20分,答案写在答题卡上)21.【解答】解:∵三角形的3条中位线分别为3cm、4cm、6cm,根据三角形的中位线定理,得三角形的三边分别是6cm、8cm、12cm,则三角形的周长是26cm.故答案为26cm.22.【解答】解:∵x1,x2是关于x的方程x2+ax﹣2b=0的两实数根,∴x1+x2=﹣a=﹣2,x1•x2=﹣2b=﹣2,解得a=2,b=1,∴b a=12=1.故答案为:1.23.【解答】解:∵函数y=(k﹣3)x2+2x+1的图象与x轴有两个交点,∴令y=0,则(k﹣3)x2+2x+1=0,则△=4﹣4(k﹣3)>0,且k﹣3≠0,解得,k<4且k≠3.故答案是:k<4且k≠3.24.【解答】解:由题意:当a=﹣1时,关于x的不等式组有解,关于x的一次函数y=的图象与反比例函数y=的图象有1个交点,当a=0或1时,关于x的不等式组有解,关于x的一次函数y=的图象与反比例函数y =的图象有2个交点,∴使关于x的不等式组有解,且使关于x的一次函数y=的图象与反比例函数y=的图象有1个交点的概率是.故答案.25.【解答】解:连接DF,如图,∵E,F分别是AB,BC的中点,∴AE=BF=,∵四边形ABCD是正方形,∴AD∥BC,AB=BC=,∴DE=AF==5,在△ADE和△BAF中,∴△ADE≌△BAF(SAS),∴∠ADE=∠BAF,∵∠BAF+∠FAD=90°,∴∠FAD+∠ADE=90°,∴∠AMD=90°,∴AM⊥DE,∵AM•DE=AE•AD,∴AM==2,在Rt△AMD中,DM==4,又∵AD∥BF,∴△AND∽△FNB,∴,∴AN=2NF==×5=,∴MN=﹣2=,∴S△DMN=DM•MN=×4×=8,∵S△ADF=×2×2=30,∴S△MND:S△AFD=8:30=4:15.故答案为4:15.二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)26.【解答】解:(1)设这两年该企业年利润平均增长率为x,根据题意得:2(1+x)2=2.88,解答:x1=0.2=20%,x2=﹣2.2(不合题意,舍去),则设这两年该企业年利润平均增长率为20%;(2)如果2018年仍保持相同的年平均增长率,那么2018年该企业年利润为:2.88(1+20%)=3.456,且3.456>3.4,则该企业2018年的利润能超过3.4亿元.27.【解答】解:(1)∵AB=AC,∴∠B=∠C,∵△ABC≌△DEF,∴∠AEF=∠B,又∵∠AEF+∠CEM=∠AEC=∠B+∠BAE,∴∠CEM=∠BAE,∴△ABE∽△ECM;(2)能.∵∠AEF=∠B=∠C,且∠AME>∠C,∴∠AME>∠AEF∴AE≠AM;当AE=EM时,则△ABE≌△ECM,∴CE=AB=5,∴BE=BC﹣EC=6﹣5=1,当AM=EM时,则∠MAE=∠MEA,∴∠MAE+∠BAE=∠MEA+∠CEM,即∠CAB=∠CEA,∵∠C=∠C,∴△CAE∽△CBA,∴,∴CE=,∴BE=6﹣=;∴BE=1或.(3)设BE=x,又∵△ABE∽△ECM,∴,即:,∴CM=﹣+x=﹣(x﹣3)2+,∴AM=5﹣CM=(x﹣3)2+,∴当x=3时,AM最短为.28.【解答】解:(1)F1的表达式为:y=a(x+1)(x﹣3)=a(x2﹣2x﹣3),即﹣3a=﹣4,解得:a=,故函数F1的表达式为:y=x2﹣x﹣4,将抛物线F1沿x轴翻折得到抛物线F2,抛物线的表达式为:y=﹣x2+x+4;(2)点B、C的坐标分别为(3,0)、(0,4),将点B、C坐标代入一次函数表达式:y=kx+b并解得:直线C的表达式为:y=﹣x+4,设点P(x,﹣x2+x+4),则点E(x,﹣x+4),PE=﹣x2+x+4﹣(﹣x+4)=﹣(x﹣)2+3,∵<0,∴当x=时,PE的最大值为3;(3)如图,在y轴上截取CB=CD=5,则点D(0,﹣1),设BD的中点为H(,﹣),同理过点C、H的直线表达式为:y=﹣3x+4,∵CH平分∠OCB,则CH与抛物线F1的交点Q到∠PCB两边的距离相等,,解得:x=,故点Q(,)或(,)。

第29讲 统计训练题2018年中考数学一轮复习资料.docx

第29讲 统计训练题2018年中考数学一轮复习资料.docx

一、选择题(每题3分,共30分)1.为了调查了解某县七年级男生的身高,有关部门准备对200名七年级男生的身高作调查,以下调查方案中比较合理的是()A,查阅外地200名七年级男生的身高统计资料B,测量该县县城一所中学200名七年级男生的身高C.测量.该,县两所农村中学各100名七年级男生的身高D.在该县县城任选一所中学,农村任选三所中学,每所中学用抽签的方法分别选择50名七年级男生,然后测量他们的身高2.某省有7万名学生参加初中毕业会考,要想了解这7万名学生的数学成绩,从中抽取了 1 000名考生的数学成绩进行统计分析,以下说法正确的是()A.这1 000名考生是总体的一个样本B.每位考生是个体C.7万名考生是总体D.这种调查是抽样调查3.九年级某班在一次考试中对某道单选题的作答情况如图所示,根据统计图,下列判断中错误的是()A.选A的有8人B.选B的有4人C.选C的有26人D.该班共有50人参加考试4.某学校教研组对八年级360名学生就“分组合作学习”方式的支持程度进行了调查,随机抽取了若干名学生进行调查,并制作统计图,据此统计图估计该校八年级支持“分组合作学习”方式的学生约为(含非常喜欢和喜欢两种情况)()A. 216B.252C.288D.3245.如图,是某工厂2010-2013年的年产值统计图,则年产值在2500万元以上的年份是(A. 2011 年B. 2012 年C. 2013 年D. 2011 年和 2013 年6.甲、乙两班举行电脑汉字输入比赛,参赛学生每分钟输人汉字的个数统计结果如下表,某同学分析上表后得出如下结论:(1)甲、乙两班学生成绩平均水平相同,(2)乙班优秀的人数多于甲班优秀的人数(每分钟输入N150个汉字为优秀)⑶甲班成绩的波动比乙班大上述结论正确的是()A. (1)⑵(3)B. (1) (2)C. (1) (3)D. (2) (3)7.下表是四川省11个地市5月份某日最高气温(°C)的统计结果:该日最高气温的极差和平均数分别是( )A. 31 °C,28 °CB.. 26 °C, 28 °CC. 5 °C, 27 °CD. 5 °C, 28 °CC 2 c 28.射击训练中,甲、乙、丙、丁四人每人射击10次,平均环数均为8.7环,方差分别为S甲=0. 51, S乙=0. 41, S丙%0. 62, S T22=0. 45,则四人中成绩最稳定的是( )A.甲B.乙C.丙D. T9.某次歌唱比赛,最后三名选手的成绩统计如下:若唱功、音乐常识、综合知识按6 : 3 : 1的加权平均分排出冠军、亚军、季军,则冠军、亚军、季军分别A.王飞、李真、林杨B.王飞、林杨、李真C.李真、王飞、林杨D.李真、林杨、王飞10.甲、乙两班举行电脑汉字输入比赛,参赛学生每分钟输入汉字的个数统计结果如下表:某同学分析上表后得出如下结论:①甲、乙两班学生汉字输入的平均水平相同;②乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字的个数不少于150为优,秀);③甲班成绩的波动比乙班■大.上述结论正确的是()A.①②③B.①②C.①③D.②③二、填空题(每题3分,共30分)11.五个数1, 2, 4, 5, -2的极差是.12.已知一组数据3, 4, 4, 2, 5,这组数据的中位数为.13.某工厂共有50名员工,他们的月工资方差*=20,现在给每个员工的月工资增加300元,那么他们新工资的方差是.14.数据3, 2, 1, 5, - 1, 1的众数和中位数之和是.15.已知一组数据10, 9, 8, X, 12, y, 10, 7的平均数是10,又知y比x大2,则x+y= .16.某校九年级(2)班(1)组女生的体重(单位:kg)为:38, 40, 35, 36, 65, 42, 42,则这组数据的中位数是17.一个班级有40人,一次数学考试中,优秀的有18人.在扇形图中表示优秀的人数所占百分比的扇形的圆心角的度数是.18.某校男子足球队队员的年龄分布如表所示:年龄(岁)13 14 15 16 17人数 2 6 8 3 3则这些队员年龄的中位数是—岁.19.九年级(3)班共有50名同学,如图是该班一次体育模拟测试成绩的频数分布直方图(满分为30分,成绩均为整数).若将不低于23分的成绩评为合格,则该班此次成绩达到合格的同学占全班人数的百分比是_.20.在某次学校安全知识抢答赛中,九年级参赛的10名学生的成绩统计图如图所示.这10名学生的参赛成绩的中位数是—分.85 90 e三、解答题(共60分)21.(本题6分)甲、乙两位同学参加数学综合素质测试,各项成绩如下(单位:分)(1)分别计算甲、乙成绩的中位数;(2)如果数与代数、空间与图形、统计与概率、综合与实践的成绩按3: 3: 2: 2计算,那么甲、乙的数学综合素质成绩分别为多少分?22.(本题7分)在开展“好书伴我成长”的读书活动中,某中学为了解八年级300名学生读书情况,随机调查了八年级50名学生读书的册数.统计数据如下表所示:册数0 1 2 3 4人数 3 13 16 17 1(1)求这50个样本数据的平均救,众数和中位数.(2)根据样本数据,估计该校八年级300名学生在本次活动中读书多于2册的人数.23.(本题7分)甲、成绩分别被制成下列两个统计图:乙两名队员参加射击训练,根据以上信息,整理分析数据如下:平均成绩/中位数/环众数/环方差环甲 a 7 7 1.2乙7 b 8 c(1)写出表格中a, b, c的值;(2)分别运用表中的四个统计量,简要分析这两名队员的射击训练成绩.若选派其中一名参赛,你认为应选哪名队员?24.(本题8分)某学校九年级学生举行朗诵比赛,全年级学生都参加,学校对表现优异的学生进行表彰, 设置一、二、三等奖各进步奖共四个奖项,赛后将九年级(1)班的获奖情况绘制成如图所示的两幅不完整的统计图,请根据图中的信息,解答下列问题:(1)九年级(1)班共有—名学生;(2)将条形图补充完整:在扇形统计图中,“二等奖”对应的扇形的圆心角度数是_(3)如果该九年级共有1250名学生,请估计荣获一、二、三等奖的学生共有多少名.25.(本题8分)了解学生零花钱的使用情况,校团委随机调查了本校部分学生每人一周的零花钱数额, 并绘制了如图甲、乙所示的两个统计图(部分未完成).请根据图中信息,回答下列问题:,诙SX额条以(人)数额(元)(1)校团委随机调查了多少学生?请你补全条形统计图;(2)表示“50元”的扇形的圆心角是多少度?被调查的学生每人.一周零花钱数的中位数是多少元?(3)四川雅安地震后,全校1000名学生每人自发地捐出一周零花钱的一半,以支援灾区建设.请估算全校学生共捐款多少元?26.(本题8分)随着一部在重庆取景拍摄的电影《火锅英雄》在山城的热播,山城人民又掀起了一股去吃洞子老火锅的热潮.某餐饮公司为了大力宣传和推广该公司的企业文化,准备举办一个火锅美食节.为此,公司派出了若干业务员到几个社区作随机调查,了解市民对火锅的喜爱程度.业务员小王将“喜爱程度”按A、B、C、D进行分类,并将自己的调查结果绘制成如下的统计图,请你结合图中所给信息解答下列问题:“喜爱程度”条形统计图“喜爱程度”扇形统计图(说明:A:非常喜欢;B:比较喜欢;C:一般喜欢;D:不喜欢)(1)请把条形统计图补充完整.;(2)扇形统计图中A类所在的扇形的圆心角度数是_;(3)若小王调查的社区大概有5000人,请你用小王的调查结果估计“非常喜欢”和“比较喜欢”的人数之和.27.(本题8分)为了降低塑料袋--“白色污染”对环境污染.学校组织了对使用购物袋的情况的调查, 小明同学5月8日到站前市场对部分购物者进行了调查,据了解该市场按塑料购物袋的承重能力分别提供了 0.1元,0.2元,0.3元三种质量不同的塑料袋,下面两幅图是这次调查得到的不完整的统计图(若每人每次只使用一个购物袋),请你根据图中的信息,回答下列问题:(1)这次调查的购物者总人数是—人;(2)请补全条形统计图,并说明扇形统计图中0.2元部分所对应的圆心角是度,0.3元部分所对应的圆心角是度;(3)若5月8日到该市场购物的人数有3000人次,则该市场应销售塑料购物袋多少个?目备0.1兀28.(本题8分)A, B, C三名大学生竞选系学生会主席,他们的笔试成绩和口试成绩(单位:分)分别用了两种方式进行了统计,如表和图1:竞选人 A .B C笔试85 95 90口试80 85■笔试□ 口试B C(1)请将表和图1中的空缺部分补充完整.(2)竞选的最后一个程序是由本系的300名学生进行投票,三位候选人的得票情况如图2 (没有弃权票,每名学生只能推荐一个),则B在扇形统计图中所占的圆心角是度.(3)若每票计1分,系里将笔试、口试、得票三项测试得分按4: 3: 3的比例确定个人成绩,请计算三位候选人的最后成绩,并根据成绩判断谁能当选.。

