平面向量的数量积及运算律
平面向量的数量积及其运算律

平面向量的数量积及其运算律在物理课中,我们学过功的概念:即一个物体在力F 的作用下产生位移s ,那么力F 所做的功:W =|F ||S |cos θ.即功等于运动距离乘以力在运动方 向上的投影.如图1.4—1.由此我们引出向量数量积的概念.一.数量积 【向量的夹角】已知两非零向量a 和b .在平面上任取一点O,作OA ⃗⃗⃗⃗⃗ =aa ,OB ⃗⃗⃗⃗⃗ =ab.则∠AOB =θ(0≤θ≤π).叫做向量a 与b 的夹角.想一想:你能指出下列图中两向量的夹角吗?参考答案:①的夹角为0,②OA ⃗⃗⃗⃗⃗ 与OB ⃗⃗⃗⃗⃗ 的夹角为π,③OA ⃗⃗⃗⃗⃗ 与OB⃗⃗⃗⃗⃗ 的夹角是∠AOB ,④OA ⃗⃗⃗⃗⃗ 与OB ⃗⃗⃗⃗⃗ 的夹角是θ.两向量夹角的取值范围[0,π].注:如果向量a 与b 的夹角是 π2,就称a 与b 垂直,记作a ⊥b .【平面向量的数量积】已知两个非零向量a 与b ,它们的夹角为θ,我们把数量|a ||b |cos θ叫做a 与b 的数量积(或内积),记作:a ·b ,即a ·b =|a ||b |cos θ. 并规定0∙a =0.这里“·”表示向量的一种乘法运算,称为点乘.【数量积的几何意义】 我们把|b|cos θ (|a |cos θa 叫做向量b 在a 方向上(a 在b 方向上)的投影.你能从图中作出|b |cos θ的几何图形吗?①投影不是向量,是数量,它可以是任意的实数. ②当θ为锐角时投影为正值,数量积为正值.当θ为钝角时投影为负值,数量积为负值;当θ为直角时投影为0,数量积为0; 当θ = 0时,a 与b 同向,投影为|b |,a ·b =|a ||b |, 当θ=π时,a 与b 反向,投影为 -|b |,a ·b = -|a ||b |.a ·b 的几何意义:向量a 与b 的数量积a ·b 等于a 的长度|a |与b 在a 的方向上的投影(|b |cos θ的积.【数量积的性质】 ①a ⊥b ⇔a ⋅b =0.②当a 与b 同向时,a ·b =|a ||b |,当a 与b 反向时,a ·b = -|a ||b |.特别地a ·a=|aaa|2. ③|a ⋅b |≤|a |⋅|b |.图1.4—1 图1.4—2图1.4—3④设a 是非零向量,e 是单位向量,θ是a 与e 的夹角,则e ⋅a =a ⋅e =|a |cos θ. ⑤cos θ=a·b|a ||b|.【数量积的运算律】已知向量a 、b 、c 和实数λ,则: ①a·b = b·a .(交换律). ②(λa ·b =λ(a·b )=a·(λb ).③(a +b ·c=a·c+b·c . (分配律).注意:在实数中,乘法运算满足结合律.向量的数量积没有结合律可言.原因是(a·b )·c 包含的是两种不同的运算,即a· b 是数量积,再乘以c 为实数与向量的积.对于数量积的运算律,其中①、②读者可自证.下面就③给出相应的证明: 过a 、b ,a +b 的终点分别向c 引垂线,垂足分别是A 、B 、D. 如图1.4—4.a 、b ,a +b 在c 上的投影分别为OA 、OB 、OD. 又 OD=OB+BD.现证 BD=OA.过a +b 的终点引c 的平行线 交BE 于F.易知ΔEFG ≅ΔHAO ,⇒OA=FG,而FG=BD, 故OA=BD.⇒ OD=OA+OB,⇒ (a +b ·c=a·c+b·c .【特别提醒】从实数的运算到向量的数量积运算,发生了如下几个主要变化: (1)在实数运算中,若a ⋅b=0,则a=0或b=0; 在数量积中,若a ⋅b=0,则a=0或a b=0或b a ⊥. (2)在实数运算中,已知实数a 、b 、c(b ≠0),则ab=bc,⇒ a=c.在数量积中,若b 0≠,且a ⋅ba=ab ⋅c 则 aa=aca 吗? 如右图1.4—5:a ⋅ba=a|a||b|c os β = |b||OA|, b ⋅ca=a|b||c|cos α = |b||OA| ⇒aa ⋅ba=ab ⋅c ,但a ≠ac .(3)在实数运算中,乘法运算满足结合律(a ⋅b)c = a(b ⋅c). 在数量积中,没有结合律可言.a (4)在实数运算中,|ab|=|a||b|. 在数量积中,|a ⋅b |≤|a |⋅|b |.想一想①:已知向量|a |=2,|b |=1,a 、b 的夹角为600,则|a +b ||a -b |=|a 2-b 2|=3吗?【数量积的坐标形式】设a =(x 1,y 1),b =(x 2,y 2),则a·b =x 1x 2+y 1y 2.二.数量积性质的应用平面向量的数量积及性质的应用是非常广泛的,利用它们可以解决许多问题.【性质2的应用】与两非零向量a 、b 垂直的问题可通过a ·b =0来处理.例1.(1)已知向量a ⊥b ,且|a |=2,|b |=3,若(3a +2b )·(k a -b )=0,求k 的值.EOGH A BD Fc baa+b图1.4—4O 图1.4—5 a b cA(2)设c 、d 是非零的向量,d =(b ·c )·a -(a ·c )·b ,则c ∥d ,还是c ⊥d ? (3)已知a 、b 、c 为非零的向量,若|b -a -c |=|a -b -c |且|a +b +c |=|a +b -c |.求证:a ⊥c . 解(1) ∵ a ⊥b , ∴ a ·b =0 . 由(3a +2b )·(k a -b )=0,⇒3k a 2-2b 2=0.∵ |a |=2,|b |=3 ,得k= 32.(2) ∵ d =(b ·c )·a -(a ·c )·b ,⇒a d ·c =[(b ·c )·a -(a ·c )·b ]·c =(b ·c ·a ·c -(a ·c ·b·c =0.⊥ d ⊥c.(3) ∵ |b -a -c |=|a -b -c | ⇒(b -a -c 2=(a -b -c 2,⇒a ·c -b·c =0. ①由|a +b +c |=|a +b -c | 类似地,⇒a a ·c +ab·c =0. ② ⊥ 由①、② ⇒a a ·c =0 ⇒a ⊥c .例2.如图1.4—6. AD 、BE 、CF 为△ABC 的三条高,求证:AD 、BE 、CF 交于一点H.证明:设BE,CF 交于一点H ,AB ⃗⃗⃗⃗⃗ =a a ,AC ⃗⃗⃗⃗⃗ =a b ,AH ⃗⃗⃗⃗⃗ =a h .