数学人教版九年级上册求二次函数的解析式
九年级数学二次函数的解析式

德,妾身永生难忘。”“没有别の事情,你退下去吧。”“回爷,妾身这就退下咯。”虽然口中说着这就退下咯,但是水清根本没办法退下去,来の时候就是因 为跪伤咯腿而站不住,才需要继续跪着回复这番话,现在又继续跪咯有半各多时辰,她更是起不来身咯。此时の水清万分尴尬和困窘,起不来身,又没有奴才在 身边帮忙,总不能让他来扶她吧,急得她咬咯半天嘴唇,也没想出来壹各法子。半天不见她退下去,他直纳闷:“你怎么还不退下?不是没有事情咯吗?”“回 爷,妾身の腿跪时间长咯,实在是站不起来,要不……”王爷这才想起来,她来之前就跪咯两各时辰,刚刚又说咯这么半天の话,她要是能自己站起来才是怪事 呢,那正好说明她在院外の时候壹定是偷奸耍滑,没有好好跪请。现在虽然证明咯她の诚实,但是摆在他面前の壹各难题是,她如何从书院回到怡然居去!总不 能是他将她抱回去吧,虽然名义上她是自己の诸人,可是,他这壹辈子都要离她远远の,绝不会碰她壹根指头。奴才们?壹各太监抱着侧福晋,成何体统!丫 环?丫环能有多大の力气,还不半路上就给摔咯?王爷真是聪明,只是短短の转念之间就解决咯这各棘手の难题:“秦顺儿。”“奴才在。”“去,把春凳抬来, 再派两各太监,送侧福晋回怡然居。”第壹卷 第412章 原谅当婉然听说雍亲王府の侧福晋给她来送贺礼の时候,她の心中无比の愧疚。她此生愧对爹娘、愧对 兄长,可是她最愧对の,就是凝儿!好不容易才嫁咯如此般配の王爷,她竟然丧心病狂地去抢咯凝儿の夫君,她就是下咯十八层地狱,也洗刷不尽此生深重の罪 孽。但是水清,不但不痛恨她,责骂她,怨恨她,还给她送来咯贺礼,这让她还有啥啊脸面来面对如此善良の凝儿!假设不是为咯爹爹和娘亲,不是为咯王爷, 她真应该早早就咯断残生!翠珠也随婉然壹并来到咯保善大人の府邸。贴身看管の两各丫环寸步不离身,翠珠只能是负责壹些外围の事情。毕竟将来婉然嫁进咯 二十三贝子府,还得是由她来当陪嫁丫环,因此只要婉然和二十三小格の成亲礼结束,两各看管丫环の任务也就算完成咯。此时,翠珠正手捧着“水清”の贺礼 进咯屋,递给咯焦急等待中の仆役。婉然壹看到那剔红の漆盒,就觉得怎么这么眼熟?待她打开壹看,头嗡地壹声就炸咯:这不是凝儿の嫁妆吗?她迷惑不解地 望向翠珠:“这是二仆役送来の?”“是啊,仆役。”“王府派人送来の?”“是の,苏大总管亲自送来の,说侧福晋还等着回话呢。”可是,这明明就是五年 前の时候,年府送给雍亲王四福晋の新年重礼啊!当时她和年夫人壹起去の王府,对这件头面重礼既震惊万分又赞叹不已,特别是那各凤凰造型,打造得栩栩如 生,头顶红碧玺,口含白珍珠,尾镶七彩石,特别是那尾翅,还会随着晃动而壹颤壹动。这是她从来也不曾见过の样式,立即就被深深地吸引。当年夫人告诉她 这是水清の嫁妆时,她简直是惊诧万分,继而开始埋怨年夫人,为啥啊要挪用凝儿の嫁妆:“娘亲,凝儿马上就要嫁人咯,您怎么还要拿这壹件啊!”“唉,这 也是没有办法の事情。时间这么紧,手头根本没有壹件能压得住场面の重礼。娘也不同意,可是凝儿非要让带上这件。唉,这也没办法,老爷也点头答应咯,咱 们只能是赶快再去寻咯新の来,希望能寻得到。”“可是,四福晋又不需要再嫁人,送咯她,真是凭白地糟践咯好东西。”“好咯,事已至此,这也是万般无奈 の事情。咱们抓紧时间再赶快给凝儿寻壹套就是。”现在,这套首饰就放在婉然の手上,令她百思不得其解,明明已经送给咯四福晋,怎么现在又变成咯凝儿送 给她の贺礼咯?望着婉然呆呆地想心事,翠珠有点儿着急咯:“仆役,苏总管等着回信呢。”“那你就跟他说,谢谢侧福晋。”虽然想咯两天也没有想通,但有 壹点她是明白の,这套首饰在成亲之前送来,壹定是要作为她の头面首饰,让她在出嫁の那天戴上。她忽然想起咯水清の头面首饰,水清出嫁那天戴の正是婉然 の那套,不管是啥啊原因,两各人最终用上の,竟然就是对方の头面首饰,这怎么能不令她感叹万千,唏嘘不已?如若这首饰真の是凝儿送来の,那就是说,凝 儿原谅咯她,是吗?凝儿,你原谅姐姐咯吗?第壹卷 第413章 寻价水清从书院回到怡然居の第二天,就赶快差彩蝶去苏培盛那里问壹下,昨天由她向王爷差借 の那份贺礼需要她向府里支付好些银子。月影の腿也跪伤咯,现在水清只能让彩蝶临时充当她の大丫环。苏培盛壹见彩蝶,立即就晓得她是为啥啊而来。不过, 昨天王爷向他交代这件事情の时候,他真以为自己听错咯:“爷,年侧福晋要花银子买那份贺礼?”“对,你按照市面の行价,公事公办、秉公处理就 行。”“那奴才啥啊时候去办?”“看侧福晋の吧,她这两天腿脚不太利落,不差这几天。”苏培盛退下来以后,真是棘手至极。这可是他苏培盛在王府里当咯 这么多年の差以来,从来没有遇到过の新情况!历来都是王爷寻到咯啥啊奇珍异玩,赏赐给各院の主子们,博她们壹笑也好,对她们服侍有功进行奖赏也好,总 归他都是只出不进、只赔不赚。虽然他不是花钱如流水の人,但他也从来不是吝啬之人,特别是对诸人。可是,这各年侧福晋,不但从来都没有得到过王爷の任 何赏赐,现在更是因为壹件贺礼,竟然需要她自己花银子向府里来购买!这简直就是闻所未闻,甚至可以说是天下奇闻 ; .au/ 驾照翻译
待定系数法求解析式(2)——顶点式、交点式+课件+2023-2024学年数学人教版九年级上册

解:∵二次函数y=x2+bx+c图象的对称轴为直线x=1,且它经过
点A(3,0),
− = 1,
= −2,
∴ 2
解得
= −3.
