列一元二次方程解应用题之面积问题.doc
列一元二次方程解有关面积问题

2 1.上 述 方 法 为 矩 形 面 积 的直 48 接 表 示 方 法 . 外 , 图 还 可 将 三 另 此 条 小 路 进 行平 移 。将 阴影 部 分 的 矩 形 进 行平 移 得 如 下 几 何 图 形 :
解
设道 路修 建 m宽 .
依题 意 , (0 )6 — x = 4 8 得 4 (4 2 ) 2 1 .
・ .
.
x2
-
7x 2 +71 =O,
・
. .
1lx= 1 舍 ) = ,27 ( .
显然 空 白部 分 的长 和宽 分 别 为 (4 ) 6 一 以及 (0 )这 样 空 白 4咄 ,
部 分 的 面 积 为 (4 ) ( 0 x , 6 一 ・4 - )
答 : 路应 修建 1 道 m宽 .
故 得方 程 (4 2 )4 - )2 1. 6 —x (0 x= 4 8
点缀 所 建 的 仓 库 只 有 三
如图所 示 , 建一 个 面积为 10m 的仓 库 , 库 的一边 要 3 仓
所 以 6块
6 2 4- x
×
—
—
条边长为 二 m 丝
.
3
三条 道路 , 两条 纵 向 ,一条 横 向,并 且互相 垂直 ,把广 场 分成 大
-
—
面 积 总 和 为 6×— x 4 0
2
:
3
小相等 的6 ,用来 ቤተ መጻሕፍቲ ባይዱ草坪 ,如 图所 示. 草坪 的面积  ̄2 1 m , 块 要使 48
U 册
一
元二 次方 程
有 面积 问题
。
露
利用面积求线段的长度是一元二次方程的常见题型, 这
列一元二次方程解应用题

列一元二次方程解应用题解应用题的关键是:能够理解题目中所给条件的关系,找出题目中的等量关系,列出方程。
1.面积问题[提示:面积问题一定要画图分析]例1:穗园小区住宅设计,准备在每两幢楼房之间,开辟面积为875m2的一块长方形绿地,并且长比宽多10m,那么绿地的长和宽各为多少?例2如图,一块长和宽分别为60厘米和40厘米的长方形铁皮,要在它的四角截去四个相等的小正方形,折成一个无盖的长方体水槽,使它的底面积为800平方厘米.求截去正方形的边长.解:设截去正方形的边长为x厘米,根据题意,得(60-2x)()=800解得:x1= , x2= 答:截去正方形的边长为。
例3、有一面积为150m2的长方形鸡场,鸡场的一边靠墙(墙长为18m),另三边用竹篱笆围成。
如果竹篱笆的长为35m,求鸡场的长与宽各为多少?解:(1) 如果鸡场的靠墙一边为长,则设鸡场的宽为xm ,长为(35-2x)m,根据题意得:x( )=150整理得:2x2-35x+150=0解得:x1=________, x2=________________因为__________________________________,所以x=_________符合题意。
因为______________________=20>18,不符题意,所以舍去。
答:鸡场的长与宽各为15m,10m 。
(2)如果鸡场的靠墙一边为宽,则设鸡场的长为ym ,宽为(35-2y)m,根据题意得:y( )=150整理得:____________________________________-解得:y1= , y2=35-2y1= __________________________________,35-2y2=__________________________课堂练习1:学校中心大草坪上准备建两个相等的圆形花坛,要使花坛的面积是余下草坪面积的一半.已知草坪是长和宽分别为80米和60米的矩形,求花坛的半径.解:设_______________________ 列得方程_________________________________________2.根据科学分析,舞台上的节目主持人应站在舞台前沿的黄金分割点(即该点将舞台前沿这一线段分为两条线段,使较短线段与较长线段之比等于较长线段与全线段之比),视觉和音响效果最好.已知学校礼堂舞台宽20米,求举行文娱会演时主持人应站在何处?解:设_______________________ 列得方程_________________________________________3.要做一个容积是750cm2,高是6cm,底面的长比宽多5cm的长方形匣子,底面的长和宽应该是多少?4.要给一幅长30cm,宽25cm的照片配一个镜框,要求镜框的四条边宽度相等,•且镜框所占面积为照片面积的四分之一,求镜框边的宽度。
列一元二次方程解面积类应用题教案