则BH ⃗⃗⃗⃗⃗ =AH ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ =h -a ,CH ⃗⃗⃗⃗⃗ =AH ⃗⃗⃗⃗⃗ −AC ⃗⃗⃗⃗⃗ =h -b , BC⃗⃗⃗⃗⃗ =AC ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ =b -a . ∵ BH ⃗⃗⃗⃗⃗ ⊥AC ⃗⃗⃗⃗⃗ , CH ⃗⃗⃗⃗⃗ ⊥AB ⃗⃗⃗⃗⃗ ∴ (h -a )a·b =0,且(h -b )a·a =0,⇒ (h -a )a·b =(h -b )a·a ,⇒(b -a )a·h =0. ∴ AH ⃗⃗⃗⃗⃗ ⊥BC ⃗⃗⃗⃗⃗ 又∵ 点D 在AH 的延长线上,∴ AD 、BE 、CF 相交于一点.例3. 已知a =(√3,-1),b =(12,√32).设存在实数k 、t 使得x =a +(t 2-3)b ,y = -k a +t b ,且x ⊥y ,试求k+t 2t的值域.解:∵ a =(√3,-1),b =(12,√32) , ∴ a ·b =0且|a |=2,|b |=1.a又∵ x ⊥y ,∴x ·y =0,⇒-k a 2+t(t 2-3)b 2=0,⇒k =t(t 2−3)4,⇒k+t 2t=t 2+4t−34=(t+2)2−74(t ≠0). ⇒k+t 2t∈[−74,−34)∪(−34,+∞).说明:此题若采用坐标运算来处理,而不注意灵活地利用a ·b =0,则计算量会增加许多.一般来说,当题设条件中有|a |、|b |为定值,且a ·b =0时.还是采用本题的解法为好.想一想②:设向量a 、b 、c 的模均为1,它们两两间的夹角均为1200,求证:(a -b ⊥c.【性质3的应用】与模有关的问题可通过a 2=|a|2,|a|=√a 2=√x 2+y 2来处理.例4.利用向量证明:平行四边形的对角线的平方和等于四边的平方和.已知:已知平行四边形ABCD.如图1.4—7.求证:2(AB 2+AD 2)=AC 2+BD 2.证明:设AB ⃗⃗⃗⃗⃗ =a . AD ⃗⃗⃗⃗⃗ = b . ∵AC ⃗⃗⃗⃗⃗ =a+b ,BD ⃗⃗⃗⃗⃗ =aa -b , ∴ AC 2+BD 2=|AC ⃗⃗⃗⃗⃗ |2+|BD ⃗⃗⃗⃗⃗ |2=(a+b )2+(a -b )2=2(|a |2+|b |2)=2(AB 2+DA 2), ∴ 2(AB 2+AD 2)=AC 2+BD 2.例5.利用向量证明余弦定理:在△ABC 中,求证:a 2=b 2+c 2-2bc·cosA .证明:如图1.4—8. ∵ BC ⃗⃗⃗⃗⃗ =AC ⃗⃗⃗⃗⃗ −AB⃗⃗⃗⃗⃗ , ∴ cosA |AB ||AC |2AC )AB -AC (BC 2222-+==AB , 即:a 2=b 2 +c 2-2bccosA. 同理可得: b 2= a 2+c 2-2accosB ; c 2= a 2+b 2-2abcosC.AB CD E F H 图1.4—6 A BC D 图1.4—7ABCc ab图1.4—8例6.已知向量OA ⃗⃗⃗⃗⃗ ,OB ⃗⃗⃗⃗⃗ ,OC ⃗⃗⃗⃗⃗ ,满足:OA ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ =0,且|OA ⃗⃗⃗⃗⃗ |=|OB ⃗⃗⃗⃗⃗ |=|OC⃗⃗⃗⃗⃗ |=1.求证:△ABC 是 正三角形. 思路1.由OA ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ =0,⇒ OA ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ = -OC ⃗⃗⃗⃗⃗ =OD ⃗⃗⃗⃗⃗ , ⇒四边形OADB 是菱形,⇒△AOD 是正三角形, ⇒∠AOB=1200,同理可得:∠AOC=∠BOC=1200,⇒△ABC 是正三角形.思路2.由OA⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ =0 ,⇒ O 为重心. 由|OA ⃗⃗⃗⃗⃗ |=|OB ⃗⃗⃗⃗⃗ |=|OC⃗⃗⃗⃗⃗ ||=1,⇒O 为外心. ∴ △ABC 是正三角形. 思路3.由|OA ⃗⃗⃗⃗⃗ |=|OB ⃗⃗⃗⃗⃗ |=|OC ⃗⃗⃗⃗⃗ |=1及|OA ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ |2+|OA ⃗⃗⃗⃗⃗ −OB ⃗⃗⃗⃗⃗ |2=2(|OA ⃗⃗⃗⃗⃗ |2+|OB ⃗⃗⃗⃗⃗ |2), ⇒|OC ⃗⃗⃗⃗⃗ |2+|AB ⃗⃗⃗⃗⃗ |2=4,⇒ |AB ⃗⃗⃗⃗⃗ |2=3,⇒AB =√3. 同理可得:BC=AC=.√3 ⇒ △ABC 是正三角形. 思路4.由OA ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ =0,⇒ OA ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ = -OC ⃗⃗⃗⃗⃗ ,⇒ OA ⃗⃗⃗⃗⃗ 2+OB ⃗⃗⃗⃗⃗ 2+2OA ⃗⃗⃗⃗⃗ ·OB ⃗⃗⃗⃗⃗ =OC⃗⃗⃗⃗⃗ 2 , ⇒ cos ∠AOB=−12,⇒ ∠AOB=1200. 同理可得:∠AOC=∠BOC=1200.⇒△ABC 是正三角形.想一想③:a a aa a a 设AB ⃗⃗⃗⃗⃗ =c ,BC ⃗⃗⃗⃗⃗ =a ,CA ⃗⃗⃗⃗⃗ =b.若a·b=b ·c=a·c ,求证:△ABC 是正三角形.【性质4的应用】与两向量的夹角有关的问题.可通过cos θ=a⋅b |a||b|=x 1x 2+y 1y 2√x 12+y 12√x 22+y 22来处理.例7.已知向量a 、b 、c 两两所成的角都相等,且|a |=1,|b |=2,|c |=3.求向量a +b+c 的模及a +b+c 与a 的夹角.解:∵ 向量a 、b 、c 两两所成的角都相等,∴ a 、b 、c 两两所成的角为1200或00. ①若a 、b 、c 两两所成的角为00,则|a +b+c |=|a |+|b|+|c|=6.a +b+c 与a 的夹角的夹角为00.②若a 、b 、c 两两所成的角为1200,∵| a +b+c |2=a 2+b 2+c 2+2(a·b+b ·c+a·c )=1+4+9-(131322⨯+⨯+⨯)=3. ∴|aa +b+c |=√3.设a +b+c 与a 的夹角为θ,则cos θ=a⋅(a+b+c)|a||a+b+c|=1−1−32√3=−√32. ∴ a +b+c 与a 的夹角为1500.