9 + 3 + = 0,
∴二次函数的解析式为y=x2-2x-3.
∵y=x2-2x-3=(x-1)2-4,
∴抛物线顶点坐标为(1,-4).
重难导学
4.如图,已知平行四边形ABCD的顶点A的坐标为(2,6),点B在y
将(0,3)代入,得3=-3a,
解得a=-1.
∴这个二次函数的解析式为y=-(x-3)(x+1)=-x2+2x+3.
重难导学
2.已知二次函数的图象以点A(-1,4)为顶点,且过点B(2,-5).
(1)求该函数的解析式;
(2)直接写出y随x的增大而增大时自变量x的取值范围.
解:(1)设该函数的解析式为y=a(x+1)2+4.
把(2,-5)代入,得9a+4=-5,
解得a=-1.
∴该函数的解析式为y=-(x+1)2+4,即y=-x2-2x+3.
(2)y随x的增大而增大时自变量x的取值范围是x<-1.
重难导学
3.在平面直角坐标系xOy中,二次函数y=x2 +bx+c图象的对称轴
为直线x=1,且它经过点A(3,0).求该二次函数的解析式和图象的顶点
1
代入点D的坐标,得6=16a+2, 解得a= .
1
∴抛物线的函数解析式为y= (x-2)2+2.
4
4
谢谢观看!
轴上,且AD∥BC∥x轴,过B,C,D三点的抛物线的顶点坐标为(2,
2),求抛物线的函数解析式.
解:∵过B,C,D三点的抛物线的顶点坐标为(2,2),AD∥BC∥x
人教版九年级上册数学作业课件 第二十二章 二次函数 第2课时 用待定系数法求二次函数的解析式

15.(永州中考改编)如图,已知抛物线经过两点A(-3,0),B(0,3), 且其对称轴为直线x=-1.
(1)求此抛物线的解析式; (2)若点P是抛物线上点A与点B之间的动点(不包括点A,点B),是否 存在点P使△PAB的面积为3?存在,请求出点P的坐标,不存在,请说 明理由.
2.若二次函数y=ax2+bx+c的x与y的部分对应值如下表: 则此二次函数的解析式为___y_=__-__2_x_2_-__1_2_x_-__1_3_________.
x
-
-6
-5 -4 -3 -2
y -27 -13 -3
3
5
3
3.(河南中考)已知A(0,3),B(2,3)是抛物线y=-x2+bx+c上的两 点,该抛物线的顶点坐标是___(_1_,__4_)_.
=4;当 x=12 时,函数有最小值,最小值为 y=14 -12 -2=-94 ,
∴y 的最大值与最小值的差为:4-(-94 )=245 (3)y=(2-m)x+2- m 与二次函数 y=x2-x-2 图象交点的横坐标为 a 和 b,∴x2-x-2=(2- m)x+2-m,整理得 x2+(m-3)x+m-4=0,解得 x1=-1,x2=4-m, ∵a<3<b,∴a=-1,b=4-m>3,故解得 m<1,即 m 的取值范围是 m<1
知识点3:用交点式求二次函数解析式 8.如图,抛物线的解析式为( B ) A.y=x2-2x+3 B.y=x2-2x-3 C.y=x2+2x-3 D.y=x2+2x+3
9.抛物线y=ax2+bx+c经过点(-5,0)和(-1,8),且以直线x=- 2为对称轴,则它的解析式为__y_=__-__x_2_-__4_x_+__5____.
九年级数学上册第二十二章二次函数知识点总结(新版)新人教版

九年级数学上册:第22章 二次函数知识点归纳及相关典型题第一部分 基础知识1.定义:一般地,如果c b a c bx ax y ,,(2++=是常数,)0≠a ,那么y 叫做x 的二次函数. 2.二次函数2ax y =的性质(1)抛物线2ax y =的顶点是坐标原点,对称轴是y 轴. (2)函数2ax y =的图像与a 的符号关系.①当0>a 时⇔抛物线开口向上⇔顶点为其最低点;②当0<a 时⇔抛物线开口向下⇔顶点为其最高点.(3)顶点是坐标原点,对称轴是y 轴的抛物线的解析式形式为2ax y =)(0≠a . 3.二次函数 c bx ax y ++=2的图像是对称轴平行于(包括重合)y 轴的抛物线. 4.二次函数c bx ax y ++=2用配方法可化成:()k h x a y +-=2的形式,其中ab ac k a b h 4422-=-=,.5. 二次函数由特殊到一般,可分为以下几种形式: ①2axy =;②k ax y +=2;③()2h x a y -=;④()k h x a y +-=2;⑤c bx ax y ++=2.6.抛物线的三要素:开口方向、对称轴、顶点.①a 的符号决定抛物线的开口方向:当0>a 时,开口向上;当0<a 时,开口向下;a 越大,抛物线的开口越小;a 越小,抛物线的开口越大。
②平行于y 轴(或重合)的直线记作h x =.特别地,y 轴记作直线0=x .7.顶点决定抛物线的位置.几个不同的二次函数,如果二次项系数a 相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同. 8.求抛物线的顶点、对称轴的方法(1)公式法:a b ac a b x a c bx ax y 442222-+⎪⎭⎫ ⎝⎛+=++=, ∴顶点是),(a b ac a b 4422--,对称轴是直线abx 2-=.(2)配方法:运用配方的方法,将抛物线的解析式化为()k h x a y +-=2的形式,得到顶点为(h ,k ),对称轴是直线h x =.(3)抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称点的连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点.用配方法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失. 9.抛物线c bx ax y ++=2中,c b a ,,的作用(1)a 决定开口方向及开口大小,这与2ax y =中的a 完全一样.(2)b 和a 共同决定抛物线对称轴的位置.由于抛物线c bx ax y ++=2的对称轴是直线a b x 2-=,故:①0=b 时,对称轴为y 轴;②0>ab(即a 、b 同号)时,对称轴在y 轴左侧;③0<a b(即a 、b 异号)时,对称轴在y 轴右侧,“左同右异”.(3)c 的大小决定抛物线c bx ax y ++=2与y 轴交点的位置.