浙江省舟山市2018年中考数学真题试题(含解析)(1)

浙江省舟山市2018年中考数学真题试题(含解析)(1)

浙江省舟山市2018年中考数学真题试题一、选择题目1.下列几何体中,俯视图为三角形的是()A. B.C. D.2.2018年5月25日,中国探月工程的“桥号”中继星成功运行于地月拉格朗日L2点,它距离地球约1500000km.数1500000用科学记数法表示为()A. 15×105B. 1.5×106C. 0.15×107D. 1.5×1053.2018年1-4月我国新能源乘用车的月销量情况如图所示,则下列说法错误的是()A. 1月份销量为2.2万辆B. 从2月到3月的月销量增长最快C. 4月份销量比3月份增加了1万辆D. 1-4月新能源乘用车销量逐月增加4.不等式1-x≥2的解在数轴上表示正确的是()A. B.C. D.5.将一张正方形纸片按如图步骤①,②沿虚线对折两次,然后沿③中平行于底边的虚线剪去一个角,展开铺平后的图形是()A. B. C. D.6.用反证法证明时,假设结论“点在圆外”不成立,那么点与圆的位置关系只能是()A. 点在圆内B. 点在圆上C. 点在圆心上D. 点在圆上或圆内7.欧几里得的《原本》记载,形如x2+ax=b2的方程的图解法是;画Rt△ABC,使∠ACB=90°,BC= ,AC=b,再在斜边AB上截取BD= 。

则该方程的一个正根是()A.AC的长B.AD的长C.BC的长D.CD的长8.用尺规在一个平行四边形内作菱形ABCD,下列作法中错误的是()A. B.C. D.9.如图,点C在反比例函数(x>0)的图象上,过点C的直线与x轴,y轴分别交于点A,B,且AB=BC,△AOB的面积为1,则k的值为()A. 1B. 2C. 3D. 410.某届世界杯的小组比赛规则:四个球队进行单循环比赛(每两队赛一场),胜一场得3分,平一场得1分,负一场得0分,某小组比赛结束后,甲、乙,丙、丁四队分别获得第一,二,三,四名,各队的总得分恰好是四个连续奇数,则与乙打平的球队是()A.甲B.甲与丁C.丙D.丙与丁二、填空题目11.分解因式m2-3m=________。

2018年中考数学真题分类汇编第一期专题18图形的展开与叠折试题含解

2018年中考数学真题分类汇编第一期专题18图形的展开与叠折试题含解

图形的展开与叠折一、选择题1.(2018•四川凉州•3分)一个正方体的平面展开图如图所示,将它折成正方体后“建”字对面是()A.和B.谐C.凉D.山【分析】本题考查了正方体的平面展开图,对于正方体的平面展开图中相对的面一定相隔一个小正方形,据此作答.【解答】解:对于正方体的平面展开图中相对的面一定相隔一个小正方形,由图形可知,与“建”字相对的字是“山”.故选:D.【点评】注意正方体的空间图形,从相对面入手,分析及解答问题.2.(2018·天津·3分)如图,将一个三角形纸片沿过点的直线折叠,使点落在边上的点处,折痕为,则下列结论一定正确的是()A. B.C. D.【答案】D【解析】分析:由折叠的性质知,BC=BE.易得.详解:由折叠的性质知,BC=BE.∴..故选:D.点睛:本题利用了折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.3 (2018·新疆生产建设兵团·5分)如图,矩形纸片ABCD中,AB=6cm,BC=8cm.现将其沿AE对折,使得点B落在边AD上的点B1处,折痕与边BC交于点E,则CE的长为()A.6cm B.4cm C.3cm D.2cm【分析】根据翻折的性质可得∠B=∠AB1E=90°,AB=AB1,然后求出四边形ABEB1是正方形,再根据正方形的性质可得BE=AB,然后根据CE=BC﹣BE,代入数据进行计算即可得解.【解答】解:∵沿AE对折点B落在边AD上的点B1处,∴∠B=∠AB1E=90°,AB=AB1,又∵∠BAD=90°,∴四边形ABEB1是正方形,∴BE=AB=6cm,∴CE=BC﹣BE=8﹣6=2cm.故选:D.【点评】本题考查了矩形的性质,正方形的判定与性质,翻折变换的性质,判断出四边形ABEB1是正方形是解题的关键.4 (2018·台湾·分)如图为一直棱柱,其底面是三边长为5、12、13的直角三角形.若下列选项中的图形均由三个矩形与两个直角三角形组合而成,且其中一个为如图的直棱柱的展开图,则根据图形中标示的边长与直角记号判断,此展开图为何?()A. B.C. D.【分析】三棱柱的侧面展开图是长方形,底面是三角形,据此进行判断即可.【解答】解:A选项中,展开图下方的直角三角形的斜边长为12,不合题意;B选项中,展开图上下两个直角三角形中的直角边不能与其它棱完全重合,不合题意;C选项中,展开图下方的直角三角形中的直角边不能与其它棱完全重合,不合题意;D选项中,展开图能折叠成一个三棱柱,符合题意;故选:D.【点评】本题主要考查了几何体的展开图,从实物出发,结合具体的问题,辨析几何体的展开图,通过结合立体图形与平面图形的转化,建立空间观念,是解决此类问题的关键.5. (2018•河南•3分)某正方体的每个面上那有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是()A.厉B.害C.了D.我6.(2018·浙江衢州·3分)如图,将矩形ABCD沿GH折叠,点C落在点Q处,点D落在AB 边上的点E处,若∠AGE=32°,则∠GHC等于()A.112°B.110° C.108° D.106°【考点】平行线的性质【分析】由折叠可得:∠DGH=∠DGE=74°,再根据AD∥BC,即可得到∠GHC=180°﹣∠DGH=106°.【解答】解:∵∠AGE=32°,∴∠DGE=148°,由折叠可得:∠DGH=∠DGE=74°.∵AD∥BC,∴∠GHC=180°﹣∠DGH=106°.故选D.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,同旁内角互补.7. (2018·浙江舟山·3分)将一张正方形纸片按如图步骤①,②沿虚线对折两次,然后沿③中平行于底边的虚线剪去一个角,展开铺平后的图形是()A. B.C. D.【考点】剪纸问题【解析】【解答】解:沿虚线剪开以后,剩下的图形先向右上方展开,缺失的部分是一个等腰直角三角形,用直角边与正方形的边是分别平行的,再沿着对角线展开,得到图形A。

中考数学第一轮复习基础知识训练(一)(附答案)

中考数学第一轮复习基础知识训练(一)(附答案)