例8.已知|a |=√2,|b |=3,a 、b 的夹角为450,求使a +λb 与λa +b 的夹角为钝角时,λ的取值范围.解:由a +λb 与λa +b 的夹角为钝角,⇒ (a +λb ·(λa+b )<0,且a +λb 与λa +b 不共线,⇒λa 2+(1+λ2)a ⋅b +λb 2<0且λ≠±1,⇒−11+√856<λ<−11+√856,且λ≠−1.想一想④:1.已知|a |=2|b |≠0.关于x 的方程x 2+|a |x+a ·b =0有实根,求a 、b 的夹角的取值范围.2.已知a =(λ,2),b =(-3,5).若a 、b 的夹角为锐角,求实数λ的取值范围.【性质5的应用】与不等式、最值有关的问题通常可通过|a ·b |≤|a ||b |(x 1x 2+y 1y 2≤√x 12+y 12⋅√x 22+y 22) 或||a |-|b ||≤|a ±b |≤|a |+|b |来处理.例9.利用向量证明:(1)若a 、b 、c 、d ∈R ,则ac+bd≤√a 2+b 2⋅√c 2+d 2. (2)设a 、b ∈R ,则 |√1+a 2−√1+b 2|≤|a -b|.O ADB x yC 图1.4—9证明:(1) 设m =(a ,b),n =(c ,d).由|m ·n|≤|m ||n |, | ac+bd|≤√a 2+b 2⋅√c 2+d 2,又∵ x≤|x ,|⇒ ac+bd≤√a 2+b 2⋅√c 2+d 2.(2) 设m =(1,b),n =(1,a). 由||n |-|m ||≤|n -m |,⇒ |√1+a 2−√1+b 2|≤|a -b|.想一想⑤:1.设向量a =(1,-1),b =(3,-4),x =a +λb ,试证:使|x |最小的向量x ,垂直于向量b .2..求函数y =√x 2+a +√(x −c)2+b 的最小值.(其中a 、b 、c 是正实数)【数量积计算的几个形式】与向量数量积计算的相关试题可谓是千变万化,林林总总,不一而足.表面看来似乎纷繁杂陈,眼花缭乱.但是,假若我们静心品味,拨云驱雾,就会发现:这“万变”还是“不离其宗”的.归纳起来,其实主要是围绕如下三个方面展开的: ①直接形式——利用数量积的定义式(包括坐标形式)进行计算;②间接形式——通过变形将所求数量积转化到与已知条件有直接关系后进行计算; ③几何意义——利用数量积的几何意义进行计算.下面,我们将就此展开一些探讨.(1)紧扣定义,直接计算利用数量积的定义式进行计算时,通常要分别确定两向量的模和夹角.若题设条件没有 明确给出,就必须根据其它关系式将其导出.例10.如图1.4—10.已知圆O 的半径为1,PA 、PB 为该圆的两条切线,A 、B 为两切点,那么PA ⃗⃗⃗⃗ ∙PB⃗⃗⃗⃗⃗ 的最小值为( ). A.-4+√2. B. -3+√2. C. -4+2√2. D.-3+2√2.解:设|PA|=|PB|=x ,∵ PA ⃗⃗⃗⃗ ∙PB⃗⃗⃗⃗⃗ =x 2cos ∠APB=x 2(1-2sin 2∠APC) =x 2(1−21+x 2)=x 2−2x 21+x 2=−3+(21+x 2+1+x 2)≥−3+2√2.故应选D.例11.对于两个非零的平面向量α,β.定义α⊙β=α∙ββ∙β .若两个非零的平面向量a ,b ,满足a 与b 的夹角θ∈(π4,π2).当a ⊙b 和b ⊙a 都在集合{n 2|n ∈Z }中时,a ⊙b =( ).A.52.B. 32.C.1.D. 12. 解:由定义知,a ⊙b =|a||b|cos θ|b|2=|a|cos θ|b|. ∴(a ⊙b (b ⊙a )=cos 2θ.又由已知可设a ⊙b= n12,n 1∈Z ,b ⊙a =n 22,n 2∈Z , ∴(a ⊙b (b ⊙a )=n 1n 24,又∵ θ∈(π4,π2), ∴cos 2θ∈(0,12). 则0<n 1n 2<2,因此,n 1、n 2只能在{-1,1}中取值,故应选D.想一想⑥:1.如图1.4—11,在∆ABC 中,AD ⊥AB,BC ⃗⃗⃗⃗⃗ =√3BD ⃗⃗⃗⃗⃗ ,| AD ⃗⃗⃗⃗⃗ |=1, 则AC⃗⃗⃗⃗⃗ ∙AD ⃗⃗⃗⃗⃗ = . 2.已知A ,B ,C 是圆O :x 2+y 2=1上的三点,若OA ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ =OC ⃗⃗⃗⃗⃗ .则AB⃗⃗⃗⃗⃗ ∙OA ⃗⃗⃗⃗⃗ = . 当所涉数量积计算的图形是直角三角形或矩形(正方形)时,应考虑通过建立平面直角坐P A B C x 图1.4—10_ BAD C 图1.4—11标系,利用数量积的坐标形式来进行.例12.在Rt ∆ABC 中,∠C=900,若∆ABC 所在平面内的一点P 满足PA → +PB →+λPC → =0. 则(1)当λ=1时,|PA|2+|PB|2|PC|2= ( ). (2)|PA|2+|PB|2|PC|2的最小值为 .解:建立如图1.4—12所示的平面直角坐标系. (1)设等腰直角三角形的边长为a ,当λ=1时,由PA ⃗⃗⃗⃗ +PB ⃗⃗⃗⃗⃗ +PC ⃗⃗⃗⃗ =0,知P 是∆ABC 的重心.设A(0,a),B(a ,0), 得P(a3,a3).从而可得|PA|2+|PB|2|PC|2=(a 29+4a 29)+(4a 29+a 29)a 29+a 29=5.对于填空题,也可用特值法.即设两直角边长为3,则计算要方便得多. (2)设P(x ,y),∵|PA|2+|PB|2|PC|2=x 2+(y−a)2+(x−a)2+y 2x 2+y 2=2(x 2+y 2+a 2)−2(ax+ay)x 2+y 2≥2(x 2+y 2+a 2)−(a 2+x 2+a 2+y 2)x 2+y 2=1,当且仅当x=y=a 时取等号.∴ |PA|2+|PB|2|PC|2的最小值为1.想一想⑦:已知Rt ∆ABC 的三边CB ,BA ,AC 成等差数列.点E 为直角边AB 的中点,点D 在斜边AC 上,若AD⃗⃗⃗⃗⃗ =λAC ⃗⃗⃗⃗⃗ ,且CE ⊥BD ,则λ= .(2)有效转换,方便计算有许多数量积的计算题,其所求式与题设条件之间没有直接的关联.这时,我们就必须通过转换与变形,将所求式变为与题设条件有密切关系的式子.我们常用的转换方式有两种:①利用向量加(减)法的三角形法则或平行四边形法则,变形后进行计算;②利用定比分点的向量形式OP → =OA → +λOB→1+λ (其中AP → =λPB → )转换后进行计算.例13.