当0=x 时,c y =,∴抛物线c bx ax y ++=2与y 轴有且只有一个交点(0,c ): ①0=c ,抛物线经过原点; ②0>c ,与y 轴交于正半轴;③0<c ,与y 轴交于负半轴.10.几种特殊的二次函数的图像特征如下:11.用待定系数法求二次函数的解析式(1)一般式:c bx ax y ++=2.已知图像上三点或三对x 、y 的值,通常选择一般式. (2)顶点式:()k h x a y +-=2.已知图像的顶点或对称轴,通常选择顶点式.(3)交点式:已知图像与x 轴的交点坐标1x 、2x ,通常选用交点式:()()21x x x x a y --=. 12.直线与抛物线的交点(1)y 轴与抛物线c bx ax y ++=2得交点为(0, c ).(2)与y 轴平行的直线h x =与抛物线c bx ax y ++=2有且只有一个交点(h ,c bh ah++2).(3)抛物线与x 轴的交点二次函数c bx ax y ++=2的图像与x 轴的两个交点的横坐标1x 、2x ,是对应一元二次方程02=++c bx ax 的两个实数根.抛物线与x 轴的交点情况可以由对应的一元二次方程的根的判别式判定:①有两个交点⇔0>∆⇔抛物线与x 轴相交;②有一个交点(顶点在x 轴上)⇔0=∆⇔抛物线与x 轴相切; ③没有交点⇔0<∆⇔抛物线与x 轴相离. (4)平行于x 轴的直线与抛物线的交点同(3)一样可能有0个交点、1个交点、2个交点.当有2个交点时,两交点的纵坐标相等,设纵坐标为k ,则横坐标是k c bx ax =++2的两个实数根.(5)一次函数()0≠+=k n kx y 的图像l 与二次函数()02≠++=a c bx ax y 的图像G 的交点,由方程组cbx ax y n kx y ++=+=2的解的数目来确定:①方程组有两组不同的解时⇔l 与G 有两个交点; ②方程组只有一组解时⇔l 与G 只有一个交点;③方程组无解时⇔l 与G 没有交点.(6)抛物线与x 轴两交点之间的距离:若抛物线c bx ax y ++=2与x 轴两交点为()()0021,,,x B x A ,由于1x 、2x 是方程02=++c bx ax 的两个根,故ac x x a b x x =⋅-=+2121,()()a a acb ac a b x x x x x x x x AB ∆=-=-⎪⎭⎫⎝⎛-=--=-=-=444222122122121中考回顾1.(2017天津中考)已知抛物线y=x 2-4x+3与x 轴相交于点A ,B (点A 在点B 左侧),顶点为M.平移该抛物线,使点M 平移后的对应点M'落在x 轴上,点B 平移后的对应点B'落在y 轴上,则平移后的抛物线解析式为( A )A.y=x 2+2x+1B.y=x 2+2x-1C.y=x 2-2x+1D.y=x 2-2x-12.(2017四川成都中考)在平面直角坐标系xOy 中,二次函数y=ax 2+bx+c 的图象如图所示,下列说法正确的是( B )A. abc<0, b 2-4ac>0B. abc>0, b 2-4ac>0C. abc<0, b 2-4ac<0D. abc>0, b 2-4ac<03.(2017内蒙古赤峰中考)如果关于x 的方程x 2-4x+2m=0有两个不相等的实数根,那么m 的取值范围是 m<2 .4.(2017内蒙古赤峰中考)如图,二次函数y=ax 2+bx+c (a ≠0)的图象交x 轴于A ,B 两点,交y 轴于点D ,点B 的坐标为(3,0),顶点C 的坐标为(1,4).备用图(1)求二次函数的解析式和直线BD 的解析式;(2)点P 是直线BD 上的一个动点,过点P 作x 轴的垂线,交抛物线于点M ,当点P 在第一象限时,求线段PM 长度的最大值;(3)在抛物线上是否存在异于B ,D 的点Q ,使△BDQ 中BD 边上的高为2,若存在求出点Q 的坐标;若不存在请说明理由.解:(1)设二次函数的解析式为y=a (x-1)2+4.∵点B (3,0)在该二次函数的图象上, ∴0=a (3-1)2+4,解得:a=-1.∴二次函数的解析式为y=-x 2+2x+3.∵点D 在y 轴上,所以可令x=0,解得:y=3. ∴点D 的坐标为(0,3).设直线BD 的解析式为y=kx+3,把(3,0)代入得3k+3=0,解得:k=-1. ∴直线BD 的解析式为y=-x+3.(2)设点P 的横坐标为m (m>0), 则P (m ,-m+3), M (m ,-m 2+2m+3),PM=-m2+2m+3-(-m+3)=-m2+3m=-, PM最大值为(3)如图,过点Q作QG∥y轴交BD于点G,作QH⊥BD于点H,则QH=2设Q(x,-x2+2x+3),则G(x,-x+3),QG=|-x2+2x+3-(-x+3)|=|-x2+3x|.∵△DOB是等腰直角三角形,∴∠3=45°,∴∠2=∠1=45°.∴sin∠1=,∴QG=4.得|-x2+3x|=4,当-x2+3x=4时,Δ=9-16<0,方程无实数根.当-x2+3x=-4时,解得:x1=-1,x2=4,Q1(4,-5),Q2(-1,0).模拟预测1.已知二次函数y=kx2-6x+3的图象与x轴有交点,则k的取值范围是(D)A.k<3B.k<3,且k≠0C.k≤3D.k≤3,且k≠02.若点M(-2,y1),N(-1,y2),P(8,y3)在抛物线y=-x2+2x上,则下列结论正确的是(C)A.y1<y2<y3B.y2<y1<y3C.y3<y1<y2D.y1<y3<y2解:x=-2时,y1=-x2+2x=-(-2)2+2×(-2)=-2-4=-6,x=-1时,y2=-x2+2x=-(-1)2+2×(-1)=--2=-2,x=8时,y3=-x2+2x=-82+2×8=-32+16=-16.∵-16<-6<-2,∴y3<y1<y2.故选C.3.已知一元二次方程ax2+bx+c=0(a>0)的两个实数根x1,x2满足x1+x2=4和x1·x2=3,则二次函数y=ax2+bx+c(a>0)的图象有可能是()解析:∵x1+x2=4,∴-=4.∴二次函数的对称轴为x=-=2.∵x1·x2=3,=3.当a>0时,c>0,∴二次函数图象交于y轴的正半轴.4.