成共识6、(CAI动态演示)各图形中路的平行移动过程,师概括点明做此类题目的方法并板书过程。
7、观察图形⑸,能否用上述方法,又如何理解呢?同学们讨论得出将图⑹的路平行向四周移动可得图⑸(CAI动态演示)。
8、学生独立完成此题。
(CAI课件展示)例2、要设计一本书的封面,封面长27 cm ,宽21 cm,正中央是一个与整个封面长宽比例相同的矩形,如果要使四周的彩色边衬所占面积是封面面积的四分之一,上下边衬等宽,左右边衬等宽,应如何设计四周边衬的宽度(精确到0.1 cm).1、讨论:此题与上题的图⑸有什么不同?又如何解答?2、师讲解:如何由封面及正中的长宽比例相同为9:7,得出上、下边衬宽与左、右边衬宽的比也是9:7.。
3、学生讨论得出直接设中央的长与宽的比9X:7X,从而列方程求解。
4、一人演板。
5、集体订正,强调结果验证。
1、如图,某中学为方便师生活动,准备在长30 m,宽20 m的矩形草坪上修两横两纵四条小路,横纵路的宽度之比为3∶2,若使余下的草坪面积是原来草坪面积的四分之三,则路宽应为多少?论形成的结果,易记熟且能灵活运用。
设疑,激发学生积极思考用题目之间的联系培养学生灵活处理问题的能力。
此方法不易理解,但可以借助图⑸,拓宽了学生的知识面。
设元的灵活性。
触类旁通,你有哪些心得体会。
拓展延伸总结反思2、有一面积是150平方米的长方形鸡场,鸡场的一边靠墙(墙长18米),墙对面有一个2米宽的门,另三边(门除外)用竹篱笆围成,篱笆总长33米.求鸡场的长和宽各多少米?归纳小结:系统地总结此类应用题的解法。
布置作业:(略)板书设计:12.6 一元二次方程的应用(二)例1.略例2.略解:设………解:………………………………课后反思,本节课的收获,还有没有需要老师帮助解决的问题。
18米2米。
一元二次方程应用题(几何图形面积问题)

解题思路
假设长方形的长为l,宽为w, 通过列方程建立方程组,然后 求解得出面积。
解答与解析
通过解方程组,得出长方形的 长、宽和面积的具体数值,详 细解析计算过程和答案。
实例3 :三角形面积问题
问题提出
已知直角三角形的斜边长度为c, 某一直角边的长度为a,求三角形 的面积。
解题思路
根据已知条件,利用勾股定理和三 角形面积公式建立方程,然后求解 得出面积。
一元二次方程应用题(几 何图形面积问题)
本演示将介绍一元二次方程的应用,特别是在解决几何图形面积问题时的应 用。通过精彩的实例和深入的讲解,帮助你全面理解和掌握这一知识点。
一元二次方程介绍
简要介绍一元二次方程的概念、形式和解法方法,以及元二次方程解决几何图形的面积问题,通过代入、求解方程, 计算各种图形的面积。
解答与解析
通过解方程和应用三角形面积公式, 得出三角形的面积的具体数值,详 细解析计算过程和答案。
总结与实践建议
总结一元二次方程在解决几何图形面积问题中的应用要点,并提供一些建议和实践步骤,以帮助你更好地掌握这一 知识。
实例1:正方形面积问题
1
问题提出
给定正方形的对角线长度为d,求正方形的面积。
2
解题思路
假设正方形的边长为x,利用勾股定理建立方程,然后求解得出面积。
3
解答与解析
通过解方程,得出正方形的边长和面积的具体数值,详细解析计算过程和答案。
实例2 :长方形面积问题
问题提出
已知长方形的周长为P,求长方 形的面积。
12.解一元二次方程的实际应用——面积问题