中考数学第一轮复习基础知识训练(一)时间:30分钟你实际使用分钟班级姓名学号成绩一、精心选一选1.图(1)所示几何体的左视图...是()2.一对酷爱运动的夫妇,让他们刚满周岁的孩子拼排3块分别写有“20”、“08”、“北京”的字块.假如小孩将字块横着正排,则该小孩能够排成“2008北京”或“北京2008”的概率是()A.16B.14C.13D.123.一名宇航员向地球总站发回两组数据:甲、乙两颗行星的直径分别为46.110⨯千米和46.1010⨯千米,这两组数据之间()A.有差别B.无差别C.差别是40.00110⨯千米D.差别是100千米4.如图,把直线l向上平移2个单位得到直线l′,则l′的表达式为()A.112y x=+B.112y x=-C.112y x=--D.112y x=-+5.汽车以72千米/时的速度在公路上行驶,开向寂静的山谷,驾驶员揿一下喇叭,4秒后听到回响,这时汽车离山谷多远?已知空气中声音的传播速度约为340米/秒.设听到回响时,汽车离山谷x米,根据题意,列出方程为()A.24204340x+⨯=⨯B.24724340x-⨯=⨯C.24724340x+⨯=⨯D.24204340x-⨯=⨯6.某公园计划砌一个形状如图(1)所示的喷水池,后来有人建议改为图(2)的形状,且外圆的直径不变,喷水池边沿的宽度、高度不变,你认为砌喷水池的边沿()A.图(1)需要的材料多B.图(2)需要的材料多C.图(1)、图(2)需要的材料一样多 D.无法确定7.如图,等腰梯形ABCD 下底与上底的差恰好等于腰长,DE AB ∥.则DEC ∠等于( )A.75° B.60° C.45° D.30°8.如图是一台54英寸的大背投彩电放置在墙角的俯视图.设DAO α=∠,彩电后背AD 平行于前沿BC ,且与BC 的距离为60cm ,若100cm AO =,则墙角O 到前沿BC 的距离OE 是( )A.()60100sin cm α+ B.()60100cos cm α+ C.()60100tan cm α+ D.以上答案都不对二、细心填一填9.某农场购置了甲、乙、丙三台打包机,同时分装质量相同的棉花,从它们各自分装的棉花包中随机抽取了10包,测得它们实际质量的方差分别为222S 11.05S 7.96S 16.32===乙甲丙,,.可以确定 打包机的质量最稳定.10.如图,照相时为了把近处的较高物体照下来,常常保持镜头中心不动,使相机旋转一定的角度,若A 点从水平位置顺时针旋转了30︒,那么B 点从水平位置顺时针旋转了__ ____度.图(1) 图(2)第6题第8题ABA D CE B 第7题11.林业工人为调查树木的生长情况,常用一种角卡为工具,可以很快测出大树的直径,其工作原理如图所示.现已知5380.5BAC AB =︒=∠′,米,则这棵大树的直径约为 _____ ____米.12.如图,一次函数11y x =--与反比例函数22y x =-的图象交于点(21)(12)A B --,,,,则使12y y >的x 的取值范围是三、开心用一用13.(6分)解不等式组3181(5)32x x -->⎧⎪⎨+⎪⎩≤并把解集在数轴上表示出来.14.如图,数轴上点AA 关于原点的对称点为B ,设点B 所表示的数为x ,求(x 的值.第12题答案参考一、精心选一选 BCAD ACBA二、细心填一填9. 乙 10. __30___ 11. _ 0.5__12. 2x <-或01x <<. 三、开心用一用13.(6分)解不等式组3181(5)32x x -->⎧⎪⎨+⎪⎩≤并把解集在数轴上表示出来.解:解不等式318x -->,得3x <-.解不等式1(5)32x +≤,得x ≤1.原不等式组的解集为3x <-.14.如图,数轴上点AA 关于原点的对称点为B ,设点B 所表示的数为x ,求(0x的值.解: 点AB 与点A 关于原点对称,∴点B 表示的数是,即x =3分00(((121x ==-=-. 6分第12题3- 2- 1- 0 1。