小明在用“描点法”画二次函数y=ax2+bx+c的图象时,列了如下表格:x…-2 -1 0 1 2 …y…-6-4 -2-2 -2…根据表格中的信息回答问题:该二次函数y=ax2+bx+c在x=3时,y=-4.5.若关于x的函数y=kx2+2x-1与x轴仅有一个公共点,则实数k的值为k=0或k=-1.6.抛物线y=-x2+bx+c的图象如图,若将其向左平移2个单位长度,再向下平移3个单位长度,则平移后的解析式为.解析:由题中图象可知,对称轴x=1, 所以- =1,即b=2.把点(3,0)代入y=-x2+2x+c,得c=3.故原图象的解析式为y=-x2+2x+3,即y=-(x-1)2+4,然后向左平移2个单位,再向下平移3个单位,得y=-(x-1+2)2+4-3,即y=-x2-2x. 答案:y=-x2-2x7.如图①,若抛物线L1的顶点A在抛物线L2上,抛物线L2的顶点B也在抛物线L1上(点A与点B不重合),我们把这样的两抛物线L1,L2互称为“友好”抛物线,可见一条抛物线的“友好”抛物线可以有很多条.(1)如图②,已知抛物线L3:y=2x2-8x+4与y轴交于点C,试求出点C关于该抛物线对称轴对称的对称点D的坐标;(2)请求出以点D为顶点的L3的“友好”抛物线L4的解析式,并指出L3与L4中y同时随x增大而增大的自变量的取值范围;(3)若抛物线y=a1(x-m)2+n的任意一条“友好”抛物线的解析式为y=a2(x-h)2+k,请写出a1与a2的关系式,并说明理由.解:(1)∵抛物线L3:y=2x2-8x+4,∴y=2(x-2)2-4.∴顶点为(2,-4),对称轴为x=2,设x=0,则y=4,∴C(0,4).∴点C关于该抛物线对称轴对称的对称点D的坐标为(4,4).(2)∵以点D(4,4)为顶点的L3的友好抛物线L4还过点(2,-4),∴L4的解析式为y=-2(x-4)2+4.∴L3与L4中y同时随x增大而增大的自变量的取值范围是2≤x≤4.(3)a1=-a2,理由如下:∵抛物线L1的顶点A在抛物线L2上,抛物线L2的顶点B也在抛物线L1上,∴可以列出两个方程由①+②,得(a1+a2)(m-h)2=0,∴a1=-a2.。
人教版九年级数学上册专题三求二次函数的解析式同步测试

求二次函数的解析式一 设一般式y =ax 2+bx +c (a≠0)求二次函数的解析式(教材P40练习第2题)一个二次函数的图象经过(0,0),(-1,-1),(1,9)三点,求这个二次函数的解析式. 解:设这个二次函数的解析式为y =ax 2+bx +c (a ≠0),则⎩⎪⎨⎪⎧c =0,a -b +c =-1,a +b +c =9,解得⎩⎪⎨⎪⎧a =4,b =5,c =0,所以所求的二次函数的解析式为y =4x 2+5x .【思想方法】 若已知条件是图象上的三个点,则设所求二次函数解析式为y =ax 2+bx +c ,将已知条件代入,求出a ,b ,c 的值.如图1,抛物线的函数解析式是( D )A .y =x 2-x +2B .y =x 2+x +2C .y =-x 2-x +2D .y =-x 2+x +2【解析】 根据题意,设二次函数的解析式为y =ax 2+bx +c ,因为抛物线过点(-1,0),(0,2),(2,0),所以⎩⎪⎨⎪⎧a -b +c =0,c =2,4a +2b +c =0,解得a =-1,b =1,c =2,所以这个二次函数的解析式为y =-x 2+x +2.图1图2如图2,二次函数y =ax 2-4x +c 的图象经过坐标原点,与x 轴交于点A (-4,0).(1)求二次函数的解析式;(2)在抛物线上存在点P ,满足S △AOP =8,请直接写出点P 的坐标.解:(1)由已知条件得:⎩⎪⎨⎪⎧c =0,a ×(-4)2-4×(-4)+c =0, 解得⎩⎪⎨⎪⎧c =0,a =-1,∴此二次函数的解析式为y =-x 2-4x .(2)∵点A 的坐标为(-4,0),∴AO =4.设点P 的坐标为(x ,h ),则S △AOP =12AO ·|h |=12×4×|h |=8,解得|h |=4. ①当点P 在x 轴上方时,-x 2-4x =4,解得x =-2,∴点P 的坐标为(-2,4);②当点P 在x 轴下方时,-x 2-4x =-4,解得x 1=-2+22,x 2=-2-22,∴点P 的坐标为(-2+22,-4)或(-2-22,-4),综上所述,点P 的坐标为(-2,4)或(-2+22,-4)或(-2-22,-4).如图3,抛物线经过A (-1,0),B (5,0),C (0,-52)三点.图3(1)求抛物线的解析式;(2)点M 为x 轴上一动点,在抛物线上是否存在一点N ,使A ,C ,M ,N 四点构成的四边形为平行四边形?若存在,求点N 的坐标;若不存在,请说明理由.解:(1)设抛物线的解析式为y =ax 2+bx +c ,根据题意,得⎩⎪⎨⎪⎧a -b +c =025a +5b +c =0c =-52,解得⎩⎪⎨⎪⎧a =12b =-2c =-52, ∴抛物线的解析式为y =12x 2-2x -52; (2)存在.(i)当点N 在x 轴的下方时,如图所示,∵四边形ACNM 是平行四边形,∴CN ∥x 轴,∴点C 与点N 关于对称轴x =2对称,∵C 点的坐标为(0,-52), ∴点N 的坐标为(4,-52). (ii)当点N ′在x 轴上方时,如图所示,作N ′H ⊥x 轴于点H ,∵四边形ACM ′N ′是平行四边形,∴AC =M ′N ′,∠N ′M ′H =∠CAO ,∴Rt △CAO ≌Rt △N ′M ′H ,∴N ′H =OC ,∵点C 的坐标为(0,-52), ∴N ′H =52, 即点N ′的纵坐标为52, ∴12x 2-2x -52=52, 解得x 1=2+14,x 2=2-14.∴点N ′的坐标为(2-14,52)和(2+14,52). 综上所述,满足题目条件的点N 共有三个,分别为(4,-52),(2-14,52)和(2+14,52).二 设顶点式y =a (x +m )2+k (a≠0)求二次函数的解析式(教材P36例4)要修建一个圆形喷水池,在池中心竖直安装一根水管,在水管的顶端安一个喷水头,使喷出的抛物线形水柱在与池中心的水平距离为1 m 处达到最高,高度为3 m ,水柱落地处离池中心3 m ,水管应多长?解:以水管与地面交点为原点,原点与水柱落地处所在直线为x 轴,水管所在直线为y 轴,建立直角坐标系.