厌氧消化

合集下载

固体废物的厌氧消化处理

固体废物的厌氧消化处理

环境学院:固体废物处理与处置
环境学院:固体废物处理与处置
4.2 高固体厌氧消化技术
高固体厌氧消化(High solid anaerobic digestion): 固体含量大约在22%以上。 该技术相对较新,未大规模应用。 优点:反应器单位体种的需水量低,产气量高,消 化污泥的处理费用相对较低。
环境学院:固体废物处理与处置
3.1 厌氧条件
详见“三段理论”
环境学院:固体废物处理与处置
3.2 有机物组分与产气量
产气量的大小主要取决于物料的组分物性。
环境学院:固体废物处理与处置
3.3 有机物含量与去除率
在合适的温度和 有机物负荷的条 件下,有机物去 除率与废物的有 机物含量成正比。
环境学院:固体废物处理与处置
6、厌氧消化反应器
目前研究较多的厌氧消化反应器有三类:
一阶段系统消化反应器 两阶段系统消化反应器 序批式处理系统消化反应器
环境学院:固体废物处理与处置
6.1 一阶段系统消化反应器
反有的反应集中在一个消化反应器中完成。 可分为:
一阶段湿式(中固体)处理系统 一阶段干式(高固体)处理系统
环境学院:固体废物处理与处置
环境学院:固体废物处理与处置
环境学院:固体废物处理与处置
环境学院:固体废物处理与处置
环境学院:固体废物处理与处置
环境学院:固体废物处理与处置
(2)一阶段干式系统
反应器中的固体废物含固率控制在20~40%内。
物料流动性差,要用特殊传送带、螺旋浆叶的强力 泵输送。这些传送设备对物料要求低,故原料的预 处理简单。 技术关键在于让进料和接种物充分混合。
环境学院:固体废物处理与处置