孙老师说,杨蕙心学习效率很高,认真执行老师 的复习要求,往往一个小时能完成别人两三个小 时的作业量,而且计划性强,善于自我调节。此 外,学校还有一群与她实力相当的同学,他们经 常在一起切磋、交流,形成一种良性的竞争氛围。 谈起自己的高考心得,杨蕙心说出了“听话” 两个字。她认为在高三冲刺阶段一定要跟随老师 的脚步。“老师介绍的都是多年积累的学习方法, 肯定是最有益的。”高三紧张的学习中,她常做 的事情就是告诫自己要坚持,不能因为一次考试
x
35-2x 当x=7.5时,35-2x=20>18,因此不合题意,舍去;
当x=10时,35-2x=15. 答:鸡场的长、宽分别为15米、10米.
例2 某校为了美化校园,准备在一块长32米,宽20米的长方形场地四周修
筑等宽的道路,中间的矩形部分作草坪, 若草坪的面积为540米2,求图中道路 的宽是多少? x x 32-2x 20-2x x x 解:设草坪四周道路的宽为x米, 则草坪的长为(32-2x)米,宽为(20-2x)米.
班主任: 我觉得何旋今天取得这样的成绩, 我觉得,很重要的是,何旋是土生土长的北京 二中的学生,二中的教育理念是综合培养学生 的素质和能力。我觉得何旋,她取得今天这么 好的成绩,一个来源于她的扎实的学习上的基 础,还有一个非常重要的,我觉得特别想提的, 何旋是一个特别充满自信,充满阳光的这样一 个女孩子。在我印象当中,何旋是一个最爱笑 的,而且她的笑特别感染人的。所以我觉得她
高考总分:711分 毕业学校:北京八中 语文139分 数学140分
英语141分 理综291分 报考高校: 北京大学光华管理学院
北京市理科状元杨蕙心
班主任 孙烨:杨蕙心是一个目标高远 的学生,而且具有很好的学习品质。学 习效率高是杨蕙心的一大特点,一般同 学两三个小时才能完成的作业,她一个 小时就能完成。杨蕙心分析问题的能力 很强,这一点在平常的考试中可以体现。 每当杨蕙心在某科考试中出现了问题, 她能很快找到问题的原因,并马上拿出
一元二次方程应用 面积问题问题

实践收入 翻一翻,那么这两年中财政 收 入 的 平均年 增长率 应 是多少?翻二翻, 翻三翻呢?翻n翻呢?列 出方程即可
问题2: 某服装厂花1200元购进一批服 装,按40% 的利润定价,无人购买,决定 打折出售,但仍无人购买,结果又一次打 折才售完,经结算,这批服装共赢利280 元,若两次打折相同,每次打了几折?列 出方程即可
2.设体积为S,则S= (10-2x)2
3.折合成的长方体体积不随截去的正方 形的边长的增大而 增大,有最大值。
4.设体积为V,则V=x(10-2x)2
1、现有长方体塑料片一块,19cm, 宽15cm,给你锋利小刀一把,粘胶、 直尺、你能做一个底面积为77cm2 的无盖的长方体水槽吗?说说 你是 怎样做的?
D 1000(1+x)2=2500
2 某厂一月份的产值为10万元,第 一季度的总产值为70万元,设平均 每月的增长率为X,根据题意列出方 程是( C )
A 10(1-x) 2=70
B 10(1+x)+10(1+x)2=70
C 10+10(1+x)+10(1+x)2=70
D 10(1+x)2=70
例2、某药品经两次降价, 零售价为原来的一半。已知 两次降价的百分率一样,求 每次降价的百分率。(精确 到0.1℅)
C 1+2x=2
D (1+x)+2(1+x)2=4
例2,市场经济不仅让我们走上富裕之路, 而且让我们科学的经营方法,个体户张 某 原计划按600元每套销售一批西服,但 上市后销售不佳,为使资金正常运转, 减少库存积压,张某将这批西服连续两 次降价处理,调整价格到了384元,如两 次降价率相同,求每次降价率为多少? 两次打折 标示多少折?
一元二次方程应用题(几何图形面积问题)

(32 2x)(20 2x) 570 化简得,x2 36x 35 0
(x 35)(x 1) 0 x1 35, x2 1
其中的 x=35超出了原矩形的宽,应舍去.
答:道路的宽为1米.
例3. (2003年,舟山)如图,有长为24米的篱笆,一面 利用墙(墙的最大可用长度a为10米),围成中间隔 有一道篱笆的长方形花圃。设花圃的宽AB为x米, 面积为S米2, (1)求S与x的函数关系式;(2)如果要围成面积为 45米2的花圃,AB的长是多少米?
例1. 镜框有多宽?
一块四周镶有宽度相等的花边的镜框如下图,它的 长为8m,宽为5m.如果镜框中央长方形图案的面积为 18m2 ,则花边多宽? 解:设镜框的宽为xm ,则镜框中央长方形图案的长 为(8-2x)m, 宽为(5-2x) m,得
8
x
x
x
(8-2x)
5
18m2
x
例1. 镜框有多宽?
一块四周镶有宽度相等的花边的镜框如下图,它的
例2:在一块长80米,宽60米的运动场 外围修筑了一条宽度相等的跑道,这 条跑道的面积是1500平方米,求这条 跑道的宽度。
列一元二次方程解应题
补充练习: 1、(98年北京市崇文区中考题)如图,有一面 积是150平方米的长方形鸡场,鸡场的一边靠墙 (墙长18米),墙对面有一个2米宽的门,另三边 (门除外)用竹篱笆围成,篱笆总长33米.求鸡 场的长和宽各多少米?
例1 在矩形ABCD中,AB=6cm,BC=12cm, 点P从点A开始以1cm/s的速度沿AB边向点 B移动,点Q从点B开始以2cm/s的速度沿BC 边向点C移动,如果P、Q分别从A、B同时出 发,几秒后⊿ PBQ的面积等于8cm2?
一元二次方程应用题-----面积类