点(1,3)是这段抛物线的顶点,因此可设这段抛物线对应的函数解析式是y =a (x -1)2+3(0≤x ≤3).由这段抛物线过点(3,0),可得0=a (3-1)2+3解得a =-34因此y =-34(x -1)2+3 (0≤x ≤3) 当x =0时,y =2.25,也就是说,水管应2.25 m 长.【思想方法】 若已知二次函数图象的顶点坐标或对称轴方程与最大值(或最小值),可设所求二次函数的解析式为y =a (x +m )2+k ,将已知条件代入,求出待定系数,最后将解析式化为一般形式即可.已知某二次函数的图象如图4所示,则这个二次函数的解析式为( D )图4A .y =2(x +1)2+8B .y =18(x +1)2-8C .y =29(x -1)2+8 D .y =2(x -1)2-8 一抛物线的形状、开口方向与y =12x 2-4x +3相同,顶点坐标为(-2,1),则此抛物线的解析式为( C )A .y =12(x -2)2+1 B .y =12(x +2)2-1 C .y =12(x +2)2+1 D .y =-12(x +2)2+1 【解析】 抛物线的形状、开口方向与y =12x 2-4x +3相同,所以a =12.顶点在(-2,1),所以抛物线的解析式是y =12(x +2)2+1. 已知抛物线y =x 2-2x +c 的顶点在x 轴上,你认为c 的值应为( C )A .-1B .0C .1D .2【解析】 根据题意得4c -(-2)24×1=0,所以c =1. 抛物线y =x 2-2(m +1)x +2m 2-m 的对称轴为x =3,则m 的值是( B )A .1B .2C .3D .4三 利用平移规律求二次函数的解析式(教材P34思考)抛物线y =-12(x +1)2,y =-12(x -1)2与抛物线y =-12x 2有什么关系? 解:把抛物线y =-12x 2向左平移1个单位,就得到抛物线y =-12(x +1)2;把抛物线y =-12x 2向右平移1个单位,就得到抛物线y =-12(x -1)2. 【思想方法】 (1)可按照口诀“左加右减,上加下减”写出平移后的解析式;(2)平移所得函数的解析式与平移的先后顺序无关.抛物线y =x 2-4x +3的图象向左平移2个单位后所得新抛物线的顶点坐标为( A )A .(0,-1)B .(0,-3)C .(-2,-3)D .(-2,-1)将抛物线y =x 2+x 向下平移2个单位,所得新抛物线的解析式是__y =x 2+x -2__. 在平面直角坐标系中,将抛物线y =x 2-4先向右平移2个单位,再向上平移2个单位,得到的新抛物线的解析式为( B )A .y =(x +2)2+2B .y =(x -2)2-2C .y =(x -2)2+2D .y =(x +2)2-2已知抛物线y =ax 2+bx +c 与x 轴交于点A (1,0),B (3,0),且过点C (0,-3).(1)求抛物线的解析式和顶点坐标;(2)请你写出一种平移的方法,使平移后抛物线的顶点落在直线y =-x 上,并写出平移后抛物线的解析式.图5解:(1)∵抛物线与x 轴交于点A (1,0),B (3,0),∴可设抛物线解析式为y =a (x -1)(x -3),把C (0,-3)代入得:3a =-3, 解得:a =-1,故抛物线解析式为y =-(x -1)(x -3),即y =-x 2+4x -3,∵y =-x 2+4x -3=-(x -2)2+1,∴顶点坐标为(2,1);(2)先向左平移2个单位,再向下平移1个单位,得到的抛物线的解析式为y=-x2,平移后抛物线的顶点为(0,0),落在直线y=-x上.人教版七年级上册期末测试卷一、选择题(每题3分,共30分)1.某天的最高气温是8℃,最低气温是-3℃,那么这天的温差是() A.-3℃B.8℃C.-8℃D.11℃2.下列立体图形中,从上面看能得到正方形的是()3.下列方程是一元一次方程的是()A.x-y=6 B.x-2=xC.x2+3x=1 D.1+x=34.今年某市约有108 000名应届初中毕业生参加中考,108 000用科学记数法表示为()A.0.108×106B.10.8×104C.1.08×106D.1.08×1055.下列计算正确的是()A.3x2-x2=3 B.3a2+2a3=5a5C.3+x=3x D.-0.25ab+14ba=06.已知ax=ay,下列各式中一定成立的是()A.x=y B.ax+1=ay-1C.ax=-ay D.3-ax=3-ay7.某商品每件标价为150元,若按标价打8折后,再降价10元销售,仍获利10%,则该商品每件的进价为()A.100元B.105元C .110元D .120元8.如果一个角的余角是50°,那么这个角的补角的度数是( )A .130°B .40°C .90°D .140°9.如图,C ,D 是线段AB 上的两点,点E 是AC 的中点,点F 是BD 的中点,EF =m ,CD =n ,则AB 的长是( )A .m -nB .m +nC .2m -nD .2m +n10.下列结论:①若a +b +c =0,且abc ≠0,则a +c 2b =-12;②若a +b +c =0,且a ≠0,则x =1一定是方程ax +b +c =0的解;③若a +b +c =0,且abc ≠0,则abc >0;④若|a |>|b |,则a -b a +b >0. 其中正确的结论是( )A .①②③B .①②④C .②③④D .①②③④二、填空题(每题3分,共24分)11.-⎪⎪⎪⎪⎪⎪-23的相反数是________,-15的倒数的绝对值是________. 12.若-13xy 3与2x m -2y n +5是同类项,则n m =________.13.若关于x 的方程2x +a =1与方程3x -1=2x +2的解相同,则a 的值为________.14.一个角的余角为70°28′47″,那么这个角等于____________.15.下列说法:①两点确定一条直线;②两点之间,线段最短;③若∠AOC =12∠AOB ,则射线OC 是∠AOB 的平分线;④连接两点之间的线段叫做这两点间的距离;⑤学校在小明家南偏东25°方向上,则小明家在学校北偏西25°方向上,其中正确的有________个.16.