污水处理厂污泥厌氧消化工艺选择与设计要点概要

污水处理厂污泥厌氧消化工艺选择与设计要点概要

污水处理厂污泥厌氧消化工艺选择与设计要点概要污水处理厂是处理城市污水的重要设施,在处理过程中产生的污泥是不可避免的副产品。

污泥处理的关键是通过适当的处理工艺将其稳定化,减少体积,降低有机物含量,最终达到无害化处理的要求。

厌氧消化是一种常见的处理污泥的方法,本文将详细介绍污泥厌氧消化工艺的选择与设计要点。

一、污泥厌氧消化工艺选择污泥厌氧消化是将污泥暴露于缺氧条件下,通过厌氧消化菌群的作用,将有机物分解为甲烷和二氧化碳等气体。

具体的工艺选择可考虑以下几个因素:1.污泥特性:包括含水率、固体含量、有机物含量等。

不同特性的污泥适合不同的厌氧消化工艺。

对于具有较高含水率的污泥,可选择高固体含量的高干物含量厌氧消化工艺;对于有机物含量较高的污泥,则可选择高有机负荷的高负荷厌氧消化工艺。

2.处理效果要求:厌氧消化工艺的选择也要考虑处理效果的要求。

例如,如果目标是达到更高的甲烷产量,可以选择温度控制的高温厌氧消化工艺。

3.资源利用:厌氧消化过程中产生的甲烷是可再生能源,可用于发电、热能供应等方面。

因此,工艺选择时也要考虑是否有资源利用的需求。

二、污泥厌氧消化工艺设计要点在进行污泥厌氧消化工艺设计时,需要考虑以下几个要点:1.厌氧消化温度:厌氧消化适宜的温度是其正常运作的关键。

通常,选择35-55摄氏度的中温厌氧消化工艺,可以在较短的时间内达到稳定处理效果。

对于高温厌氧消化,温度一般需要控制在50-65摄氏度。

2.反应器类型选择:常见的厌氧消化反应器类型包括连续搅拌反应器(CSTR)、上升流式厌氧消化反应器(UASB)等。

CSTR适用于处理污泥浓度较低、泥量较多的情况;UASB适用于处理污泥浓度较高、泥量较少的情况。

3.进气与搅拌:在厌氧消化过程中,需要保证反应器内的气体和污泥充分混合。

可以通过进气系统和搅拌系统来实现。

进气可采用自然通气或机械通气,搅拌可采用机械搅拌或气泡搅拌等方式。

4.pH控制:厌氧消化过程中,pH值的控制对于菌群的生长和产气有重要影响。

厌氧消化

厌氧消化
✓用泵将消化污泥从池底抽出,加压后送至浮渣层表面或消 化池不同部位进行循环搅拌。一般只适用于小型消化池。
▪ 传统发酵设备与现代发酵 设备的比较
(a)传统消化池 (b)现代消化池
安徽工业大学 建筑工程学院
现代大型工业化厌氧消化工艺流程
典型的大型工业化沼气消化工艺流程 1、有机废物;2、进料;3、进料口;4、分选;5、料槽;6、废物;7、破碎机;8、天然气供 应站;9、加气站;10、内消耗;11、电网;12、沼气罐;13、主变电站;14、临时储存仓;15、 气体处理站;16、热交换;17、发电;18、区域供热系统;19、热储存罐;20、消化热;21、消
固废污染控制工程
教师:盛广宏
5.5 有机固体废物的厌氧消化
1 厌氧发酵过程 2 厌氧发酵过程的影响因素
安徽工业大学 建筑工程学院
❖ 厌氧发酵(Anaerobic digestion, AD)
▪ 或称厌氧消化,是指在厌氧微生物的作用下,有控制地使废物中可 生物降解的有机物转化为CH4、CO2和稳定物质的生物化学过程。 由于产物甲烷占大部分,故又称为甲烷发酵。
▪ 缺点:气压不稳定,对产气 不利;池温低,影响产气, 原料利用率低(仅 10%~20%);大换料和密封 都不方便;产气率低[平均 0.1~0.15m3/m3.d]
安徽工业大学 建筑工程学院
安徽工业大学 建筑工程学院
②立式圆形浮罩式沼气池
将消化间与贮气间分开,产生 的沼气由浮沉式的气罩贮存起 来。
安徽工业大学 建筑工程学院
✓气体扩散式搅拌:经过 压缩的沼气通过气体扩 散器与消化池内的污泥 混合。
安徽工业大学 建筑工程学院
✓射流器抽吸沼气搅拌:用污泥泵从消化池直筒壁高 的2/3处抽吸污泥,经过射流器抽吸池顶的沼气, 然后将混合污泥与沼气射入消化池底部进行搅拌。

厌氧消化,厌氧酵解,厌氧发酵,有氧分解的关系

厌氧消化,厌氧酵解,厌氧发酵,有氧分解的关系

厌氧消化,厌氧酵解,厌氧发酵,有氧分解的关系1. 引言1.1 概述在今天的环境保护和可持续发展的背景下,对于有机废弃物的处理变得越来越重要。

厌氧消化、厌氧酵解、厌氧发酵和有氧分解是目前常用的有机废弃物处理方法。

这些方法在去除或转化有机废弃物方面都起到了关键作用。

本文将深入探讨这些方法之间的关系,特别是厌氧消化与厌氧酵解、厌氧发酵以及有氧分解之间的相互联系。

1.2 文章结构本文将按照以下章节结构对厌氧消化、厌氧酵解、厌氧发酵和有机分解进行详细分析:引言,厌氧消化与厌氧酵解的关系,厌氧发酵与厌氧消化的关系以及有氧分解与厌氧消化的关系。