中考数学 第一部分 基础知识过关 第三章 函数及其图象 第12讲 二次函数精练

第12讲二次函数A组基础题组一、选择题1.(2018陕西)对于抛物线y=ax2+(2a-1)x+a-3,当x=1时,y>0,则这条抛物线的顶点一定在( )A.第一象限B.第二象限C.第三象限D.第四象限2.(2018威海)抛物线y=ax2+bx+c(a≠0)如图所示,下列结论错误的是( )A.abc<0B.a+c<bC.b2+8a>4acD.2a+b>03.(2017甘肃兰州)将抛物线y=3x2-3向右平移3个单位长度,得到的新抛物线的表达式为( )A.y=3(x-3)2-3B.y=3x2C.y=3(x+3)2-3D.y=3x2-64.如图,一次函数y1=kx+n(k≠0)与二次函数y2=ax2+bx+c(a≠0)的图象相交于A(-1,5),B(9,2)两点,则关于x的不等式kx+n≥ax2+bx+c的解集为( )A.-1≤x≤9B.-1≤x<9C.-1<x≤9D.x≤-1或x≥95.在同一坐标系中,一次函数y=-mx+n2与二次函数y=x2+m的图象可能是( )二、填空题6.(2017湖北武汉)已知关于x的二次函数y=ax2+(a2-1)x-a的图象与x轴的一个交点的坐标为(m,0).若2<m<3,则a的取值范围是.7.某农场拟建两间矩形饲养室,一面靠现有墙(墙足够长),中间用一道墙隔开,并在如图所示的三处各留1 m宽的门.已知计划中的材料可建墙体(不包括门)总长为27 m,则能建成的饲养室面积最大为m2.8.如图,Rt△OAB的顶点A(-2,4)在抛物线y=ax2(a≠0)上,将Rt△OAB绕点O顺时针旋转90°,得到△OCD,边CD与该抛物线交于点P,则点P的坐标为.三、解答题9.如图,需在一面墙上绘制几个相同的抛物线型图案.按照图中的直角坐标系,最左边的抛物线可以用y=ax2+bx(a≠0)表示.已知抛物线上B,C两点到地面的距离均为 m,到墙边的距离分别为 m, m.(1)求该拋物线的函数关系式,并求图案最高点到地面的距离;(2)若该墙的长度为10 m,则最多可以连续绘制几个这样的拋物线型图案?B组提升题组一、选择题1.下列关于二次函数y=ax2-2ax+1(a>1)的图象与x轴交点的判断,正确的是( )A.没有交点B.有一个交点,且它位于y轴右侧C.有两个交点,且它们均位于y轴左侧D.有两个交点,且它们均位于y轴右侧2.(2018枣庄)下图是二次函数y=ax2+bx+c图象的一部分,且过点A(3,0),二次函数图象的对称轴是直线x=1,下列结论正确的是( )A.b2<4acB.ac>0C.2a-b=0D.a-b+c=03.(2018潍坊)已知二次函数y=-(x-h)2(h为常数),当自变量x的值满足2≤x≤5时,与其对应的函数值y的最大值为-1,则h的值为( )A.3或6B.1或6C.1或3D.4或64.(2018菏泽)已知二次函数y=ax2+bx+c的图象如图所示,则一次函数y=bx+a与反比例函数y=在同一平面直角坐标系中的图象大致是( )二、填空题5.(2017青岛)若抛物线y=x2-6x+m与x轴没有交点,则m的取值范围是.6.(2018淄博)已知抛物线y=x2+2x-3与x轴交于A,B两点(点A在点B的左侧),将这条抛物线向右平移m(m>0)个单位,平移后的抛物线与x轴交于C,D两点(点C在点D的左侧),若B,C 是线段AD的三等分点,则m的值为.三、解答题7.(2017广东)如图,在平面直角坐标系中,抛物线y=-x2+ax+b交x轴于A(1,0),B(3,0)两点,点P是抛物线上在第一象限内的一点,直线BP与y轴相交于点C.(1)求抛物线y=-x2+ax+b的解析式;(2)当点P是线段BC的中点时,求点P的坐标;(3)在(2)的条件下,求sin∠OCB的值.8.(2018陕西)已知抛物线L:y=x2+x-6与x轴相交于A、B两点(点A在点B的左侧),并与y 轴相交于点C.(1)求A、B、C三点的坐标,并求△ABC的面积;(2)将抛物线L向左或向右平移,得到抛物线L',且L'与x轴相交于A'、B'两点(点A'在点B'的左侧),并与y轴相交于点C',要使△A'B'C'和△ABC的面积相等,求所有满足条件的抛物线的函数表达式.二次函数的综合应用培优训练一、选择题1.向上发射一枚炮弹,经x秒后的高度为y千米,且时间与高度的关系为y=ax2+bx.若此炮弹在第7秒与第14秒时的高度相等,则在下列哪一个时间的高度是最高的( )A.第9.5秒B.第10秒C.第10.5秒D.第11秒2.烟花厂为成都春节特别设计制作了一种新型礼炮,这种礼炮的升空高度h(m)与飞行时间t(s)的关系式是h=-t2+12t+30,若这种礼炮在升空到最高点时引爆,则从点火升空到引爆需要的时间为( )A.3 sB.4 sC.5 sD.6 s3.二次函数y=ax2+bx+c(a≠0)图象的一部分如图所示,x=-1是对称轴,下列结论:①<0;②a-b+c=-9a;③若(-3,y1),是抛物线上两点,则y1>y2;④将抛物线沿x轴向右平移一个单位后得到的新抛物线的表达式为y=a(x2-9).其中正确的是( )A.①②③B.①③④C.①②④D.①②③④二、填空题4.科学家为了推测最适合某种珍奇植物生长的温度,将这种植物分别放在不同温度的环境中,经过一定时间后,测试出这种植物高度的增长情况,部分数据如表:温度t/℃-4 -2 0 1 4植物高度增长量l/mm 41 49 49 46 25科学家经过猜想并推测出l与t之间是二次函数关系.由此可以推测最适合这种植物生长的温度为℃.5.如图,直线y=mx+n与抛物线y=ax2+bx+c交于A(-1,p),B(4,q)两点,则关于x的不等式mx+n>ax2+bx+c的解集是.三、解答题6.旅游公司在景区内配置了50辆观光车供游客租赁使用,假定每辆观光车一天内最多只能出租一次,且每辆车的日租金x(元)是5的倍数.发现每天的运营规律如下:当x不超过100元时,观光车能全部租出;当x超过100元时,每辆车的日租金每增加5元,租出去的观光车就会减少1辆.已知所有观光车每天的管理费是1 100元.(1)优惠活动期间,为使观光车全部租出且每天的净收入为正,则每辆车的日租金至少应为多少元?(注:净收入=租车收入-管理费)(2)当每辆车的日租金为多少元时,每天的净收入最多?7.我国中东部地区雾霾天气趋于严重,环境治理已刻不容缓.我市某电器商场根据民众健康需要,代理销售某种家用空气净化器,其进价是200元/台.经过市场销售后发现:在一个月内,当售价是400元/台时,可售出200台,且售价每降低10元/台,就可多售出50台.供货商规定这种空气净化器售价不能低于300元/台,代理销售商每月要完成不低于450台的销售任务.(1)试确定月销售量y(台)与售价x(元/台)之间的函数关系式;(2)求售价x的范围;(3)当售价x(元/台)定为多少时,商场每月销售这种空气净化器所获得的利润w(元)最大?最大利润是多少?8.如图,直线y=x+2与抛物线y=ax2+bx+6(a≠0)相交于A和B(4,m)两点,点P是线段AB上异于A、B的动点,过点P作PC⊥x轴于点D,交抛物线于点C.(1)求抛物线的解析式;(2)是否存在这样的P点,使线段PC的长有最大值?若存在,求出这个最大值;若不存在,请说明理由.9.如图,直线y=-x+3与x轴,y轴分别交于B(3,0),C(0,3)两点,抛物线y=ax2+bx+c过A(1,0),B,C三点.(1)求抛物线的解析式;(2)若点M是抛物线在x轴下方的一个动点,过点M作MN∥y轴交直线BC于点N,求线段MN 的最大值;(3)在(2)的条件下,当MN取得最大值时,在抛物线的对称轴l上是否存在点P,使△PBN是以BN为腰的等腰三角形?若存在,求出点P的坐标,若不存在,请说明理由.10.如图,在矩形OABC中,点O为原点,点A的坐标为(0,8),点C的坐标为(6,0).抛物线y=-x2+bx+c经过点A、C,与AB交于点D.(1)求抛物线的函数解析式;(2)点P为线段BC上一个动点(不与点C重合),点Q为线段AC上一个动点,AQ=CP,连接PQ,设CP=m,△CPQ的面积为S.①求S关于m的函数表达式;②当S最大时,在抛物线y=-x2+bx+c的对称轴l上是否存在点F,使△DFQ为直角三角形,若存在,请直接写出所有符合条件的点F的坐标;若不存在,请说明理由.11.如图1,平面直角坐标系中,二次函数y=-x2+bx+c的图象与坐标轴分别交于点A、B、C,其中点A(0,8),OB=OA.(1)求二次函数的表达式;(2)若OD=OB,点F为该二次函数在第二象限内图象上的动点,E为DF的中点.①当△CEF的面积最大时,求出点E的坐标;②如图2,将△CEF绕点E旋转180°,C点落在M处,若M点恰好在该抛物线上,求出此时△CEF 的面积.12.如图,直线y=-x+2与x轴交于B点,与y轴交于C点,A点坐标为(-1,0).(1)求过A、B、C三点的抛物线的解析式;(2)在直线BC上方的抛物线上有一点D,过D作DE⊥BC于E,作DF∥y轴交BC于F,求△DEF 周长的最大值;(3)在满足第(2)问的条件下,在线段BD上是否存在一点P,使∠DFP=∠DBC.若存在,求出点P 的坐标;若不存在,说明理由.13.如图,在平面直角坐标系中,直线y=x+2与x轴交于点A,与y轴交于点C.抛物线y=ax2+bx+c的对称轴是x=-且经过A、C两点,与x轴的另一交点为点B.(1)求二次函数y=ax2+bx+c的表达式;(2)若点P为直线AC上方的抛物线上的一点,连接PA,PC,BC.求四边形PABC面积的最大值,并求出此时点P的坐标;(3)抛物线上是否存在点M,过点M作MN垂直x轴于点N,使得以点A,M,N为顶点的三角形与△ABC相似?若存在,求出点M的坐标;若不存在,请说明理由.第12讲二次函数A组基础题组一、选择题1.C 当x=1时,y=a+2a-1+a-3>0,解得a>1,又根据抛物线顶点坐标公式可得-<0,=<0,所以这条抛物线的顶点一定在第三象限,故选C.2.D A.由图象开口可知:a<0,由对称轴可知:->0,∴b>0,∴由抛物线与y轴的交点可知:c>0,∴abc<0,故A正确;B.由图象可知:x=-1时,y<0,∴y=a-b+c<0,∴a+c<b,故B正确;C.由图象可知:顶点的纵坐标大于2,∴>2,∵a<0,∴4ac-b2<8a,∴b2+8a>4ac,故C正确;D.对称轴x=-<1,a<0,∴2a+b<0,故D错误.故选D.3.A4.A5.D二、填空题6.答案-3<a<-2或<a<解析把(m,0)代入y=ax2+(a2-1)x-a得am2+(a2-1)m-a=0,m==,解得m1=,m2=-a,∵2<m<3,∴2<<3或2<-a<3,解得<a<或-3<a<-2.7.答案75解析设垂直于墙的材料长为x米,则平行于墙的材料长为27+3-3x=30-3x,则总面积S=x(30-3x)=-3x2+30x=-3(x-5)2+75,故饲养室的最大面积为75平方米.8.答案(,2)解析∵Rt△OAB的顶点A(-2,4)在抛物线y=ax2(a≠0)上,∴4=4a,解得a=1,∴抛物线的解析式为y=x2,∵AB⊥x轴,∴B(-2,0),∴OB=2,∵将Rt△OAB绕点O顺时针旋转90°,得到△OCD,∴D点在y轴上,且OD=OB=2,∴D(0,2),∵DC⊥OD,∴DC∥x轴,∴P点的纵坐标为2,代入y=x2,得2=x2,解得x=(负值舍去),∴P(,2).三、解答题9.解析(1)根据题意得B,C,把B,C代入y=ax2+bx(a≠0)得解得∴拋物线的函数关系式为y=-x2+2x,∴图案最高点到地面的距离==1 m.