Q A C P 图4
列一元二次方程解应题
小结:解决这类问题的关键是掌握常见 几何图形的面积体积公式,并能熟练计 算由基本图形构成的组合图形的面积.
达标检测:
1、一间会议室,它的地板长为20m,宽为15m,现在准备 在会议室地板的中间铺一块地毯,要求四周没铺地毯的部分宽 度相同,而且地毯的面积是会议室地板面积的一半,那么没铺 地毯的部分宽度应该是多少?
一元二次方程应用 ---面积类
例1:一块四周镶有宽度相等的花边的镜框如下图, 它的长为8cm,宽为5cm.如果镜框中央长方形图案的 面积为18cm2 ,则花边多宽? 审 解:设镜框的宽为xcm ,则镜框中央长方形图案的长 为 cm,宽为 (5-2x)cm,得 (8-2x) 设
(8 - 2x) (5 - 2x) = 18
【解析】(1)设宽AB为x米, 则BC为(24-3x)米,这时面积 S=x(24-3x)=-3x2+24x (2)由条件-3x2+24x=45 化为:x2-8x+15=0解得x1=5,x2=3 ∵0<24-3x≤10得14/3≤x<8 ∴x2不合题意,AB=5,即花圃的宽AB为5米
练习2:
如图,用长为18m的篱笆(虚线部分),两面靠墙 围成矩形的苗圃.要围成苗圃的面积为81m2,应该怎 么设计? 解:设苗圃的一边长为xm, 则
(8-2x)
解得X1=1,
X2=5.5(不合题意) 答:镜框的宽为1m.
列 解
答
练习1.如图,一块长和宽分别为60厘米和40厘米的长
方形铁皮,要在它的四角截去四个相等的小正方形,折成 一个无盖的长方体水槽,使它的底面积为800平方厘米.求 截去正方形的边长。
练习2学校要建一个面积为150平方米的长方形自行
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学习必备欢迎下载
《列一元二次方程解应用题之面积问题》教学案
教学目标: 1.以面积的计算为载体,进一步培养学生运用方程的思想解决实际问题的意
识,提高学生建立方程模型的能力
2.体会变换在解决数学问题的作用,进一步强化学生问题转化的意识,进
而形成解决问题的能力
教学重点:构建方程模型
教学难点:应用恰当等积变换,探索问题中隐含的等量关系
教学过程:
一、解方程(引入)
(1)x2-52x+100=0 2
(2) x -36x+35=0
二、例题:某学校准备在一块长32 米,宽 20 米的草地上
修筑道路互相垂直的两条道路(道路的宽度相等),
使余下的草坪的面积为540 平方米,求这个方案的
道路的宽度。
变式 1 若改变道路的形状如下图(变式1),其他条件不变,那么应该怎么列方程?
变式 1
变式 2. 若改变道路的条数如下图,且设计草坪的总面积是570 平方米。
其他条件不变,那么应该怎么列方程?
变式 2
学习必备欢迎下载
变式 3.方案设计
问题:学校准备在一块长32 米,宽 20 米
的草地上修筑道路,决定在全校征集修改方案。
方案要求 :①两条竖道保存不变。
②横道不能是直道。
③所有道路入口要相等,注明图形名称。
④使余下的草坪的面积仍然为570 平方米。
变式 3 你能帮学校修改这个方案吗?并标出入口的宽度
三、小结(从数学思想的角度)
四、效果反馈
某小区中间有一块长方形的草地,长18 米,宽 10 米,中间有两条均匀的小路(小路的人口相等)。
已知要求草地的面积为128 平方米求,小路的入口的宽度。
五、课后作业
如图,要设计一个等腰梯形的花坛,花坛上底长120 米,下底长180 米,上下底相距80米,在两腰中点连线(虚线)处有一条横向甬道,上下底之间有两条纵向甬道,各
甬道的宽度相等.设甬道的宽为x 米.
(1)用含的式子表示横向甬道的面积为___________ 平方米
(2)当三条甬道的面积是 1500 平方米时,求甬道的宽度。
(1552=24025; 1452=21025)。