最后,通过总结论点来回顾文章主要内容。

1.3 目的本文旨在阐明不同废弃物处理方法之间的联系,帮助读者更好地理解和选择适合自己需求的废弃物处理方式。

同时,本文也将介绍各种方法的原理和应用场景,以更好地指导实际操作并促进环境可持续发展。

*请注意,由于普通文本格式无法呈现标题层级结构,以上内容只是对"1. 引言"部分的描述,并非完整文章。

2. 厌氧消化与厌氧酵解的关系2.1 厌氧消化的定义与原理厌氧消化是一种微生物降解有机废弃物的过程,它在缺乏氧气的条件下进行。

在这个过程中,不同类型的细菌和古菌通过一系列复杂的反应将有机废弃物分解为小分子有机物、沼气和其他代谢产物。

厌氧消化的原理基于微生物共生作用。

在一个无氧环境中,存在着各种类型的微生物。

这些微生物以协同方式合作,相互促进并参与有机废弃物分解过程中所需的反应。

基本上,厌氧消化包括两个主要步骤:厌氧酵解和产甲烷菌的产甲烷发酵。

2.2 厌氧酵解的过程与作用厌氧酵解是厌氧消化过程中的第一步,也是最重要的步骤之一。

在这个过程中,带来废水或污泥中存在多种有机废弃物,在无氧条件下被微生物降解为低分子量有机物。

这些微生物主要是厌氧酵母菌和产有机酸的细菌,它们通过发酵作用将有机废弃物分解为短链脂肪酸、醇类和其他有机化合物。

固体废物处理与资源化-第五章 第二节 厌氧消化

固体废物处理与资源化-第五章 第二节 厌氧消化
高分子有机物的水解速度很慢,主要受物料的性质、微生 物的浓度、温度和pH等条件的制约。
主要有机物的水解反应:
蛋白质+nH2O→氨基酸+脂肪酸+NH3+CO2+H2S
C3H5(RCO)3O3H2OC3H5(OH)33RCOOH
(脂肪)
(甘油) (脂肪酸)
2(C6H10O5)nnH2OnC12H22O112nC6H12O6 (碳水化合物)(双糖) (单糖)
70(CH4)+30(C02)
5950
700
67(CH4)+33(C02)
5650
a. 理论产气量的计算
在计算沼气发酵原料的理论产气量时,必须首先分别测定 各种发酵原料中碳水化合物(A)、蛋白质(B)和脂肪(C)的 含量,然后用下式计算出每克发酵原料的CH4和CO2的理论 产量。 CH4产量E(L)=0.37A+0.49B+1.04C CO2产量D(L)=0.37A+0.49B+0.36C 式中的A、B、C可在表中查到。
例 , 以 稻 草 为 原 料 , 其 A 、 B 、 C 值 分 别 为 : 0.6026 , 0.0316,0.0321。则: E=0.37×0.6026+0.49×0.0316+1.04×0.0321=0.2718(L/g) D=0.37×0.6026+0.49×0.0316+0.36×0.0321=0.2500(L/g)
发酵原料料浆的配制计算
将所需的各种发酵原料配制成料浆,可根据料浆中所 要求的总固体百分含量计算出加水量。
MTSXXM W10% 0
式中:MTS一发酵料浆中总固体Wt%; M 一各种原料的总固体Wt%; X一各种原料的重量(kg); W一需加入的水量(kg)