在边长为1的正∆ABC 中, 设BC ⃗⃗⃗⃗⃗ =2BD ⃗⃗⃗⃗⃗ ,CA ⃗⃗⃗⃗⃗ =3CE ⃗⃗⃗⃗ . 则AD ⃗⃗⃗⃗⃗ ∙BE⃗⃗⃗⃗⃗ =___ . 解:法1.AD → ⋅BE → =(AB → +BC → 2)⋅(CA →3+BC → )=16(2AB → +BC → )⋅(−AB → +2BC → )=16(−2+2+3AB → ⋅BC → )=12cos 1200=−14.法2.由BC⃗⃗⃗⃗⃗ =2BD ⃗⃗⃗⃗⃗ ,得 AC ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ =2(AD ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ ),⇒AD ⃗⃗⃗⃗⃗ =12(AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ ), 再由CA ⃗⃗⃗⃗⃗ =3CE ⃗⃗⃗⃗ ,得 CA ⃗⃗⃗⃗⃗ =3(BE ⃗⃗⃗⃗⃗ −BC ⃗⃗⃗⃗⃗ ),⇒BE ⃗⃗⃗⃗⃗ =13(3BC ⃗⃗⃗⃗⃗ −AC ⃗⃗⃗⃗⃗ )=13(−3AB ⃗⃗⃗⃗⃗ +2AC ⃗⃗⃗⃗⃗ ), ∴ AD ⃗⃗⃗⃗⃗ ∙BE ⃗⃗⃗⃗⃗ =16(AB ⃗⃗⃗⃗⃗ +AC⃗⃗⃗⃗⃗ )(−3AB ⃗⃗⃗⃗⃗ +2AC ⃗⃗⃗⃗⃗ )=16(−3+2−12)=−14. 说明:一般地,处理此类问题时,可由已知条件出发,将需要求数量积的两个向量,通过向量加法或减法的三角形法则,用已知模和夹角的向量表示出来后,再求值即可.例14.如图1.4—13,P 是∆AOB 所在平面上的一点.向量OA⃗⃗⃗⃗⃗ =a ,OB ⃗⃗⃗⃗⃗ =ab ,OP ⃗⃗⃗⃗⃗ =ac .且点P 在线段AB 的中垂线上.若|a |=2,|b |=1.,则c·(a -b )= ( ). A. 12. B.1. C. 32. D.2. 解析:∵ BA → =a -b ,c =OP⃗⃗⃗⃗⃗ =OB ⃗⃗⃗⃗⃗ +12BA ⃗⃗⃗⃗⃗ +DP ⃗⃗⃗⃗⃗ =DP ⃗⃗⃗⃗⃗ +12(aa +b ) AC B xy 图1.4—12又DP → ⊥BA → .∴ c·(a -b )=ac=[DP⃗⃗⃗⃗⃗ +12(aa +b )]·(a -b = 12(aa +b a·(a -b = 12(a 2-b 2 = 32. 故应选 C.想一想⑻:1.在∆ABC 中,M 是BC 的中点.AM=3,BC=10.则AB ⃗⃗⃗⃗⃗ ∙AC⃗⃗⃗⃗⃗ = . 2.在∆ABC 中,∠BAC=1200,AB=2,AC=1.点D 在BC 边上,且DC=2BD.则AD⃗⃗⃗⃗⃗ ∙BC ⃗⃗⃗⃗⃗ . 3.如图1.4—14.已知圆M :(x -3)2+(y -4)2=4.四边形ABCD 为圆M 的 内接正方形,点E ,F 分别为AB ,AD 的中点.当正方形ABCD绕圆心M 转动时,ME⃗⃗⃗⃗⃗⃗ ∙OF ⃗⃗⃗⃗⃗ 的最大值是 .(3)厘清意义,简化计算两向量a ,b 的数量积a·b 的几何意义是:一个向量a 的模|a |,与另一个向量b 在向量a 的方向上的投影的积.如图1.4—15.aa·b =|a |·OD.利用几何意义,我们在处理与三角形的外心或等腰三角形底边上的中线(实质是与线段的中垂线)有关的问题时,常常会收到奇效. 例15.(1)等腰∆ABC 中,若BC=4,则AB⃗⃗⃗⃗⃗ ∙BC ⃗⃗⃗⃗⃗ . (2)在∆ABC 中,若AB=3,AC=4,BC=5,AM ⊥BC 于M.点N 为∆ABC 的内部或边上的点,则AM ⃗⃗⃗⃗⃗⃗ ∙AN ⃗⃗⃗⃗⃗ 的最大值是( ). A..25144 B.2. C.9. D.16..解:(1)AB → ⋅BC → =|AB → |⋅|BC → |cos(π−B)=−|AB → |⋅|BC → |cos B =−12|BC →|2=−8. (2)由条件知∆ABC 为直角三角形,且角A 为直角.易求得AM=125由数量积的几何意义知,当点N 落在BC 上时,AM ⃗⃗⃗⃗⃗⃗ ∙AN ⃗⃗⃗⃗⃗ 取得最大值14425故应选A.例16.(1)已知O 是∆ABC 的外心,|AB ⃗⃗⃗⃗⃗ |=16,|AB ⃗⃗⃗⃗⃗ |=10√2.若AO ⃗⃗⃗⃗⃗ =xAB ⃗⃗⃗⃗⃗ +yAC ⃗⃗⃗⃗⃗ ,且32x+25y=25,求|AO ⃗⃗⃗⃗⃗ |. (2)已知O 是锐角三角形ABC 的外心,若cosBsinC AB ⃗⃗⃗⃗⃗ +cosC sinB AC⃗⃗⃗⃗⃗ =mAO ⃗⃗⃗⃗⃗ . 求证:m=2sinA. 解(1)如图1.4—15.∵ AO⃗⃗⃗⃗⃗⃗ =xAB ⃗⃗⃗⃗⃗ +yAC ⃗⃗⃗⃗⃗ ,且32x+25y=25, ∴ AO⃗⃗⃗⃗⃗⃗ 2= (xAB ⃗⃗⃗⃗⃗ +yAC ⃗⃗⃗⃗⃗ )∙ AO ⃗⃗⃗⃗⃗⃗ = xAB ⃗⃗⃗⃗⃗ ∙ AO ⃗⃗⃗⃗⃗⃗ + yAC ⃗⃗⃗⃗⃗ ∙ AO ⃗⃗⃗⃗⃗⃗ = x |AB ⃗⃗⃗⃗⃗ |12|AB ⃗⃗⃗⃗⃗ |+y|AC ⃗⃗⃗⃗⃗ |12|AC ⃗⃗⃗⃗⃗ |=4(32x+25y)=100, 可得 |AO⃗⃗⃗⃗⃗ |=10. (2) 设∆ABC 外接圆的半径为R ,由正弦定理c=2RsinC ,b=2RsinB.∵ cosBsinC AB ⃗⃗⃗⃗⃗ +cosC sinB AC ⃗⃗⃗⃗⃗ =mAO ⃗⃗⃗⃗⃗ ,∴ cosB sinC AB ⃗⃗⃗⃗⃗ ∙AO ⃗⃗⃗⃗⃗ +cosC sinBAC ⃗⃗⃗⃗⃗ ∙AO⃗⃗⃗⃗⃗ =m|AO|⃗⃗⃗⃗⃗⃗⃗ 2=mR 2, 又∵ cosBsinC AB ⃗⃗⃗⃗⃗ ∙AO ⃗⃗⃗⃗⃗ +cosC sinB AC ⃗⃗⃗⃗⃗ ∙AO ⃗⃗⃗⃗⃗ =AB 22sinC cosB +AC 22sinBcosC =2R 2(sinCcosB+sinBcosC) A BO PD 图1.4—13CA BO 。
2.4.1平面向量的数量积及运算律(3)

3.这个步骤可以使用思维导图或流程图,可以更好加深自己的理解哦~
费曼学习法--
实操
第三步 没有任何参考的情况下,仅靠大脑,复述你所获得的主要内容
(三) 仅 靠 大 脑 复 述
1.与上一步不同的是,这一步不能有任何参考, 合上你的书本、笔记等,看看此时你的大脑里还剩下了什么; 2.仅凭记忆,如果可以复述很多,说明掌握状况还可以; 3.如果一合上书,就连关系词有哪些都想不起来了, 说明还 没有掌握,需要继续回顾。
2. 求证:直径 所对的圆周角为 直角.