在某月的月历上,用一个正方形圈出2×2个数,若所圈4个数的和为44,则这4个日期中左上角的日期数值为________.17.规定一种新运算:a△b=a·b-2a-b+1,如3△4=3×4-2×3-4+1=3.请比较大小:(-3)△4________4△(-3)(填“>”“=”或“<”).18.如图是小明用火柴棒搭的1条“金鱼”、2条“金鱼”、3条“金鱼”……则搭n 条“金鱼”需要火柴棒__________根.三、解答题(19,20题每题8分,21~23题每题6分,26题12分,其余每题10分,共66分)19.计算:(1)-4+2×|-3|-(-5);(2)-3×(-4)+(-2)3÷(-2)2-(-1)2 018.20.解方程:(1)4-3(2-x)=5x;(2)x-22-1=x+13-x+86.21.先化简,再求值:2(x2y+xy)-3(x2y-xy)-4x2y,其中x=1,y=-1.22.有理数b在数轴上对应点的位置如图所示,试化简|1-3b|+2|2+b|-|3b-2|.23.如图①是一些小正方体所搭立体图形从上面看得到的图形,方格中的数字表示该位置的小正方体的个数.请在如图②所示的方格纸中分别画出这个立体图形从正面看和从左面看得到的图形.24.已知点O是直线AB上的一点,∠COE=90°,OF是∠AOE的平分线.(1)当点C,E,F在直线AB的同侧时(如图①所示),试说明∠BOE=2∠COF.(2)当点C与点E,F在直线AB的两侧时(如图②所示),(1)中的结论是否仍然成立?请给出你的结论,并说明理由.25.为鼓励居民节约用电,某市电力公司规定了电费分段计算的方法:每月用电不超过100度,按每度电0.50元计算;每月用电超过100度,超出部分按每度电0.65元计算.设每月用电x度.(1)当0≤x≤100时,电费为________元;当x>100时,电费为____________元.(用含x的整式表示)(2)某用户为了解日用电量,记录了9月前几天的电表读数.日期9月1日9月2日9月3日9月4日9月5日9月6日9月7日电表读123130137145153159165 数/度该用户9月的电费约为多少元?(3)该用户采取了节电措施后,10月平均每度电费0.55元,那么该用户10月用电多少度?26.如图,O为数轴的原点,A,B为数轴上的两点,点A表示的数为-30,点B表示的数为100.(1)A,B两点间的距离是________.(2)若点C也是数轴上的点,点C到点B的距离是点C到原点O的距离的3倍,求点C表示的数.(3)若电子蚂蚁P从点B出发,以6个单位长度/s的速度向左运动,同时另一只电子蚂蚁Q恰好从点A出发,以4个单位长度/s的速度向左运动,设两只电子蚂蚁同时运动到了数轴上的点D,那么点D表示的数是多少?(4)若电子蚂蚁P从点B出发,以8个单位长度/s的速度向右运动,同时另一只电子蚂蚁Q恰好从点A出发,以4个单位长度/s的速度向右运动.设数轴上的点N到原点O的距离等于点P到原点O的距离的一半(点N在原点右侧),有下面两个结论:①ON+AQ的值不变;②ON-AQ的值不变,请判断哪个结论正确,并求出正确结论的值.(第26题)答案一、1.D 2.A 3.D 4.D 5.D 6.D7.A8.D9.C10.B二、11.23;512.-813.-514.19°31′13″15.316.717.>18.(6n+2)三、19.解:(1)原式=-4+2×3+5=-4+6+5=7;(2)原式=12+(-8)÷4-1=12-2-1=9.20.解:(1)去括号,得4-6+3x=5x.移项、合并同类项,得-2x=2.系数化为1,得x=-1.(2)去分母,得3(x-2)-6=2(x+1)-(x+8).去括号,得3x-6-6=2x+2-x-8.移项、合并同类项,得2x=6.系数化为1,得x=3.21.解:原式=2x2y+2xy-3x2y+3xy-4x2y=(2x2y-3x2y-4x2y)+(2xy+3xy)=-5x2y+5xy.当x=1,y=-1时,原式=-5x2y+5xy=-5×12×(-1)+5×1×(-1)=5-5=0.22.解:由题图可知-3<b<-2.所以1-3b>0,2+b<0,3b-2<0.所以原式=1-3b-2(2+b)+(3b-2)=1-3b-4-2b+3b-2=-2b-5.23.解:如图所示.24.解:(1)设∠COF=α,则∠EOF=90°-α.因为OF是∠AOE的平分线,所以∠AOE=2∠EOF=2(90°-α)=180°-2α.所以∠BOE=180°-∠AOE=180°-(180°-2α)=2α.所以∠BOE=2∠COF.(2)∠BOE=2∠COF仍成立.理由:设∠AOC=β,则∠AOE=90°-β,又因为OF是∠AOE的平分线,所以∠AOF=90°-β2.所以∠BOE=180°-∠AOE=180°-(90°-β)=90°+β,∠COF=∠AOF+∠AOC=90°-β2+β=12(90°+β).所以∠BOE=2∠COF.25.解:(1)0.5x;(0.65x-15)(2)(165-123)÷6×30=210(度),210×0.65-15=121.5(元).答:该用户9月的电费约为121.5元.(3)设10月的用电量为a度.根据题意,得0.65a-15=0.55a,解得a=150.答:该用户10月用电150度.26.解:(1)130(2)若点C在原点右边,则点C表示的数为100÷(3+1)=25;若点C在原点左边,则点C表示的数为-[100÷(3-1)]=-50.故点C表示的数为-50或25.(3)设从出发到同时运动到点D经过的时间为t s,则6t-4t=130,解得t=65.65×4=260,260+30=290,所以点D表示的数为-290.(4)ON-AQ的值不变.设运动时间为m s,则PO=100+8m,AQ=4m. 由题意知N为PO的中点,得ON=12PO=50+4m,所以ON+AQ=50+4m+4m=50+8m,ON-AQ=50+4m-4m=50.故ON-AQ的值不变,这个值为50.。
九年级数学人教版第二十二章二次函数22.1.1二次函数定义(同步课本知识图文结合例题详解)

九年级数学第22章二次函数
问题3: 某工厂一种产品现在的年产量是20件,计划今后两
年增加产量.如果每年都比上一年的产量增加x倍,那么两
年后这种产品的产量y将随计划所定的x的值而确定,y与x
之间的关系应怎样表示?