污水处理中的厌氧消化与气体利用

污水处理中的厌氧消化与气体利用

03
将厌氧消化与废弃物资源化利用相结合,实现废弃物的减量化
、无害化和资源化利用。
04 厌氧消化技术应用与案例
城市污水处理
城市污水处理是厌氧消化技术的重要 应用领域之一。通过厌氧消化工艺, 城市污水中的有机物被转化为沼气, 同时实现污水的减量化和稳定化。
案例:某城市污水处理厂采用厌氧消 化工艺处理城市污水,日处理能力达 到10万吨,有效降低了污染物排放, 提高了水资源利用效率。
剩余污泥处理
优化剩余污泥的处置和资 源化利用,减少环境负担 和降低处理成本。
技术发展趋势
厌氧氨氧化
01
厌氧氨氧化是一种新型的脱氮技术,具有节能、高效等优点,
未来将得到广泛应用。
厌氧发酵产氢
02
厌氧发酵产氢是一种生物制氢技术,具有环境友好、资源丰富
等优点,具有广阔的应用前景。
厌氧消化与废弃物资源化利用结合
工业废水处理
工业废水成分复杂,含有大量的有机物和有毒物质,厌氧消 化技术能够有效处理这些废水,并回收利用其中的有用物质 。
案例:某化工厂采用厌氧消化工艺处理含酚废水,成功将酚 类物质转化为沼气,降低了废水对环境的污染,同时实现了 资源的再利用。
农业废弃物处理
农业废弃物如畜禽粪便、农作物秸秆等是厌氧消化技术的 另一应用领域。通过厌氧消化工艺,农业废弃物被转化为 沼气和肥料,实现了废弃物的资源化利用。
智能化控制
利用物联网、大数据和人工智能等 技术实现厌氧消化过程的智能化控 制,提高处理效果和降低能耗。
技术挑战与对策
01
02
03
微生物种群调控
针对不同污水类型和工况 ,研究微源自物种群调控策 略,提高厌氧消化效率。
高浓度有机物处理

厌氧消化原理

厌氧消化原理

What is a Septic Tank?
The invention of the septic tank is attributed to a French man named Jean-Louis Mouras who is believed to have built the first septic tank in Vesoul in 1860 everyday use of the septic tank in France dates back to 1881.
veeken等研究了中温下生物垃圾中六种成分的水解和生物降解速率一级反应速率常数在20时为003015d1在40为024047d1ahring等通过研究发现介于中温和高温之间的45有机物的降解效果最差产气量最低在选择发酵温度的时候应该避开这个温度区间
固体废物处理与资源化
Treatment and Disposal of Solid Waste
Copyright Wuhan University 2015
Boyle (1976):
Boyle, W. C. (1977): Energy Recovery from Sanitary Landfills. Conversion. Edited by: H. G. Schlegel & J. Barnea, 119 – 138. Boyle modified the chemical reaction of Buswell & Mueller (1952) and included nitrogen and sulphur to obtain the fraction of ammonia and hydrogen sulphur in the produced biogas:

污泥厌氧消化简介

污泥厌氧消化简介

污泥厌氧消化应用
03
污泥减量
污泥减量
污泥厌氧消化过程中,有机物在厌氧菌的作 用下转化为沼气,同时产生大量沉淀物,实 现污泥的减量。
减量效果
通过污泥厌氧消化,污泥的体积可减少约30%-50% ,减轻了后续处理和处置的负担。
减量机制
厌氧菌分解有机物产生沼气,同时生成固形 物沉淀,使得污泥的体积和质量降低。
污泥厌氧消化简介
汇报人:可编辑 2024-01-11
目 录
• 污泥厌氧消化概述 • 污泥厌氧消化技术 • 污泥厌氧消化应用 • 污泥厌氧消化问题与解决方案 • 污泥厌氧消化未来发展
污泥厌氧消化概述
01
定义与特点
定义
污泥厌氧消化是一种生物处理技术, 通过厌氧微生物的作用,将污泥中的 有机物转化为沼气和稳定的剩余物。
能源回收
能源回收
通过收集和利用污泥厌氧消化 产生的沼气,可以将其转化为 热能或电能,实现能源的回收
利用。
回收效率
沼气的热值较高,可达到 5500kJ/m3,通过合理利用 ,沼气的能源回收率可达到
60%-70%。
经济效益
能源回收利用能够降低能源消 耗,减少对外部能源的依赖, 同时为污水处理厂带来经济效
厌氧消化过程
预处理
为确保污泥的稳定性和消化效率,需要对污泥进行适当的预处理, 如调质、加热等。
消化过程
厌氧消化过程分为三个阶段,即水解阶段、酸化阶段和甲烷化阶段 。每个阶段都有特定的微生物参与,并产生相应的代谢产物。
产物利用
厌氧消化产生的沼气可作为能源回收利用,剩余物可作为肥料或土壤 改良剂。
污泥厌氧消化技术
02
厌氧消化技术分类
完全混合式厌氧消
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
–水解阶段:将不溶性大分子有机物分解 为小分子水溶性的低脂肪酸; –酸化阶段:发酵细菌将水溶性低脂肪酸 转化为H2、甲酸、乙醇等,酸化阶段料 液pH值迅速下降; –产氢产乙酸阶段:专性产氢产乙酸菌对 还原性有机物的氧化作用,生成H2、乙 酸等。同型产乙酸细菌将H2、HCO3- 转化为乙酸,此阶段由于大量有机酸的 分解导致pH值上升; –甲烷化阶段
甲烷菌对温度的急剧变化非常敏感
厌氧发酵过程还要求温度相对稳定,一天内的变化范围在 1.5~2℃以内为宜。
(2)pH值
厌氧发酵微生物细胞内细胞质的pH一般呈中性反应,但产 甲烷菌在偏碱性条件下有更好活性,因此,控制pH值在 6.5~7.5比较合适,最佳7.0~7.2。 一般通过控制碱度来控制pH值,通常碱度控制在 2500~5000mgCaCO3/L比较合适,碱度可以通过投加石灰 或含氮原料的办法来控制。
厌氧消化阶段
三段理论
1979年由布赖恩提出,将厌氧消化依次分为水解(液化) 阶段、产酸阶段、产甲烷阶段。起作用的细菌分别称为发 酵细菌、乙酸分解菌、产甲烷细菌。
四段理论 Zeikus于1979年提出四种群学说,他 认为在厌氧消化过程中共有四种群的 复杂微生物参与厌氧发酵过程,分别 是:水解发酵菌、产氢产乙酸菌,同 型产氢产乙酸菌和产甲烷菌。
传统发酵设备与现代发酵 设备的比较
(a)传统消化池 (b)现代消化池
第五章 厌氧消化
5.1 厌氧消化原理 5.1.1 厌氧消化基本理论 5.1.2 厌氧消化产物 5.2 厌氧消化影响因素