(2)令y=0,即-x2+2x=0,解得x1=0,x2=2,∵10÷2=5,∴最多可以连续绘制5个这样的拋物线型图案.B组提升题组一、选择题1.D ∵a>1,∴Δ=(-2a)2-4a=4a(a-1)>0,∴ax2-2ax+1=0有两个不相等的实数根,即函数图象与x轴有两个交点,x=>0,故选D.2.D ∵抛物线与x轴有两个交点,∴b2-4ac>0,即b2>4ac,所以A选项错误;∵抛物线开口向上,∴a>0,∵抛物线与y轴的交点在x轴下方,∴c<0,∴ac<0,所以B选项错误;∵二次函数图象的对称轴是直线x=1,∴-=1,∴2a+b=0,所以C选项错误;∵抛物线过点A(3,0),二次函数图象的对称轴是x=1,∴抛物线与x轴的另一个交点为(-1,0),∴a-b+c=0,所以D选项正确.故选D.3.B 对于二次函数y=-(x-h)2(h为常数),当x=h时,函数有最大值0,又当自变量x的值满足2≤x≤5时,与其对应的函数值y的最大值为-1,故h<2或h>5.当h<2,2≤x≤5时,y随x的增大而减小,故当x=2时,y有最大值,此时-(2-h)2=-1,解得h1=1,h2=3(舍去);当h>5,2≤x≤5时,y随x的增大而增大,故当x=5时,y有最大值,此时-(5-h)2=-1,解得h1=6,h2=4(舍去),综上可知h=1或6.故选B.4.B ∵二次函数y=ax2+bx+c的图象开口向上,∴a>0,∵该抛物线对称轴位于y轴的右侧,∴a、b异号,即b<0.∵当x=1时,y<0,∴a+b+c<0.∴一次函数y=bx+a的图象经过第一、二、四象限,反比例函数y=的图象分布在第二、四象限,故选B.二、填空题5.答案m>9解析∵抛物线y=x2-6x+m与x轴没有交点,∴Δ<0,即(-6)2-4×1×m<0,解得m>9.6.答案 2解析如图,∵B,C是线段AD的三等分点,∴AC=BC=BD,由题意得:AC=BD=m,当y=0时,x2+2x-3=0,(x-1)(x+3)=0,x1=1,x2=-3,∴A(-3,0),B(1,0),∴AB=3+1=4,∴AC=BC=2,∴m=2,故答案为2.三、解答题7.解析(1)把A(1,0),B(3,0)代入抛物线y=-x2+ax+b,得解得∴抛物线的解析式为y=-x2+4x-3.(2)当点P是线段BC的中点时,易得点P的横坐标为,当x=时,y=,所以点P的坐标为.(3)由(2)得点C的坐标为,∴OC=,又OB=3,∴BC==.∴sin∠OCB===.8.解析(1)令y=0,得x2+x-6=0,解得x=-3或x=2,∴A(-3,0),B(2,0).∴AB=5,令x=0,得y=-6,∴C(0,-6),∴OC=6,∴S△ABC=AB·OC=×5×6=15.(2)由题意得A'B'=AB=5.要使S△A'B'C'=S△ABC,只要抛物线L'与y轴的交点为C'(0,-6)或C'(0,6)即可. 设所求抛物线L':y=x2+mx+6,y=x2+nx-6.∵抛物线L'与抛物线L的顶点的纵坐标相同,∴=,=,解得m=±7,n=±1(n=1舍去).∴抛物线L'的函数表达式为y=x2+7x+6,y=x2-7x+6或y=x2-x-6.二次函数的综合应用培优训练一、选择题1.C 当x=7时,y=49a+7b;当x=14时,y=196a+14b.根据题意得49a+7b=196a+14b,∴b=-21a,根据二次函数图象的对称性及抛物线的开口方向,得当x=-=10.5时,y最大,即高度最高.故选C.2.B ∵礼炮在升空到最高点时引爆,且二次函数图象的开口向下,∴高度h取最大值时,t=-,即t=-=4.故选B.3.D ∵二次函数的图象开口向下,∴a<0,∵抛物线与y轴的正半轴相交,∴c>0,∴<0,故①正确;∵抛物线的对称轴x=-=-1,∴b=2a,当x=2时,y=0,∴4a+2b+c=0,∴4a+4a+c=0,∴c=-8a,∴a-b+c=-9a,故②正确;∵抛物线的对称轴为x=-1,∴当x=-1时,抛物线有最大值,-3距离-1有2个单位长度,距离-1有个单位长度,∴y1>y2,故③正确;设抛物线的解析式为y=a(x+1)2+k,将抛物线沿x轴向右平移一个单位后得出平移后的解析式y=ax2+k,∵c=-8a,∴a+k=-8a,∴k=-9a,∴将抛物线沿x轴向右平移一个单位后得到的新抛物线的表达式为y=ax2-9a,即y=a(x2-9),故④正确.正确结论为①②③④.故选D.二、填空题4.答案-1解析设l=at2+bt+c(a≠0),将(0,49),(1,46),(4,25)代入后得方程组解得所以l与t之间的二次函数解析式为l=-t2-2t+49,当t=-=-1时,l有最大值50,即最适合这种植物生长的温度是-1 ℃.5.答案x<-1或x>4解析由题图可知,当x<-1或x>4时,直线y=mx+n的图象在抛物线y=ax2+bx+c的上方,∴不等式mx+n>ax2+bx+c的解集为x<-1或x>4.三、解答题6.解析(1)由题意知,若观光车能全部租出,则0<x≤100,由50x-1 100>0,解得x>22,∵x是5的倍数,∴每辆车的日租金至少应为25元.(2)设每天的净收入为y元,当0<x≤100时,y1=50x-1 100,∵y1随x的增大而增大,∴当x=100时,y1的最大值为50×100-1 100=3 900;当x>100时,y2=x-1 100=50x-x2+20x-1 100=-x2+70x-1 100=-(x-175)2+5 025,当x=175时,y2的最大值为5 025,5 025>3 900,故当每辆车的日租金为175元时,每天的净收入最多,是5 025元.7.解析(1)根据题中条件售价每降低10元/台,月销售量就可多售出50台,则月销售量y(台)与售价x(元/台)之间的函数关系式为y=200+50×,化简得y=-5x+2 200.(2)根据供货商规定这种空气净化器售价不能低于300元/台,代理销售商每月要完成不低于450台的销售任务,则解得300≤x≤350.所以售价x的范围为300≤x≤350.(3)w=(x-200)(-5x+2 200),整理得w=-5(x-320)2+72 000.∵x=320在300≤x≤350内,∴当x=320时,w有最大值,为72 000,即售价定为320元/台时,商场每月销售这种空气净化器所获得的利润w最大,最大利润是72 000元.8.解析(1)∵B(4,m)在直线y=x+2上,∴m=6,即B(4,6),∵A和B(4,6)在抛物线y=ax2+bx+6上,∴解得∴抛物线的解析式为y=2x2-8x+6.(2)存在.设动点P的坐标为(n,n+2),点C的坐标为(n,2n2-8n+6),∴PC=(n+2)-(2n2-8n+6)=-2n2+9n-4=-2+,∵-2<0,∴抛物线开口向下,有最大值,∴当n=时,线段PC的长有最大值.9.解析(1)由题意将点A(1,0)、B(3,0)、C(0,3)代入抛物线y=ax2+bx+c中,得解得∴抛物线的解析式为y=x2-4x+3.(2)设点M的坐标为(m,m2-4m+3),∵MN∥y轴,∴点N的坐标为(m,-m+3).∵A(1,0),B(3,0)在抛物线上且点M是抛物线在x轴下方的一个动点.∴1<m<3.∵线段MN=-m+3-(m2-4m+3)=-m2+3m=-+,∴当m=时,线段MN取最大值,最大值为.(3)假设存在.设点P的坐标为(2,n).当m=时,点N的坐标为,∴PB==,PN=,BN==.△PBN以BN为腰的等腰三角形,分二种情况:①当PB=BN,即=时,解得n=±,此时点P的坐标为或.②当PN=BN,即=时,解得n=,此时点P的坐标为或.综上可知:在抛物线的对称轴l上存在点P,使△PBN是以BN为腰的等腰三角形,点P的坐标为或或或.10.解析(1)将A、C两点坐标代入抛物线解析式,得解得∴抛物线的解析式为y=-x2+x+8.(2)①∵OA=8,OC=6,∴AC==10,过点Q作QE⊥BC与E点,则sin∠ACB===,∴=,∴QE=(10-m),∴S=·CP·QE=m×(10-m)=-m2+3m.②∵S=·CP·QE=m×(10-m)=-m2+3m=-(m-5)2+, ∴当m=5时,S取最大值;在抛物线对称轴l上存在点F,使△DFQ为直角三角形,∵抛物线y=-x2+x+8的对称轴为x=,D的坐标为(3,8), Q的坐标为(3,4),当∠FDQ=90°时,F1,当∠FQD=90°时,则F2,当∠DFQ=90°时,设F,则FD2+FQ2=DQ2,即+(8-n)2++(n-4)2=16,解得n=6±,∴F3,F4,满足条件的点F共有四个,分别为F1,F2,F3,F4,6-.11.解析(1)∵OA=8,∴OB=OA=4,∴B(4,0),∵y=-x2+bx+c的图象过点A(0,8),B(4,0), ∴解得∴二次函数的表达式为y=-x2-x+8.(2)①当y=0时,-x2-x+8=0,解得x1=4,x2=-8,∴C点坐标为(-8,0),∵D点坐标为(0,4),∴设直线CD的解析为y=kx+d(k≠0),故解得故直线DC的解析为y=x+4.如图,过点F作y轴的平行线交DC于点P,设F点坐标为,则P点坐标为, 则FP=-m2-m+4,∴S△FCD=·FP·OC=×-m2-m+4×8=-m2-6m+16,∵E为FD中点,∴=×=-m2-3m+8=-(m+3)2+,当m=-3时,有最大值,∴-m2-m+8=-×9+3+8=,E点纵坐标为×=,∴F,∴E.②∵F点坐标为,C点坐标为(-8,0),D点坐标为(0,4),∴M,又∵M点在抛物线上,∴-(m+8)2-(m+8)+8=-m2-m+12,解得m=-7,故=-m2-3m+8=.12.解析(1)直线y=-x+2与x轴交于B(2,0),与y轴交于C(0,2), 设过A、B、C的抛物线的解析式为y=ax2+bx+c(a≠0),把A(-1,0),B(2,0),C(0,2)的坐标代入,解得a=-1,b=1,c=2,∴抛物线的解析式为y=-x2+x+2.(2)设D(x,-x2+x+2),F(x,-x+2),∴DF=(-x2+x+2)-(-x+2)=-x2+2x,所以x=1时,DF最大=1,∵OB=OC,∴△OBC为等腰直角三角形,∵DE⊥BC,DF∥y轴,∴∠DFE=∠OCB=45°,∴△DEF为等腰直角三角形,∴△DEF周长的最大值为1+.(3)存在.如图,当△DEF周长最大时,D(1,2),F(1,1).延长DF交x轴于H,作PM⊥DF于M,则DB=,DH=2,OH=1,当∠DFP=∠DBC时,△DFP∽△DBF,∴=,∴DP=,∴===,∴PM=,DM=,∴P点的横坐标为OH+PM=1+=,P点的纵坐标为DH-DM=2-=,∴P.13.解析(1)对于y=x+2,当x=0时,y=2,当y=0时,x=-4,∴C(0,2),A(-4,0),由抛物线的对称性可知:点A与点B关于x=-对称,∴点B的坐标为(1,0). ∵抛物线y=ax2+bx+c过A(-4,0),B(1,0),∴可设抛物线解析式为y=a(x+4)(x-1),又∵抛物线过点C(0,2),∴2=-4a,∴a=-,∴y=-x2-x+2.(2)设P.过点P作PQ⊥x轴交AC于点Q,∴Q,∴PQ=-m2-m+2-=-m2-2m,∵=×PQ×(x C-x A)=×PQ×4=2PQ=-m2-4m=-(m+2)2+4,∴当m=-2时,△PAC的面积有最大值4,易知S△ACB=×OC×AB=×2×5=5.则四边形PABC面积的最大值是9,此时P(-2,3).(3)存在.在Rt△AOC中,tan∠CAO=,在Rt△BOC中,tan∠BCO=,∴∠CAO=∠BCO,∵∠BCO+∠OBC=90°,∴∠CAO+∠OBC=90°,∴∠ACB=90°,∴△ABC∽△ACO∽△CBO,如下图:①当M点与C点重合,即M(0,2)时,△MAN∽△BAC;②根据抛物线的对称性,当M(-3,2)时,△MAN∽△ABC;③当点M在第四象限时,设M n,-n2-n+2,则N(n,0), ∴MN=n2+n-2,AN=n+4,当=时,MN=AN,即n2+n-2=(n+4),整理得n2+2n-8=0,解得n1=-4(舍),n2=2,∴M(2,-3);当=时,MN=2AN,即n2+n-2=2(n+4),整理得n2-n-20=0,解得n1=-4(舍),n2=5,∴M(5,-18).综上所述,存在M1(0,2),M2(-3,2),M3(2,-3),M4(5,-18),使得以点A、M、N为顶点的三角形与△ABC相似.。