13
【学习力-学习方法】
优秀同龄人的陪伴 让你的青春少走弯路
小案例—哪个是你
忙忙叨叨,起早贪黑, 上课认真,笔记认真, 小A 就是成绩不咋地……
好像天天在玩, 上课没事儿还调皮气老师, 笔记有时让人看不懂, 但一考试就挺好…… 小B
目 录/contents
如何利用规律实现更好记忆呢?
超级记忆法-记忆 规律
TIP3:另外,还有研究表明,记忆在我们的睡眠过程中也并未停止,我们的大 脑 会归纳、整理、编码、储存我们刚接收的信息。所以,睡前的这段时间可是 非常 宝贵的,不要全部用来玩手机哦~
TIP4:早晨起床后,由于不受前摄抑制的影响,我们可以记忆一些新的内容或 者 复习一下昨晚的内容,那么会让你记忆犹新。
如何利用规律实现更好记忆呢?
超级记忆法-记忆 规律
记忆中
选择恰当的记忆数量
魔力之七:美国心理学家约翰·米勒曾对短时记忆的广 度进行过比较精准的测定:通常情况下一个人的记忆 广度为7±2项内容。
超级记忆法-记忆 规律
TIP1:我们可以选择恰当的记忆数量——7组之内! TIP2:很多我们觉得比较容易背的古诗词,大多不超过七个字,很大程度上也 是因 为在“魔力之七”范围内的缘故。我们可以把要记忆的内容拆解组合控制 在7组之 内(每一组不代表只有一个字哦,这7组中的每一组容量可适当加大)。 TIP3:比 如我们记忆一个手机号码18820568803,如果一个一组的记忆,我 们就要记11组,而如果我们拆解一下,按照188-2056-8803,我们就只需要 记忆3 组就可以了,记忆效率也会大大提高。
平面向量的数量积与运算律公开课课件

平面向量的数量积及运算律 复习 新课 例题 练习
例、求证:
2 2 2 (1)( a b ) a 2a b b 2 2 2(a b ) (a b ) a b
问:
(a b ) (a b ) ? (a b )
平面向量的数量积及运算律
小 结
总结:
掌握平面向量数量积的运算 律,体会平面向量数量积运算与数 与式运算的区别与联系;
理解利用性质求长度、角度、 证垂直的方法与手段。
平面向量的数量积及运算律 复习 新课 例题 练习
练习2 向量a与b 夹角是3 则 | a 源自 b | | a b | _____
, | a | 2,| b | 1,
平面向量的数量积及运算律 复习 新课 例题 练习
作业:
1、若 | a || b | 1, a b 且2a 3b 与 ka 4b 也互相垂直,求k的值。 2、设a是非零向量,且b c , 求证: a b a c a (b c )
平面向量的数量积及运算律 复习 新课 例题 练习
平面向量的数量积及运算律 复习 新课 例题 练习
1、数量积的定义:
a b | a || b | cos
2、数量积的几何意义:
a b 等于 a 的长度 | a |与 b 在a方向上的投影
| b | cos 的乘积。
所以 | a b | cos | a | cos 1 | b | cos 2
0
A
a
1
A1
2 b
B C
c A2
| a b || c | cos | a || c | cos1 | b || c | cos2
原创1:5.3 平面向量的数量积

A.|a|= a·a
B.|a·b|=|a|·|b|
C.λ(a·b)=λa·b
D.|a·b|≤|a|·|b|
解析:|a·b|=|a||b||cos θ|,只有 a 与 b 共线时,才有|a·b|
=|a||b|,可知选项 B 是错误的.
4.(2015·湖北武汉调研)已知向量 a,b 满足|a|=3,|b|=2 3,
平面向量的夹角与模(高频考点) 向量数量积的综合应用
考点一 平面向量数量积的运算
(1)(2015·沧州模拟)已知平面向量 a=(x1,y1),b =(x2,y2),若|a|=2,|b|=3,a·b=-6,则xx12+ +yy12的值为( B )
2 A.3
B.-23
C.56
D.-56
(2)(2014·高考江苏卷) 如图,在平行四边形 ABCD 中,已
[解] (1)由|a|2=( 3sin x)2+sin2x=4sin2x, |b|2=cos2x+sin2x=1, 及|a|=|b|,得 4sin2x=1. 又 x∈[0,π2 ],从而 sin x=12,所以 x=π6 .
(2)f(x)=a·b= 3sin x·cos x+sin2x
= 23sin 2x-12cos 2x+12=sin(2x-π6 )+12,
故|A→B+A→G+A→C|的最小值为83.
[规律方法] 1.利用数量积求解长度的处理方法: (1)|a|2=a2=a·a; (2)|a±b|2=a2±2a·b+b2; (3)若 a=(x,y),则|a|= x2+y2. 2.求两个非零向量的夹角时要注意: (1)向量的数量积不满足结合律; (2)数量积大于 0 说明不共线的两个向量的夹角为锐角;数 量积等于 0 说明两个向量的夹角为直角;数量积小于 0 且 两个向量不能共线时两个向量的夹角就是钝角.