容 提
5.3 厌氧消化工艺与反应器 5.3.1 厌氧消化工艺 5.3.2 厌氧消化反应器 5.3.3 应用实例

厌氧消化(Anaerobic digestion, AD)
或称厌氧发酵,是指在厌氧微生物的作用下,有控制地使废物中可 生物降解的有机物转化为CH4、CO2和稳定物质的生物化学过程。 由于产物甲烷占大部分,故又称为甲烷发酵。 厌氧消化技术的特点: 资源化效果好,可以将潜在于废弃有机物中的低品位生物能转 化为可以直接利用的高品位沼气。
气体扩散式搅拌:经过 压缩的沼气通过气体扩 散器与消化池内的污泥 混合。
射流器抽吸沼气搅拌:用污泥泵从消化池直筒壁高 的2/3处抽吸污泥,经过射流器抽吸池顶的沼气, 然后将混合污泥与沼气射入消化池底部进行搅拌。
③泵循环物料搅拌
用泵将消化污泥从池底抽出,加压后送至浮渣层表面或消 化池不同部位进行循环搅拌。一般只适用于小型消化池。
众多的代谢产物中,仅无机的 CO2和H2及有机的“三甲一乙” (甲酸、甲醇、甲胺和乙酸)可 直接被产甲烷细菌吸收利用,转 化为甲烷和二氧化碳。 其它的代谢产物(主要是丙酸、 丁酸、戊酸、乳酸等有机酸,以 及乙醇、丙酮等有机物质)不能 为产甲烷细菌直接利用。它们必 须经过产氢产乙酸细菌进一步转 化为氢和乙酸后,才能被甲烷细 菌吸收利用,并转化为甲烷和二 氧化碳。
3、厌氧消化工艺与反应器
1
厌氧消化工艺
2
厌氧消化设备
厌氧消化工艺
厌氧发酵工艺
一个完整的消化系统一般包括:原料预处理、厌氧发酵 反应器、消化气净化与贮存、消化液与污泥的分离、处 理与利用等工序 分类
按厌氧发酵器分类
物料性状
–湿式厌氧发酵工艺(低固体厌氧发酵工艺):指消化原料的 固体浓度不超过10%,一般为4~8% –干式厌氧发酵工艺(高固体厌氧发酵工艺):指消化原料的 固体浓度大约在20%以上
(3)营养成分(营养比)
厌氧发酵原料的C/N比以(20~30):1为宜,太高,细胞氮 量不足,系统的缓冲能力低,pH 值易降低;太低,氮量 过多, pH 值可能上升,铵盐容易积累,会抑制消化进程。
(4)添加物和抑制物
重金属离子对甲烷消化的抑 制-使酶发生变性或者沉淀。 与酶结合产生变性;与氢氧 化物作用使酶沉淀。 S2-等阴离子对甲烷消化有抑 制,氨也有毒害作用,当 [NH4+]>150mg/L时,消化受 抑制。 添加少量的K、Na、Mg、 Zn、P等元素有助于提高产 气率。
②沼气搅拌
气提式搅拌:将沼气压入设在消化池的导 流管中部或底部,使沼气与消化液混合, 含气泡的污泥即沿导流管上升,起提升作 用,使池内消化液不断循环搅拌。
气提式搅拌
竖管式搅拌:在池内均匀布置若 干根竖管,经过加压的沼气通过 配器总管分配到各根竖管,从下 端吹出,起搅拌作用。
安徽工业大学 建筑工程学院
缺点:气压不稳定,对产气 不利;池温低,影响产气, 原料利用率低(仅 10%~20%);大换料和密封 都不方便;产气率低[平均 0.1~0.15m3/m3.d]
②立式圆形浮罩式沼气池
将消化间与贮气间分开,产生 的沼气由浮沉式的气罩贮存起 来。 浮沉式气罩由水封池和气罩两 部分组成。当沼气压力大于气 罩重量时,气罩便沿水池内壁 的导向轨道上升,直至平衡为 止。当用气时,罩内气压下降, 气罩也随之下沉。 特点:具有压力稳定、消化好、 产气多等优点。
与好氧处理,厌氧消化不需要通风动力,设施简单,运行成本 低;
产物要再利用,经厌氧消化处理后的废物基本得到稳定,可以 用于农肥、饲料或堆肥原料;
厌氧微生物的生长速率慢,常规方法的处理效率低,设备体积 大;
厌氧过程中会产生H2S等恶臭气体。
1、 厌氧消化原理 有机废物厌氧消化原理
总的反应式
按厌氧发酵器分类