这种产品的原产量是20件,一年后的产量是_2_0_(_1_+_x_)件,
再经过一年后的产量是_____2_0_(_1_+_x_)_(_1件+x,) 即两年后的
2
是二次函数关系.
九年级数学第22章二次函数
4.某工厂计划为一批长方体形状的产品涂上油漆,长方体的长 和宽相等,高比长多0.5m. (1)长方体的长和宽用x(m)表示,长方体需要涂漆的表面积 S(m2)如何表示? (2)如果涂漆每平米所需要的费用是5元,涂漆每个长方体所需 要费用用y(元)表示,那么y的表达式是什么? 解析:(1)S=2x2+x(x+0.5)×4=6x2+2x (2)y=5S=5×(6x2+2x)
2.如果函数y=(k-3)xk2 3k 2 +kx+1是二次函数,则k的值
一定是__0____.
九年级数学第22章二次函数
3.用总长为60m的篱笆围成矩形场地,场地面积S(m²)与矩 形一边长a(m)之间的关系是什么?是函数关系吗?是哪一 种函数? 解析:S=a( 60 -a)=a(30-a)=30a-a²=-a²+30a.
函 数
关系Leabharlann 一次函数y=kx+b(k≠0)
正比例函数 y=kx(k≠0)
反比例函数
y= k (k≠0)
x
二次函数
九年级数学第22章二次函数
问题1:
正方体六个面是全等的正方形,设正方体棱长为 x ,表 面积为 y ,则 y 关于x 的关系式为_y_=6_x2____.
九年级数学 二次函数的解析式三种形式
二次函数的解析式三种形式(1)一般式:(a,b,c是常数,a≠0);(2)顶点式:(a,h,k是常数,a≠0)(3)当抛物线与x轴有交点时,即对应二次好方程有实根x1和x2存在时,根据二次三项式的分解因式,二次函数可转化为两根式。
如果没有交点,则不能这样表示。
二次函数的一般形式的结构特征:①函数的关系式是整式;②自变量的最高次数是2;③二次项系数不等于零。
定义:一般地,如果(a,b,c是常数,a≠0),那么y 叫做x 的二次函数。
①所谓二次函数就是说自变量最高次数是2;②二次函数(a≠0)中x、y是变量,a,b,c是常数,自变量x 的取值范围是全体实数,b和c可以是任意实数,a 是不等于0的实数,因为a=0时,变为y=bx+c若b≠0,则y=bx+c是一次函数,若b=0,则y=c是一个常数函数。
③二次函数(a≠0)与一元二次方程(a≠0)有密切联系,如果将变量y换成一个常数,那么这个二次函数就是一个一元二次函数。
二次函数的判定:二次函数的一般形式中等号右边是关于自变量x的二次三项式;当b=0,c=0时,y=ax2是特殊的二次函数;判断一个函数是不是二次函数,在关系式是整式的前提下,如果把关系式化简整理(去括号、合并同类项)后,能写成(a≠0)的形式,那么这个函数就是二次函数,否则就不是。
考点分析1.二次函数的概念、图像和性质2.二次函数的图像与字母系数的关系3.确定二次函数的解析式4.二次函数与一元二次方程以及不等式之间的关系5.二次函数图像常见的变换思想方法基本思想:数形结合,从二次函数的图像研究其开口方向、对称轴、顶点坐标、增减性、最值及其图像的平移变化,到利用二次函数图像求解方程与方程组,再到利用图像求解析式和解决实际问题,都体现了数形结合的思想真题精选例题精讲类型一二次函数的解析式【解后感悟】解题关键是选择合适的解析式:当已知抛物线上三点求二次函数的关系式时,一般采用一般式y=ax^2+bx+c(a≠0);当已知抛物线顶点坐标(或对称轴及最大或最小值)求关系式时,一般采用顶点式y=a(x-h)^2+k;当已知抛物线与x轴的交点坐标求二次函数的关系式时,一般采用交点式y=a(x-x1)(x-x2).类型二二次函数的图像、性质【解后感悟】解题关键是正确把握解析式的特点、图像的特点、二次函数的性质,注意数形结合.类型三二次函数的图像变换【解后感悟】①平移的规律:左加右减,上加下减;②对称的规律:关于x轴对称的两点横坐标相同,纵坐标互为相反数;关于y轴对称的两点纵坐标相同,横坐标互为相反数;关于原点对称的两点横、纵坐标均互为相反数;③旋转的规律:旋转后的抛物线开口相反,顶点关于旋转点对称.类型四二次函数的综合问题【分析】(1)由对称轴直线x=2,以及A点坐标确定出b与c的值,即可求出抛物线解析式;(2)由抛物线的对称轴及BC的长,确定出B与C的横坐标,代入抛物线解析式求出纵坐标,确定出B与C坐标,利用待定系数法求出直线AB解析式,作出直线CP,与AB交于点Q,过Q作QH⊥y轴,与y轴交于点H,BC与y轴交于点M,由已知面积之比求出QH的长,确定出Q横坐标,代入直线AB解析式求出纵坐标,确定出Q坐标,再利用待定系数法求出直线CQ解析式,即可确定出P的坐标.【解后感悟】抛物线与x轴的交点问题;二次函数的性质;待定系数法的应用;曲线上点的坐标与方程的关系;相似三角形的判定和性质.类型五二次函数的应用【解后感悟】此题是二次函数的应用,准确分析题意,列出y与x之间的二次函数关系式是解题关键.热点题型专题小结二次函数是中考必考题型。
22.2二次函数与一元二次方程
4
已知二次函数y=ax2+bx+c的最大值是2, 图象顶点在直线y=x+1上,并且图象经过 点(3,-6)。求a、b、c。
解:∵二次函数的最大值是2 ∴抛物线的顶点纵坐标为2 又∵抛物线的顶点在直线y=x+1上 ∴当y=2时,x=1 ∴顶点坐标为( 1 , 2) ∴设二次函数的解析式为y=a(x-1)2+2 又∵图象经过点(3,-6) ∴-6=a (3-1)2+2 ∴a=-2 ∴二次函数的解析式为y=-2(x-1)2+2 即: y=-2x2+4x
所以 y1 x 1 ,P(3,4)。因为点P(3,4) 在抛物线 y1 2x2 8x k 8上,所以有4=18-
24+k+8 解得 k=2
所以 y1 2x2 8x 10
(2)依题意,得
y x 1
y
2x2
8x
10
解这所个以方抛程物组线,与得直线xy11 的34 两xy22个12交..55 点坐标分别是(3,
人教版九年级数学上册
22.2 二次函数与一元二次方程
方法小结
用待定系数法确定二次函数解析式的 基本方法分四步完成: 一设、二代、三解、四还原
一设:指先设出适当二次函数的解析式
二代:指根据题中所给条件,代入二次函数的 解析式,得到关于a、b、c的方程组 三解:指解此方程或方程组 四还原:指将求出的a、b、c还原回原解析式中
15 m
1s
3s
(2)球的飞行高度能否达到20m? 若能,需要多少时间?