平面向量的数量积及运算律

平面向量的数量积及运算律【基础知识精讲】1.平面向量的数量积的定义及几何意义(1)两平面向量和的夹角:,是两非零向量,过点O作=、=,则∠AOB=θ(0°≤θ≤180°)就称为向量和的夹角,很显然,当且仅当两非零向量、同方向时θ=0°;当且仅,反方向时,θ=180°,当θ=90°,称与垂直,记作⊥.(2)两平面向是和的数量积:、是两非零向量,它们的夹角为θ,则数量||·||cosθ叫做向量与的数量积(或内积),记作·,即·=||·||·cosθ.因此当⊥时,θ=90°,cosθ=0,这时·=0特别规定,零向量与任一向量的数量积均为0.综上所述,·=0是⊥或,中至少一个为的充要条件两向量与的数量积是一个实数,不是一个向量,其值可以为正(当≠,≠,0°≤θ<90°时,也可以为负(当≠,≠,90°<θ≤180°时,还可以为0(当=或=或θ=90°时).(3)一个向量在另一向量方向上的投影:设θ是向量与的夹角,则||cosθ,称为向量在的方向上的投影:而||cosθ,称为向量在的方向上的投影.一个向量在另一个向量方向上的投影也是一个数,不是向量,当0°≤θ<90°时,它为正值:当θ=90°时,它为0;当90°<θ≤180°时,它为负值.特别地,当θ=0°,它就等于||;而当θ=180°时,它等于-||.我们可以将向量与的数量积看成是向量的模||与||在的方向上投影||cosθ的乘积.2.向量数量积的性质:设、是两非零向量,是单位向量,θ是与的夹角,于是我们有下列数量积的性质:(1) ·=·=||cosθ(2) ⊥·=0(3) 、同向·=||·||; ,反向·=-||||;特别地·=2=||2或||=.(4)cosθ= (θ为,的夹角)(5)|·|≤||·||3.平面向量的数量积的运算律(1)交换律:·=·(2)数乘向量与数量积的结合律:λ(·)=(λ)·=·(λ);(λ∈R)(3)分配律: (+)· =·+·【重点难点解析】两向量的数量积是两向量之间的一种乘法运算,它与两数之间的乘法有本质的区别:(1)两向量的数量积是个数量,而不是向量,其值为两向量的模与两向量夹角的余弦的乘弦的乘积.(2)当≠时,不能由·=0,推出=,因可能不为,但可能与垂直.(3)非零实数a,b,c满足消去律,即ab=bc a=c,但对向量积则不成立,即·=·=).(4)对实数的积应满足结合律,即a(bc)=(ab)c,但对向量的积则不满足结合律,即·(·)≠(·)·,因·(·)表示一个与共线的向量,而(·)·表示一个与共线的向量,而两向量不一定共线.例1已知、、是三个非零向量,则下列命题中真命题的个数(1)|·|=||·||∥(2) ,反向·=-||·|| (3)⊥|+|=|-| (4)||=|||·|=|·| A.1 B.2 C.3 D.4分析:需对以上四个命题逐一判断,依据有两条,一仍是向量数量积的定义;二是向量加法与减法的平行四边形法则.解:(1)∵·=||·||cosθ∴由|·|=||·||及、为非零向量可得|cosθ|=1∴θ=0或π,∴∥且以上各步均可逆,故命题(1)是真命题.(2)若,反向,则、的夹有为π,∴·=||·||cosπ=-||·||且以上各步可逆,故命题(2)是真命题.(3)当⊥时,将向量,的起点确定在同一点,则以向量,为邻边作平行四边形,则该平行四边形必为矩形,于是它的两对角线长相等,即有|+|=|-|.反过来,若|+|=|-|,则以,为邻边的四边形为矩形,所以有⊥,因此命题(3)是真命题.(4)当||=||但与的夹角和与的夹角不等时,就有|·|≠|·|,反过来由|·||=|·|也推不出||=||.故命题(4)是假命题.综上所述,在四个命题中,前3个是真命题,而第4个是假命题,应选择(C).说明:(1)两向量同向时,夹角为0(或0°);而反向时,夹角为π(或180°);两向量垂直时,夹角为90°,因此当两向量共线时,夹角为0或π,反过来若两向量的夹角为0或π,则两向量共线.(2)对于命题(4)我们可以改进为:||=||是|·|=|·|的既不充分也不必要条件.例2已知向量+3垂直于向量7-5,向量-4垂直于向量7-2,求向量与的夹角.分析:要求与的夹角,首先要求出与的夹角的余弦值,即要求出||及||、·,而本题中很难求出||、||及·,但由公式cosθ=可知,若能把·,||及||中的两个用另一个表示出来,即可求出余弦值,从而可求得与的夹角θ.解:设与的夹角为θ.∵+3垂直于向量7-5,-4垂直于7-2,解之得 2=2·2=2·∴2=2∴||=||∴cosθ===∴θ=因此,a与b的夹角为.例3已知++=,||=3,||=1,||=4,试计算·+·+·.分析:利用||2=2,||2= 2,||2=2.解:∵++=∴(++)2=0从而||2+||2+||2+2·+2·+2·=0又||=3,||=1,||=4∴·+·+·=-(||2+||2+||2) =-(32+12+42) =-13例4已知:向量=-2-4,其中、、是两两垂直的单位向量,求与同向的单位向量.分析:与同向的单位向量为:·解:∵、、是两两垂直的单位向量∴2=2=2=1, ·=·=·=0∴2=(-2-4)(-2-4)=2+42+162-4· -8·+16·=21从而||=∴与同向的单位向量是·= (-2-4)=--例5求证:直径上的圆周角为直角.已知:如图,AC为⊙O的直径,∠ABC是直径AC上的圆周角.求证:∠ABC=90°分析:欲证∠ABC=90°,须证⊥,因此可用平面向量的数量积证·=0证明:设=,=,有=∵=+, =-且||=||∴·=(+)( -)=||2-||2=0∴⊥∴∠ABC=90°【难题巧解点拔】例1如图,设四边形P1P2P3P4是圆O的内接正方形,P是圆O上的任意点.求证:||2+||2+||+||2为定值.分析:由于要证:||2+||2+||+||2为定值,所以需将(i=1,2,3,4)代换成已知向量或长为定值的向量的和(或差),才能使问题证,而这里的半径、、、、等可供我们选择.证明:由于=+=- (i=1,2,3,4).∴有||2=(-)2=()2-2(·)+()2设⊙O的半径为r,则||2=2r2-2(·)∴||2+||2+||+||2=8r2-2(+++)·=8r2-2··=8r2(定值).例2设AC是□ABCD的长对角线,从C引AB、AD的垂线CE,CF,垂足分别为E,F,如图,试用向量方法求证:AB·AE+AD·AF=AC2分析:由向量的数量积的定义可知:两向量,的数量积·=||·||·cosθ(其中θ是,的夹角),它可以看成||与||在的方向上的投影||·cosθ之积,因此要证明的等式可转化成:·+·=,而对该等式我们采用向量方法不难得证:证明:在Rt△AEC中||=||cos∠BAC在Rt△AFC中||=||cos∠DAC∴||·||=||·||·cos∠BAC=·||·||=||·||cos∠DAC=·∴||·||+||·||=·+·=(+)·又∵在□ABCD中,+=∴原等式左边=(+)·=·=||2=右边例3在△ABC中,AD是BC边上的中线,采用向量法求证:|AD|2= (|AB|2+|AC|2-|BC|2)分析:利用|a|2=a·a及=+,=+,通过计算证明证明:依题意及三角形法则,可得:=+=-=+=+则||2=(-)(-)=||2+||2-·||2=(+)(+)=||2+||2+·所以||2+||2=2||2+||2移项得:||2= (||2+||2-||2)例4若(+)⊥(2-),( -2)⊥(2+),试求,的夹角的余弦值.