根据进料方式 连续消化工艺 连续进料和连续出料,工业上应用较多,但对 厌氧条件控制要求较高。 半连续消化工艺 启动时一次性投入较多的消化原料,运行过 程中定期添加新料和出料,比较适用于农村和部分工业。 批式消化工艺 原料一次投入反应器,消化完成后一次排出,然 后从新换入新的原料进行下批次消化方式。 相分离 根据沼气消化过程分为产酸和产甲烷两个阶段的原理开发的。反 应是在两个反应器内分别进行的,第一个反应器主要起水解酸化 作用,同时截留难降解的固体,起到缓冲作用,第二个反应器保 持严格的厌氧条件和合适的pH值,以利于甲烷的产生。
物质浓度 碱金属和碱土金属 Ca2+,Mg2+,Na+, K+ 重金属Cu2+,Ni2+, Zn2+,Hg2+,Fe2+ H+和OH― 胺类 有机物质
毒域浓度界限 /(mol/L)
10-1~10+6
10-5~10-3 10-6~10-4 10-5~100 10-6~100
接种物
厌氧发酵中细菌数量和种群会直接影响甲烷的生成
工作原理
物料从上部或顶部投入池内, 经与池中原有的厌氧活性污 泥混合接触后,通过厌氧微 生物的吸附、吸收和生物降 解作用,使垃圾中的有机物 转化为以CO2和CH4为主的气 态产物—生物气(即沼气)
常用类型
①立式圆形水压式沼气池
消化间为圆形,两侧带有进 出料口,池顶有活动盖板。 池盖和池底是具有一定曲率 半径的壳体,主要结构包括 加料管、消化间、出料管、 水压间、导气管等几个部分。
2、厌氧消化影响因素
厌氧条件
产甲烷细菌是专性厌氧菌,氧对产甲烷细菌有毒害作用,因此, 必须创造厌氧的环境条件。一般控制在Eh为-300mV左右
(1)温度
沼气发酵与温度有密切的关系。
代谢速度在35~38℃有一个高峰,50~65℃有另一高峰。一般 厌氧发酵常控制在这两个温度内,以获得尽可能高的降解速度。 前者称为中温发酵,后者称为高温发酵,低于20℃的称为常温发 酵。
厌氧消化反应器
厌氧反应器
厌氧反应器组成:密闭反应器、搅拌系统、加热系统、 固液气分离 常见类型: 常规消化反应器(沼气池)、连续搅拌式反 应器、推流式反应器、序批式反应器、上流式污泥床 反应器等。
传统发酵设备和现代工业发酵设备
传统发酵设备系统
传统发酵设备系统
结构
消化罐是核心,附属设备有气 压表、导气管、出料机、预处 理装置、搅拌器、加热管等。
按厌氧发酵器分类
消化温度
低温消化:<20 ℃,产气量低,受气候影响大,不加料情 况下~35d。 中温消化:35~38℃,产气量约1~1.3m3/(m3· d);消化时 间~20d,卫生化低。
高温消化:50~65 ℃,产气量约3.0~4.0m3/(m3· d);消化 时间~10d,卫生化高。
③立式圆形半埋式沼气消化池组
城市粪便沼气消化多用消化池组。一般采用浮罩式贮气。
④长方形(或方形)消化池
由消化室、气体贮藏室、储水库、 进料口和出料口、搅拌器、导气喇叭 口等部分组成。 储水库的主要作用是调节气体贮藏 室的压力。
⑤联合沼气池
现代大型工业化沼气消化设备
常见几种类型的消化罐
平底型
介于欧美型和古典型之间。施工费用 比古典型低,直径与高度的比值比欧 美型合理,在污泥循环设备方面,选 择余地小。
循环系统搅拌设备
①机械Байду номын сангаас拌
螺旋桨搅拌:在一个 竖向导流管中安装螺 旋桨。
水射器搅拌:水射 器也称喷射泵。一 般设置在池中心, 用水泵将消化池底 部的污泥抽出后压 入水射器的喷嘴, 当污泥射入水射器 的喉管时,形成很 大的负压,将消化 池内液面的消化液 吸入,通过扩散管 从池子下部排 出形 成一个循环搅拌 。
不同来源的厌氧发酵接种物对产气量有不同的影响,添 加接种物可有效提高消化液中微生物的种类和数量,从 而提高反应器的消化处理能力和产气量。在开始发酵时, 一般要求菌种量达到料液量的5%以上。
搅拌
搅拌的目的是使发酵原料分布均匀,增加微生物与发酵 基质的接触,也使发酵的产物及时分离,从而提高产气 量。
有机物 H 2O 厌氧微生物 细胞物质 CH 4 CO 2 NH3 H 2S 能 量
相关文档
最新文档