2018年中考数学试卷及答案解析

2018年中考数学试卷及答案解析一、试卷概述2018年中考数学试卷总分为150分,分为选择、填空、解答三个部分。

选择题和填空题共计65分,解答题共计85分。

试卷难度适中,覆盖了中学数学的各个知识点,考查重点突出,难度适中,题型形式多样。

二、选择题分析选择题共计15道,每道2分,共计30分。

选择题难度适中,覆盖了中学数学基础知识点,考查了学生的记忆和理解能力,其中有几道题需要细心审题,避免失分。

如下是部分选择题:1.若$a>b>0$,则$\frac{a+b}{a-b}$的值为()A.$-\frac{a+b}{b-a}$B.$\frac{a+b}{b-a}$C.$-\frac{a-b}{b-a}$D.$\frac{a-b}{b-a}$2.有一只蚂蚁位于正方形的一个顶点上,若此蚂蚁只能在正方形边界上爬行,并且每次只能向左或向下,那么它到对角线对面的点至少需要爬行多少条边长?A.1B.2C.3D.43.一根梯子,顶端靠在13米高的树上,底端离树8米,求梯子长。

A.15B.16C.17D.24四、解答题分析解答题共计10道,每道8分,共计80分。

解答题部分难度适中,考查了学生的运算能力和理解能力。

基础题型占多数,部分题目需要思维拓展,需要学生多加思考。

如下是部分解答题:1.已知$\frac{1}{\sqrt{u_1}}+\frac{1}{\sqrt{u_2}}=\frac{3}{2}$,求$\frac{1}{2u_1}+\frac{1}{u_2}$的值。