分析:欲求cosθ的值,根据cosθ=,只须计算即可解:由(+)⊥(2-),( -2)⊥(2+)①×3+②得:2=2∴||2=||2③由①得:·=2-22=||2-2×||2=-||2④由③、④可得:cosθ= ==-∴,的夹角的余弦值为-.【典型热点考题】例1设、、是任意的非零平面向量,且它们相互不共线,下列命题①(·)·-(·)·)=;②||-||<|-|;③(·)·-(·)·不与垂直;④(3+2)·(3-2)=9||2-4||2.其中正确的有( )A.①②B.②③C.③④D.②④解:选D.②正确,因、不共线,在||-||≤|-|中不能取等号;④正确是明显的,①错误,因向量的数量积不满足结合律;③错误,因[(·)·-(·)·]·=(·)·(·)-(·)·(·)=0,则(·)·-(·)·与垂直.例2已知+=2-8,-=-8+16,其中,是x轴、y轴方向的单位向量,那么·= .=-3+4, =5-12∴·=(-3+4j)·(5-12)=-152+56·-482∵⊥,||=||=1,∴·=0∴·=-15||2-48||2=-63解法2:· =[(+)2-(-)2]=[4(-4)2-64(-2)2]=2-8·+16j2-16(2-4·+42) =-152+56·-482=-63解法3:在解法1中求得=-3+4,即向量的坐标是(-3,4),同理=(5,-12).∴·=-3×5+4×(-12)=63例3设、是平面直角坐标系中x轴、y轴方向上的单位向量,且=(m+1) -3,=+(m-1) ,如果(+)⊥(-),则m= .解法1:∵(+)⊥(-)∴(+)·(-)=0,即2-2=0∴[(m+1) -3]2-[+(m-1) ]2=0∴[(m+1) -3]||2-[6(m+1)+2(m-1)]·+[9-(m-1)2]·2=0∵||=||=1, ·=0,∴(m+1)2-(m-1)2+8=0,则m=-2.解法2:向量的坐标是(m+1,-3),的坐标是(1,m-1).由(+)·(-)=0,得||2=||2.解得m=-2评析:向量的运算性质与实数相近,但又有许多差异.尤其是向量的数量积的运算与实数的乘法运算,两者似是而非,极易混淆,是近年来平面向量在高考中考查的重点,应予以重视.例4在△ABC中,若=, =, =,且·=·=·,则△ABC的形状是( )A.等腰三角形B.直角三角形C.等边三角形 D.A、B、C均不正确解:因为++=++=则有+=-,( +)2=2①同理:2+2+2·=2②①-②,有2-2+2(·-·)=2-2由于·=·所以2=2即是||=||同理||=||所以||=||=||△ABC为正三角形.∴应选C.。
高二数学向量数量积的运算律

ab
a b 0 ∣AC∣=∣BD∣=
22
a b
即:AC=BD,长方形对角线相等
平面向量数量积运算律
小结:平面向量数量积运算规律
作业: (1)第111页练习A、B (2)预习2.3.3,并做课后练习A
不要做思想的巨人, 行动的矮子
;网客多拓客获客软件系统 网客多拓客获客软件系统 ;
互相垂直?
解:若向量a kb与a kb垂直, 根据向量垂直的性质,则
(a kb)( a kb)=0
(a
k
b)( a
k
b)
a2
-
k
a
b
k
a
b
-
k
2
2
b
∣a∣2 -k 2∣b∣2 9 16k 2 0
解得 : k 3 或k 3
44ຫໍສະໝຸດ 平面向量数量积运算律所以(a b) ( a) b a (b)
平面向量数量积运算律
由于a与a共线,b与b共线 a,b a, b
0时 (a) b ∣( a∣)∣ b∣cos a,b ∣a∣∣ b∣cos a,b (a b) ∣( a∣∣ b∣cos a,b ) ∣a∣∣ b∣cos a,b a (b) ∣a∣∣( b∣)cos a, b ∣a∣∣ b∣cos a, b
o
而∣a∣∣ b∣=∣b∣∣ a∣
B1 B
所以| b || a | cos b, a | a || b | cos a,b
即: a b b a 交换律
平面向量数量积运算律
由于a与a共线,b与b共线 a,b a, b
0时 (a) b ∣( a∣)∣ b∣cos a,b ∣a∣∣ b∣cos a,b (a b) ∣( a∣∣ b∣cos a,b ) ∣a∣∣ b∣cos a,b a (b) ∣a∣∣( b∣)cos a, b ∣a∣∣ b∣cos a, b
平面向量的数量积及运算律

平面向量的数量积及运算律(1)教学目的:1. 掌握平面向量的数量积及其几何意义;2. 掌握平面向量数量积的重要性质及运算律;3. 了解用平面向量的数量积可以处理有关长度、角度和垂直的问题;4. 掌握向量垂直的条件.教学重点:平面向量的数量积定义教学难点:平面向量数量积的定义及运算律的理解和平面向量数量积的应用 授课类型:新授课 教学过程: 、引入:力做的功:W = | F ||s |cos , 是F 与s 的夹角 已知非零向量a 与b ,作OA = a , OB = b ,则Z AOB = 9 (0< 9 < n ) 叫 a 与b 的 夹角.说明:(1) 当9 = 0时,a 与b 同向;(2) 当9 = n 时,a 与b 反向;(3) 当9 =—时,a 与b 垂直,记a 丄b ;2(4)厶注意在两向量的夹角疋义中,两向量必须是同起点的.范围 0 < < 1802. 平面向量数量积(内积)的定义:已知两个非零向量a 与b,它们的夹角是9 ,则数量| a ||b |cos 叫a 与b 的数量积,记作ab,即有a b = |a ||b |cos ,(0< 9 < n ).并规定0与任何向量的数量积为0。
探究:两个向量的数量积与向量同实数积有很大区别(1) 两个向量的数量积是一个实数,不是向量,符号由 cos 的符号所决定。
(2) 两个向量的数量积称为内积,写成 ab ;今后要学到两个向量的外积 a x b ,而ab 是两 个向量的数量的积,书写时要严格区分。
符号“• ”在向量运算中不是乘号,既不能省略, 也不能用“x”代替.3. “投影”的概念:作图、讲解新课:1 •两个非零向量夹角的概(3) 在实数中,若a 推出b =0o 因为其中cos (4) 已知实数a 、b 、c(b 如右图:a b = |a ||b |cos =a b = be 但 a 0,且a b=0,则b=0;但是在数量积中,若 有可能为0o0),贝U ab=bc =■ a=c 。
2.4.1平面向量数量积及运算律

b
a
(2)( a ) b
(a
b
)
a
(b )
(3)(a b) c a c b c
其中,a、b、 c是 任意三个向量, R
(a b) c a (b c)
例 3:求证: (1)(a+b)2=a2+2a·b+b2;
(2)(a+b)·(a-b)=a2-b2.