2.如图,在$\triangle ABC$中,点$E$和$F$分别是$\overline{AC}$和$\overline{AB}$的中点,$\overline{BE}$交$\overline{CF}$于点$G$。

如果$AG=4$,$GB=6$,$CG=8$,那么$\overline{BC}$的长为多少?总体来看,2018年中考数学试卷难度适中,考查范围覆盖了中学数学基础知识点,不易出偏题,对于实力较强的学生来说,可以拿到不错的成绩。

2018中考数学第一轮复习三角形

相交线1.(2017甘肃庆阳)将一把直尺与一块三角板如图放置,若∠1=45°,则∠2为( ) A .115° B .120°C .135°D .145°2. (2017贵州遵义第6题)把一块等腰直角三角尺和直尺如图放置,如果∠1=30°,则∠2的度数为( )A .45°B .30°C .20°D .15°3.(2017江苏盐城第12题)在“三角尺拼角”实验中,小明同学把一副三角尺按如图所示的方式放置,则∠1= °.4. (2017郴州第8题)小明把一副的直角三角板如图摆放,其中,则等于 ( )A .B .C .D .三角形的概念1. (2017甘肃庆阳第8题) 已知a ,b ,c 是△ABC 的三条边长,化简|a+b-c|-|c-a-b|的结果为( ) A .2a+2b-2c B .2a+2bC .2cD .013.(2017浙江嘉兴第2题)长度分别为2,7,x 的三条线段能组成一个三角形,x 的值可以是( ) A .4B .5C .6D .92. (2017河池第9题)三角形的下列线段中,能将三角形分成面积相等的两部分是() A .中线 B .角平分线 C.高 D .中位线3.(2017天津第9题)如图,将ABC ∆绕点B 顺时针旋转060得DBE ∆,点C 的对应点E 恰好落在AB 延长线上,连接AD .下列结论一定正确的是( )A .E ABD ∠=∠B .C CBE ∠=∠ C. BC AD // D .BC AD =4.(2017四川泸州第16题)在△ABC 中,已知BD 和CE 分别是边AC 、AB上的中线,且BD ⊥CE ,垂足为O .若OD=2cm ,OE=4cm ,则线段AO 的长度为 cm .45,3000090,45,30C F A D ∠=∠=∠=∠=αβ∠+∠01800210036002705.(2017新疆建设兵团第15题)如图,在四边形ABCD 中,AB=AD ,CB=CD ,对角线AC ,BD 相交于点O ,下列结论中: ①∠ABC=∠ADC ; ②AC 与BD 相互平分;③AC ,BD 分别平分四边形ABCD 的两组对角; ④四边形ABCD 的面积S=12AC•BD. 正确的是 (填写所有正确结论的序号)6. (2017湖北咸宁第16题)如图,在中,,斜边的两个端点分别在相互垂直的射线上滑动,下列结论: ①若两点关于对称,则; ②两点距离的最大值为; ③若平分,则; ④斜边的中点运动路径的长为. 其中正确的是 .7.(2017山东省枣庄市)如图,在Rt △ABC 中,∠C =90°,以顶点A 为圆心,适当长为半径画弧,分别交AC ,AB 于点M ,N ,再分别以点M ,N 为圆心,大于MN 的长为半径画弧,两弧交于点P ,作射线AP 交边BC 于点D ,若CD =4,AB =15,则△ABD 的面积是( ) A .15 B .30 C .45 D .60 全等三角形1.(2017湖北武汉第15题)如图△ABC 中,AB=AC ,∠BAC=120°,∠DAE=60°,BD=5,CE=8,则DE 的长为 .2. (2017湖北咸宁第18题) 如图,点在一条直线上,⑴求证:;ACB Rt ∆30,2=∠=BAC BC AB ON OM ,O C 、AB 32=OA O C 、4AB CO CO AB ⊥AB D 2π12F C E B ,,,FC BE DE AC DF AB ===,,DFE ABC ∆≅∆⑵连接,求证:四边形是平行四边形.3.(2017湖北武汉第18题)如图,点,,,C F E B 在一条直线上,CFD BEA ∠=∠,,CE BF DF AE ==.写出CD 与AB 之间的关系,并证明你的结论.4.(2017重庆A 卷)在△ABC 中,∠ABM=45°,AM ⊥BM ,垂足为M ,点C 是BM 延长线上一点,连接AC . (1)如图1,若BC=5,求AC 的长;(2)如图2,点D 是线段AM 上一点,MD=MC ,点E 是△ABC 外一点,EC=AC ,连接ED 并延长交BC 于点F ,且点F 是线段BC 的中点,求证:∠BDF=∠CEF .5. (2017山东滨州第11题)如图,点P 为定角∠AOB 的平分线上的一个定点,且∠MPN 与∠AOB 互补.若∠MPN 在绕点P 旋转的过程中,其两边分别与OA ,OB 相交于M 、N 两点,则以下结论:(1)PM =PN 恒成立,(2)OM +ON 的值不变,(3)四边形PMON 的面积不变,(4)MN 的长不变,其中正确的个数为( )A .4B .3C .2D .16.(2017四川省绵阳市)如图,矩形ABCD 的对角线AC 与BD 交于点O ,过点O 作BD 的垂线分别交AD ,BC 于E ,F 两点.若AC =AEO =120°,则FC的长度为()A .1B .2 CD 7.(2017四川省南充市)如图,正方形ABCD 和正方形CEFG边长分别为a 和b ,正方形CEFG 绕点C 旋转,给出下列结论:①BE =DG ;②BE ⊥DG ;③,其中正确结论是 (填序号)BD AF ,ABDF 222222DE BG a b +=+PA ONBM直角三角形1. (2017江苏宿迁第12题)如图,在C ∆AB 中,C 90∠A B =,点D 、E 、F 分别是AB 、C B 、C A 的中点.若CD 2=,则线段FE 的长是 .2.(2017广西贵港第11题)如图,在Rt ABC ∆中,90ACB ∠= ,将ABC ∆绕顶点C 逆时针旋转得到'',A B C M ∆是BC 的中点,P 是''A B 的中点,连接PM ,若230BC BAC =∠=,,则线段PM 的最大值是 ( )A .4B .3 C.2 D .1 3.(2017江苏无锡第10题)如图,△ABC 中,∠BAC=90°,AB=3,AC=4,点D 是BC 的中点,将△ABD 沿AD 翻折得到△AED ,连CE ,则线段CE 的长等于( ) A .2B .C .D . 4.(2017甘肃庆阳第16题)如图,一张三角形纸片ABC ,∠C=90°,AC=8cm ,BC=6cm .现将纸片折叠:使点A 与点B 重合,那么折痕长等于 cm .5.(2017贵州安顺第13题)三角形三边长分别为3,4,5,那么最长边上的中线长等于 .6.(2017湖北省襄阳市)如图,在△ABC 中,∠ACB =90°,∠A =30°,BC =4,以点C 为圆心,CB 长为半径作弧,交AB 于点D ;再分别以点B 和点D 为圆心,大于BD 的长为半径作弧,两弧相交于点E ,作射线CE 交AB 于点F ,则AF 的长为( )A .5B .6C .7D .87.(2017浙江省绍兴市)如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,则小巷的宽度为( )54537512A .0.7米B .1.5米C .2.2米D .2.4米8.(2017湖北省襄阳市)“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a ,较短直角边长为b ,若,大正方形的面积为13,则小正方形的面积为( )A .3B .4C .5D .69. (2017辽宁大连第8题)如图,在中,,,垂足为,点是的中点,,则的长为( ) A . B . C. D .●10. (2017黑龙江绥化第20题)在等腰中,交直线于点,若,则的顶角的度数为 .11.(2017年贵州省毕节地区第15题)如图,在Rt △ABC 中,∠ACB=90°,AC=6,BC=8,AD 平分∠CAB 交BC 于D 点,E ,F 分别是AD ,AC 上的动点,则CE+EF 的最小值为( ) A .B .C .D .6等腰三角形1.(2017湖北武汉第10题)如图,在Rt ABC ∆中,90C ∠=,以ABC ∆的一边为边画等腰三角形,使得它的第三个顶点在ABC ∆的其他边上,则可以画出的不同的等腰三角形的个数最多为( )A .4B .5C . 6D .72. (2017年湖北省荆州市第6题)如图,在△ABC 中,AB=AC , ∠A =30°,AB的垂直平分()221a b +=ABC ∆090=∠ACB AB CD ⊥D E AB a DE CD ==AB a 2a 22a 3a 334ABC ∆AD BC ⊥BC D 12AD BC =ABC ∆403154245线交AC 于点D ,则∠CBD 的度数为( )A.30°B.45°C.50°D.75°3.(2017山东滨州第8题)如图,在△ABC 中,AB =AC ,D 为BC 上一点,且DA =DC ,BD =BA ,则∠B 的大小为( )A .40°B .36°C .80°D .25°4.(2017北京第19题)如图,在ABC ∆中,0,36AB AC A =∠=,BD 平分ABC ∠交AC 于点D .求证:AD BC =.5. (2017浙江台州第8题)如图,已知等腰三角形,若以点为圆心,长为半径画弧,交腰于点,则下列结论一定正确的是( )A .B . C. D .6.(2017浙江省绍兴市)在探索“尺规三等分角”这个数学名题的过程中,曾利用了下图,该图中,四边形ABCD 是矩形,E 是BA 延长线上一点,F 是CE 上一点,∠ACF =∠AFC ,∠FAE =∠FEA .若∠ACB =21°,则∠ECD 的度数是( )A .7°B .21°C .23°D .24°7. (2017海南第13题)已知△ABC 的三边长分别为4、4、6,在△ABC 所在平面内画一条直线,将△ABC 分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画( )条. A .3 B .4 C .5 D .68. (2017福建第19题)如图,中,,垂足为.求作的平分线,分别交于,两点;并证明.(要求:尺规作图,保留作图痕迹,不写作法)9.(2017山东省枣庄市)在矩形ABCD 中,∠B 的角平分线BE 与AD 交于点E ,l ,ABC AB AC =B BC AC E AE EC =AE BE =EBC BAC ∠=∠EBC ABE ∠=∠ABC ∆90,BAC AD BC ∠=⊥oD ABC ∠,AD AD P Q AP AQ= AB CD∠BED 的角平分线EF 与DC 交于点F ,若AB =9,DF =2FC ,则BC = .(结果保留根号)10. (2017江苏苏州第24题)(本题满分8分)如图,∠A =∠B ,AE =BE ,点D 在C A 边上,12∠=∠,AE 和D B 相交于点O .(1)求证:C ∆AE ≌D ∆BE ; (2)若142∠=,求D ∠B E 的度数.11.(2017四川省达州市)如图,在△ABC 中,点O 是边AC 上一个动点,过点O 作直线EF ∥BC 分别交∠ACB 、外角∠ACD 的平分线于点E 、F .(1)若CE =8,CF =6,求OC 的长;(2)连接AE 、AF .问:当点O 在边AC 上运动到什么位置时,四边形AECF 是矩形?并说明理由.12.(2017浙江省绍兴市)已知△ABC ,AB =AC ,D 为直线BC 上一点,E 为直线AC 上一点,AD =AE ,设∠BAD =α,∠CDE =β.(1)如图,若点D 在线段BC 上,点E 在线段AC 上.①如果∠ABC =60°,∠ADE =70°, 那么α=_______,β=_______. ②求α、β之间的关系式.(2)是否存在不同于以上②中的α、β之间的关系式?若存在,求出这个关系式,若不存在,请说明理由.13. (2017贵州遵义第12题)如图,△ABC 中,E 是BC 中点,AD 是∠BAC 的平分线,EF∥AD 交AC 于F .若AB=11,AC=15,则FC 的长为( ) A .11 B .12 C .13 D .14等边三角形1. (2017河池第12题)已知等边的边长为,是上的动点,过作于点,ABC ∆12D AB D AC DE ⊥E过作于点,过作于点.当与重合时,的长是() A . B . C. D .2.(2017广西贵港第16题)如图,点P 在等边ABC ∆的内部,且6,8,10PC PA PB ===,将线段PC 绕点C 顺时针旋转60得到'P C ,连接'AP ,则sin 'PAP ∠的值为 .3.(2017江苏徐州第25题)如图,已知,垂足为,将线段绕点按逆时针方向旋转,得到线段,连接. (1)线段 ; (2)求线段的长度.4. (2017湖南常德第14题)如图,已知Rt △ABE 中∠A =90°,∠B =60°,BE =10,D 是线段AE 上的一动点,过D 作CD 交BE 于C ,并使得∠CDE =30°,则CD 长度的取值范围是 .5. (2017年山东省威海市第18题)如图,为等边三角形,,若为内一动点,且满足,则线段长度的最小值为 .6.(2017山东烟台第23题)【操作发现】(1)如图1,为等边三角形,先将三角板中的角与重合,再将三角板绕点按顺时针方向旋转(旋转角大于且小于).旋转后三角板的一直角边与交于点.在三角板斜边上取一点,使,线段上取点,使,连接,. ①求的度数;②与相等吗?请说明理由; 【类比探究】(2)如图2,为等腰直角三角形,,先将三角板的角与重合,再将三角板绕点按顺时针E BC EF ⊥F F AB FG ⊥G G D AD 3489AC BC⊥,4,C AC BC ==AC A 60AD ,DC DB DC =DB ABC ∆2=AB P ABC ∆ACP PAB ∠=∠PB ABC ∆060ACB ∠C 00030AB D F CD CF =AB E 030=∠DCE AF EF EAF ∠DE EF ABC ∆090=∠ACB 090ACB ∠C方向旋转(旋转角大于且小于).旋转后三角板的一直角边与交于点.在三角板另一直角边上取一点,使,线段上取点,使,连接,.请直接写出探究结果:①的度数;②线段之间的数量关系.等腰直角三角形1. (2017江苏徐州第18题)如图,已知,以为直角边作等腰直角三角形.再以为直角边作等腰直角三角形,如此下去,则线段的长度为 .2. (2017黑龙江齐齐哈尔第19题)如图,在平面直角坐标系中,等腰直角三角形的直角边在轴的正半轴上,且,以为直角边作第二个等腰直角三角形,以为直角边作第三个等腰直角三角形,则点的坐标为 .3. (2017黑龙江绥化第21题)如图,顺次连接腰长为2 的等腰直角三角形各边中点得到第1个小三角形,再顺次连接所得的小三角形各边中点得到第2个小三角形,如此操作下去,则第个小三角形的面积为 .4. (2017浙江湖州第9题)七巧板是我国祖先的一项卓越创造.下列四幅图中有三幅是小明用如图所示的七巧板拼成的,则不是小明拼成的那副图是( )●5. (2017北京第28题)在等腰直角ABC ∆中,090ACB ∠=,P00045AB D F CD CF =AB E 045=∠DCE AF EF EAF ∠DB ED AE ,,1OB =OB 1A BO 1OA 21A AO n OA 12OA A 1OA y 1121OA A A ==2OA 23OA A 3OA 20172018OA A 2017An是线段BC 上一动点(与点B C 、不重合),连接AP ,延长BC 至点Q ,使得CQ CP =,过点Q 作QH AP ⊥于点H ,交AB 于点M .(1)若PAC α∠=,求AMQ ∠的大小(用含α的式子表示). (2)用等式表示线段MB 与PQ 之间的数量关系,并证明.6. (2017湖南株洲第22题)如图示,正方形ABCD 的顶点A 在等腰直角三角形DEF 的斜边EF 上,EF 与BC 相交于点G ,连接CF . ①求证:△DAE ≌△DCF ; ②求证:△ABG ∽△CFG .7. (2017黑龙江齐齐哈尔第23题)如图,在中,于,,,,分别是,的中点.(1)求证:,; (2)连接,若,求的长. 相似三角形1.(2017四川自贡第14题)在△ABC 中,MN ∥BC 分别交AB ,AC 于点M ,N ;若AM=1,MB=2,BC=3,则MN 的长为 .12.(2017年浙江省杭州市第3题)如图,在△ABC 中,点D ,E 分别在边AB ,AC 上,DE ∥BC ,若BD=2AD ,则( )A .B .C .D .3.(2017山东临沂第16题)已知AB CD ∥,AD 与BC 相交于点O .若23BO OC =,10AD =,则AO = .ABC ∆AD BC ⊥D BD AD =DG DC =E F BG AC DE DF =DE DF ⊥EF 10AC =EF 12AD AB =12AE EC =12AD EC =12DE BC=4. (2017哈尔滨第9题)如图,在中,分别为边上的点,,点为边上一点,连接交于点,则下列结论中一定正确的是( )A.B. C. D.5.(2017江苏无锡第10题)如图,△ABC 中,∠BAC=90°,AB=3,AC=4,点D 是BC 的中点,将△ABD 沿AD 翻折得到△AED ,连CE ,则线段CE 的长等于( )A .2B .C .D . 6.(2017甘肃兰州第17题)如图,四边形ABCD 与四边形EFGH相似,位似中心点是O ,35OE OA =,则FG BC = .7. (2017黑龙江绥化第6题)如图, 是在点为位似中心经过位似变换得到的,若的面积与的面积比是,则为( )A .B .C .D . 8. (2017浙江湖州第6题)如图,已知在中,,,,点是的重心,则点到所在直线的距离等于( )A . BC. D .9.(2017四川省绵阳市)如图,直角△ABC 中,∠B =30°,点O 是△ABC的重心,连接CO 并延长交AB 于点E ,过点E 作EF ⊥AB 交BC 于点F ,连ABC △,D E ,AB AC DE BC ∥F BC AF DE E AD AE AB EC =AC AE GF BD =BD CE AD AE =AG AC AF EC =545375A B C '''∆ABC ∆O A B C '''∆ABC ∆4:9:OB OB '2:33:24:54:9Rt C ∆AB C 90∠=C C A =B 6AB =P Rt C ∆AB P AB 1322接AF 交CE 于点M ,则的值为( ) A . BC .D 10. (2017年山东省泰安市第14题)如图,正方形中,为上一点,,交的延长线于点.若,,则的长为( )A .18B . C. D . 11. (2017年山东省潍坊市第15题)如图,在中,,分别为边、AC 上的点,,,点为边上一点,添加一个条件:,可以使得与相似.(只需写出一个)12.(2017年浙江省杭州市第15题)如图,在Rt △ABC 中,∠BAC=90°,AB=15,AC=20,点D 在边AC 上,AD=5,DE ⊥BC 于点E ,连结AE ,则△ABE 的面积等于 .13.(2017山东省枣庄市)如图,在△ABC 中,∠A =78°,AB =4,AC =6,将△ABC 沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是( )A .B .C .D .14.(2017湖北省襄阳市)如图,在△ABC 中,∠ACB =90°,点D ,E 分别在AC ,BC 上,且∠CDE =∠B ,将△CDE 沿DE 折叠,点C 恰好落在AB 边上的点F 处.若AC =8,AB =10,则CD 的长为 .15. (2017黑龙江齐齐哈尔第17题)经过三边都不相等的三角形的一个顶点的线段把三角形分成两个小三MO MF1223ABCD M BC ME AM ⊥ME AD E 12AB =5BM =DE 1095965253ABC ∆AC AB ≠E D 、AB AD AC 3=AE AB 3=F BC FDB ∆ADE ∆角形,如果其中一个是等腰三角形,另外一个三角形和原三角形相似,那么把这条线段定义为原三角形的“和谐分割线”.如图,线段是的“和谐分割线”,为等腰三角形,和相似,,则的度数为 .16. (2017江苏宿迁第24题)(本题满分8分)如图,在C ∆AB 中,C AB =A ,点E 在边C B 上移动(点E 不与点B 、C 重合),满足D F ∠E =∠B ,且点D 、F 分别在边AB 、C A 上.(1)求证:D C F ∆B E ∆E ∽;(2)当点E 移动到C B 的中点时,求证:F E 平分DFC ∠.●17.(2017重庆市B 卷)如图,△ABC 中,∠ACB =90°,AC =BC ,点E 是AC 上一点,连接BE .(1)如图1,若AB =,BE =5,求AE 的长;(2)如图2,点D 是线段BE 延长线上一点,过点A 作AF ⊥BD 于点F ,连接CD 、CF ,当AF =DF 时,求证:DC =BC .18. (2017湖南株洲第10题)如图示,若△ABC 内一点P 满足∠PAC=∠PBA=∠PCB ,则点P 为△ABC 的布洛卡点.三角形的布洛卡点(Brocard point )是法国数学家和数学教育家克洛尔(A .L .Crelle 1780﹣1855)于1816年首次发现,但他的发现并未被当时的人们所注意,1875年,布洛卡点被一个数学爱好者法国军官布洛卡(Brocard 1845﹣1922)重新发现,并用他的名字命名.问题:已知在等腰直角三角形DEF 中,∠EDF=90°,若点Q为△DEF 的布洛卡点,DQ=1,则EQ+FQ=( )A .5B .4C ..●19.(2017湖南常德第26题)如图,直角△ABC 中,∠BAC =90°,D 在BC 上,连接AD ,作BF ⊥AD 分别交AD 于E ,AC 于F .(1)如图1,若BD =BA ,求证:△ABE ≌△DBE ;CD ABC ∆ACD ∆CBD ∆ABC ∆46A ∠=︒ACB ∠(2)如图2,若BD =4DC ,取AB 的中点G ,连接CG 交AD 于M ,求证:①GM =2MC ;②AG 2=AF •AC .20.(2017年山东省东营市第24题)如图,在等腰三角形ABC 中,∠BAC=120°,AB=AC=2,点D 是BC 边上的一个动点(不与B 、C 重合),在AC 上取一点E ,使∠ADE=30°.(1)求证:△ABD ∽△DCE ;(2)设BD=x ,AE=y ,求y 关于x 的函数关系式并写出自变量x 的取值范围;(3)当△ADE 是等腰三角形时,求AE 的长.21. (2017年山东省泰安市第27题)如图,四边形中, ,平分,点是延长线上一点,且.(1)证明:;(2)若与相交于点,,,求的长.22.(2017年浙江省杭州市第19题)如图,在锐角三角形ABC 中,点D ,E 分别在边AC ,AB 上,AG ⊥BC 于点G ,AF ⊥DE 于点F ,∠EAF=∠GAC .(1)求证:△ADE ∽△ABC ;(2)若AD=3,AB=5,求的值.综合探究1.(2017浙江衢州第23题)问题背景如图1,在正方形A BCD 的内部,作∠DAE=∠ABF=∠BCG=∠CDH ,根据三角形全等的条件,易得△DAE ≌△ABF ≌△BCG ≌△CDH ,从而得到四边形EFGH 是正方形。