证明:(1)(a+b)2=(a+b)·(a+b) =(a+b)·a+(a+b)·b =a·a+b·a+a·b+b·b =a2+2a·b+b2.
a·b=|a| |b| cosθ
规定:零向量与任一向量的数量积为0。 思(1)向量的加、减法的结果是向量还是数量? 考 数乘向量运算呢?向量的数量积运算呢?
(2)“a •b ”能不能写成“a b ”或a者b “ 记”法的“ a形·式b ”?中间的“· ”不可以省略,也不可
以用“ ”代替.
向量的数量积是一个数量,那么它什 么时候为正,什么时候为负?
-72
例3 已知︱a︱=3,︱b︱=4,且a与b
不共线.求当k为何值时,向量a+kb与
a-式:
1、若 | a || b | 1, a b且2a 3b与ka 4b也 互相垂直,求k的值。
K=6
练习三:
1、已知 a 8,e为单位向量,当它们的夹角为 时, 求a 在 e方向上的投影及 a • e、e • a ;4 3
=5×4×(-1/2)= -10
P书106.1.2
思考4:对于两个非零向
A
量a与b,设其夹角为θ,
a
那么︱a︱cosθ的几何意
义如何?
O
θ |a|cosθ A1
b
B
对于两个非零向量a与b,设其夹角为θ, ︱a︱cosθ叫做向量a在b方向上的投影. 那么该投影一定是正数吗?向量b在a方
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(a)b | a || b | cos | a || b | cos (a b) a(b) | a || b | cos | a || b | cos (a b)
(a)b (a b) a(b) .
(3)当 0 时,
a 与b,a 与b的夹角都为180 . (a)b | a || b | cos(180 ) | || a || b | cos
| a || b | cos (a b)
a(b) | a || b | cos(180 ) | || a || b | cos
特别地 a a | a |2 或 | a | a a
(4)cos
ab | a || b |
(5) | a || b | ≤ a b ≤ | a || b | ,即 | a b | ≤ | a || b |
6.向量数量积满足那些运算律?如何证明?
数量积的运算律: 已知向量 a 、b 、c 和实数 ,则
2. a在b方向上的投影是指什么 ?b在a方向上的投影呢?
如图作OA a,OB b ,过点B作BB1 垂直于直线OA,垂足为 B1,则
OB1 | b | cosθ
B
B'
b
| b | cosθ叫向量 b 在 a 方向上的投影. | a| cosθ叫向量 a在 b方向上的投影.
O
a B1 A
c (a b) c a c b
(a b) c a c b c .
实数运算与平面向量的数量积的区别
1.在实数运算中有:a b a b
在向量中,有 a b a b吗? a b a b
2.在实数运算中有: a 0, a b 0,则b 0
| a || b | cos (a b)
(a)b (a b) a(b) . 综上所述:(a)b (a b) a (b)
⑶分配律: (a b)c a c bc
证明:如图,任取一点 O ,作 OA a ,AB b ,OC c .
a b | a || b | cos
3.向量的数量积是一个数量,那么它什么时候为正?
什么时候为负?什么时候为零?
θ为锐角时, | b | cosθ>0 b
OaB B1 ABθ为钝角时,
b | b | cosθ<0
B1 O
aA
B b θ为直角时,
| b | cosθ=0
O(B1 ) a
A
4.向量数量积的几何意义是什么? 数量积的物理意义: W=F ·s =|F||s|cosθ
F θ
s
数量积的几何意义:a b等于 a 的长度| a | 与 b
在 a 的方向上的投影| b | cos 的乘积。 B
b
ab | a || b | cos
a
O
B1
| b | cos
A
5.向量的数量积有那些性质?为什么?请你证明
a b | a || b | cos
规定:零向量与任意向量的数量积为0,即 a 0 0. 说明:(1)两向量的数量积是一个数量,而不是向量,符号由 夹角决定.
(2)两个向量的数量积是两个向量之间的一种乘法,它与 数的乘法是有区别的, a ·b不能写成 a×b 或 ab . (3) 在运用数量积公式解题时,一定要注意两向量夹角的 范围是 [ 0°,180°].
先看一个物理问题
一个物体在力F 的作用下产生的位移s,那么力F 所做的功 应当怎样计算?
F
θ s
W = |F||s| cosθ 其中θ是 F 与 s 的夹角 .
从力所做的功出发,我们引入向量数量积的概念。
先看一个概念-----向量的夹角
已知 两个非零向量a 和b ,作OA a ,OB b ,则 AOB (0 180 )叫做向量a 和b 的夹角.
A
a b ( 即 OB ) 在 c 方向上的投影等于
2
a 、b 在 c 方向上的投影的和 ,即 a
b
B
| a b | cos | a | cos1 | b | cos2 .
1
O
A1 c B1
C
| c || a b | cos | c || a | cos1 | c || b | cos2
平面向量的数积及运算率
【学习目标】
1.认识理解平面向量数量积的含义及物理意义,体会 平面向量的数量积与向量投影的关系。
2.掌握平面向量数量积的性质和运算律,熟练地应用 平面向量数量积的定义、运算律进行运算。
【问题导学】
自主学习
阅读课本P103—P105,回答下列问题
1.向量数量积的定义是什么?
由数量积的定义,可得以下重要性质:
设a,b都是非零向量,e是与b方向相同的单位向量,θ是a与
e的夹角,则
(1)e ·a=a ·e=| a | cos
(2)a⊥b a ·b=0 (判断两向量垂直的依据) (3)当a 与b 同向时,a ·b =| a | | b |,当a 与b 反向 时, a ·b =-| a | | b | .
⑴交换律: a b b a
⑵对数乘的结合律: (a) b (a b) a (b)
⑶分配律: (a b)c a c bc
⑵数乘的结合律: (a)b (a b) a (b)
证明: 设 a 与b的夹角为 . (1)当 0 时,等式显然成立 .
B b
a
Ob B
A
当 0,a 与b 同向;
Oa
A
B
b
a
B
O
A
当 180,a 与b 反向;
b
a
O
A
当 90,a 与b 垂直.
记作 a b
平面向量的数量积的定义
已知两个非零向量a 和b ,它们的夹角为 ,我们把数量 | a || b | cos 叫做a 与b 的数量积(或内积),记作a ·b ,即