中考数学第一轮复习检测题(七)

(第4题)c B A C①ABE② J ③(第6题)中考数学第一轮复习检测题(七)班级 姓名 成绩一、选择题(本大题共6小题,每小题2分,共计12分.) 1.与-3互为相反数的是( )A .-3B .3C .-13D .132.温家宝总理在十一届全国人大五次会议上的政府工作报告中指出,2011年共有1228万名中西部家庭经济困难学生享受生活补助.1228万可用科学记数法表示为( )A .1.228×107B .12.28×106C .122.8×105D .1228×104 3.计算(-ab 2)3的结果是( )A .ab 6B .-ab 6C .a 3b 6D .-a 3b 64.如图,数轴上的A 、B 、C 三点所表示的数分别为a 、b 、c ,AB =BC ,如果||a >||c >||b ,那么该数轴的原点O 的位置应该在( )A .点A 的左边B .点A 与点B 之间C .点B 与点C 之间D .点C 的右边5.一名篮球运动员投篮命中的概率是0.8,下列陈述中,正确的是( )A .他在每10次投篮中必有8次投中B .他在10次一组的投篮中,平均会有8次投中C .他投篮 10次,不可能投中9次D .他投篮100次,必投中80次 6.如图,图①、图②、图③分别表示甲、乙、丙三人由A 地到B 地的路线图(箭头表示行进的方向) .其中E 为AB 的中点,AJ >JB .判断三人行进路线长度的大小关系为( )A .甲<乙<丙B .乙<丙<甲C .丙<乙<甲D .甲=乙=丙 二、填空题(本大题共10小题,每小题2分,共计20分.) 7.使二次根式1-x 有意义的字母x 的取值范围是 . 8. 分解因式a -a = .9.若(x +y )2-2x -2y +1=0,则x +y = .10.如图,已知点A (1,2)在反比例函数y =kx 的图象上,观察图象可知,当x >1时, y 的取值范围是 .11.直角坐标平面上有一个轴对称图形,点A (3,-1)、B (3,-7)是此图形上的一对对称点.若此图形上有一点C (-2,-9),则点C 在图形上的一个对称点坐标为 . 12.小刚在最近的一次数学测试中考了93分,从而使本学期之前所有的数学测试平均分由73分提高到78分,他要想在下次考试中把本学期平均分提高到80分以上(包含80分),下次考试他至少要考 分.(第20题)(第15题)(第14题) GF B A D E (第13题)´ 13.如图,将正五边形ABCDE 的C 点固定,并依顺时针方向旋转,若要使得新五边形A ´B ´C ´D ´E ´的顶点D ´落在直线BC 上,则至少要旋转 °.14.如图,在等腰梯形ABCD 中,AE 是梯形的高,将△ABE 沿BC 方向平移,使点A 与点D 重合,得△DFG .若∠B =60°,当四边形ABFD 是菱形时,ABBC的值为 .15.如图,正方形网格中的每个小正方形的边长都相等.△ABC 的三个顶点A ,B ,C 都在格点上,若格点D 在△ABC 外接圆上,则图中符合条件的点D 有 个(点D 与点A 、B 、C 均不重合). 16.如图,以BC 为直径的⊙O 与△ABC 的另两边分别相交于点D 、E .若∠A =70°,BC =2,则图中阴影部分面积为 .三、解答题(本大题共9小题,共68分.) 17.(6分)计算 (212-13)⨯6. 18.(6分)解方程x 2x -1+111-2x=2.19.(6分)解不等式组⎩⎪⎨⎪⎧3(x +2)<x +8,x 2≥x -13.并写出整数解.20.(7分)甲、乙两人玩一个转盘游戏.准备如图三个可以自由转动的转盘,甲转动转盘,乙记录指针停下时所指的数字.游戏规定,转动全部三个转盘,指针停下后,三个数字中有数字相同时,就算甲赢,否则就算乙赢.请判断这个游戏是否公平?说明你的理由.65°40°65°75° 40°75° 40°65°654 ① ② ③ ④40° A B C 第22题(2)10 21.(8分)如图,△ABC 中,AD 是边BC 上的中线,过点A 作AE ∥BC ,过点D 作DE ∥AB ,AC 、DE 交于O 点,AE 、DE 交于E 点,连接EC . (1)求证:AD =EC ;(2)若∠BAC 是直角,求证:四边形ADCE 是菱形.22.(8分)在直角三角形中,如果已知2个元素(其中至少有一个是边),那么就可以求出其余的3个未知元素.对于任意三角形,我们需要知道几个元素就可以求出其余的未知元素呢?思考并解答下列问题:(1)观察下列4幅图,根据图中已知元素,可以求出其余未知元素的三角形是 .(2)如图,在△ABC 中,已知∠B =40°,BC =12,AB =10,能否求出AC ?如果能,请求出AC 的长度(答案保留根号);如果不能,还需要增加哪个条件?(参考数据:sin40°≈0.6,cos40°≈0.8,tan40°≈0.75)23.(9分)已知P (-3,m )和Q (1,m )是二次函数y =2x 2+bx +1图象上的两点.(1)求b 的值;(2)将二次函数y =2x 2+bx +1的图象向上平移k (k 是正整数)个单位,使平移后的图象与x 轴无交点,求k 的最小值.AB C E(第21题) O(第24题) A B B C A DE C M Q N P ① ② 24.(9分)一块直角三角形木板,它的一条直角边AC 长为1.5m ,面积为1.5m 2.现在要把它加工成一个面积最大的正方形桌面.甲、乙两位同学的加工方法分别如图①、图②所示.请用学过的知识说明哪位同学的加工方法符合要求.25.(9分)一辆货车从A 地出发以每小时100km 的速度匀速驶往B 地,一段时间后,一辆轿车从B 地出发沿同一条路匀速驶往A 地.货车行驶1.8小时后,在距B 地120km 处与轿车相遇.图中线段表示货车离B 地的距离y 1与所用时间x 的关系.根据函数图象探究: (1)求y 1与x 之间的函数关系式;(2)若两车同时到达各自目的地,在同一坐标系中画出轿车离B 地的距离y 2与所用时间x 的关系的图象,用文字说明该图象与x 轴交点所表示的实际意义.y ∕(第25题)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基础知识反馈卡·3.1
时间:15分钟 满分:50分
一、选择题(每小题4分,共20分)
1.点M (-2,1)关于y 轴对称的点的坐标是( )
A .(-2,-1)
B .(2,1)
C .(2,-1)
D .(1,-2)
2.在平面直角坐标系中,点M (2,-3)在( )
A .第一象限
B .第二象限
C .第三象限
D .第四象限
3.如果点P (a,2)在第二象限,那么点Q (-3,a )在( )
A .第一象限
B .第二象限
C .第三象限
D .第四象限
4.点M (-3,2)到y 轴的距离是( )
A .3
B .2
C .3或2
D .-3
5.将点A (2,1)向左..
平移2个单位长度得到点A ′,则点A ′的坐标是( )
A .(2,3)
B .(2,-1)
C .(4,1)
D .(0,1)
二、填空题(每小题4分,共16分)
6.已知函数y =2x
,当x =2时,y 的值是________. 7.如果点P (2,y )在第四象限,那么y 的取值范围是________.
8.小明用50元钱去购买单价为5元的某种商品,他剩余的钱y (单位:元)与购买这种商品的件数x (单位:件)之间的关系式为__________________.
9.如图J3-1-1,将正六边形放在直角坐标系中,中心与坐标
原点重合,若A点的坐标为(-1,0),则点E的坐标为________.
图J3-1-1
答题卡
8.________________ 9.________________
三、解答题(共14分)
10.在图J3-1-2的平面直角坐标系中,描出点A(0,3),B(1,-3),C(3,-5),D(-3,-5),E(3,2),并回答下列问题:
(1)点A到原点O的距离是多少?
(2)将点C向x轴的负方向平移6个单位,它与哪个点重合?
(3)点B分别到x、y轴的距离是多少?
(4)连接CE,则直线CE与y轴是什么关系?
图J3-1-2
基础知识反馈卡·3.1
1.B 2.D 3.C 4.A 5.D
6.1 7.y <0 8.y =50-5x
9.12⎛ ⎝⎭ 10.略。

相关文档
最新文档