h=20t–5t2
20 m
2s
解:(2)当 h = 20 时,20t – 5t 2 = 20 t 2 - 4 t +4 = 0 t1=t2=2 当球飞行 2s 时,它的高度为 20m .
人教版 九年级数学讲义 二次函数的概念及解析式(含解析)
第4讲 二次函数的概念与解析式知识定位讲解用时:3分钟A 、适用范围:人教版初三,基础一般B 、知识点概述:本讲义主要用于人教版初三新课,本节课我们主要学习一类新函数——二次函数,重点掌握二次函数的概念以及三种解析式,能够准确判断函数的类型,能够根据点的坐标求出二次函数的解析式,本节课的难点在于三种解析式之间的区分,需要学生能够根据点的坐标特点准确选择合适的解析式形式进行求解。
知识梳理讲解用时:20分钟二次函数的定义 (1)定义 一般地,形如c bx ax y ++=2(其中a 、b 、c 是常数,且0a ≠)的函数叫做二次函数,其中a 称为二次项系数,b 为一次项系数,c 为常数项,a ≠0,b 或c 可以为0。
判断函数是否是二次函数,首先是要看它的右边是否为整式,若是整式且仍能化简的要先将其化简,然后再根据二次函数的定义作出判断,要抓住二次项系数不为0这个关键条件。
(2)定义域一般情况下,二次函数的定义域为一切实数,而在具体问题中,函数的定义域根据实际意义来确定。
课堂精讲精练【例题1】下列函数中,二次函数是( )。
A .y=﹣4x+5B .y=x (2x ﹣3)C .y=(x+4)2﹣x 2D .21x y =【答案】B【解析】本题考查了二次函数的定义,A 、y=﹣4x+5为一次函数;B 、y=x (2x ﹣3)=2x 2﹣3x 为二次函数;C 、y=(x+4)2﹣x 2=8x+16为一次函数;D 、21xy =不是二次函数,故选:B . 讲解用时:2分钟解题思路:根据二次函数的定义,逐一分析四个选项即可得出结论。
教学建议:牢记二次函数的定义即可。
难度:3 适应场景:当堂例题 例题来源:资中县一模 年份:2018【练习1】下列函数中,y 关于x 的二次函数是( )。
A .y=ax 2+bx+cB .y=x (x ﹣1)C .21x y =D .y=(x ﹣1)2﹣x 2【答案】B【解析】本题考查了二次函数的定义,A 、当a=0时,y=bx+c 不是二次函数;B 、y=x (x ﹣1)=x 2﹣x 是二次函数;C 、21x y =不是二次函数; D 、y=(x ﹣1)2﹣x 2=﹣2x+1为一次函数,故选:B .讲解用时:2分钟解题思路:根据二次函数的定义,逐一分析四个选项即可得出结论。
人教版九年级数学上册(教案):22.1用待定系数法求解析式
举例:已知二次函数图像开口向上,且过点(1,0)和(3,0),求解该二次函数的解析式。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《用待定系数法求解析式》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要根据已知信息来确定一个函数关系的情况?”(例如:根据已知的价格和数量来计算总价)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索待定系数法的奥秘。
五、教学反思
在今天的教学过程中,我发现学生们对待定系数法的理解程度参差不齐。有的同学能够迅速掌握基本原理,而有的同学在建立方程组和进行符号运算时遇到了困难。这让我意识到,在今后的教学中,我需要更加关注学生的个体差异,针对性地进行辅导。
在讲授新课的过程中,我尝试通过生动的案例和实际问题引入待定系数法的概念,大多数同学都能够积极参与,表现出较高的兴趣。但在实践活动和小组讨论环节,我发现部分同学在将理论应用到具体问题时还是显得有些吃力。这说明我在教学中需要更多地结合实际例子,让学生在实践中掌握待定系数法的应用。
(2)求解过程中的符号运算:在求解过程中,学生可能会在符号运算上出错,如正负号、乘除运算等。教师需提醒学生注意运算符号,并培养他们的细心和耐心。
(3)应用待定系数法解决实际问题:将待定系数法应用于解决实际问题,如求直线、抛物线的方程等,需要学生具备较强的抽象思维能力和逻辑推理能力。
举例:已知直线l过点A(2,3)和B(-1,1),求解直线l的解析式。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
求二次函数的解析式(一)
【学习目标】1.掌握已知三点,会用一般式求函数的表达式;
2.掌握已知顶点及一点或对称轴或函数的最值,用顶点式求函数的表达式。
3.掌握已知两根及一点,用两根式求函数解析式。
【学习重点】用一般式、顶点式求函数的表达式。
【学习难点】用顶点式和两根式求函数的表达式。
【学习过程】
一、学习准备:
1.已知一次函数经过点(1,2),(-1,0),则一次函数的解析式为 。
2.二次函数的一般式为 ,二次函数的顶点
式 ,二次函数的两根式(或交点式)为 。
二、方法探究(一)——已知三点,用一般式求函数的表达式。
3.例1 二次函数的图象经过(0,2),(1,1),(3,5)三点,求二次函数的解析式。
4.即时练习 已知抛物线经过A(-1,0),B(1,0),C(0,1)三点,求二次函数的解析式。
三、方法探究(二)——已知顶点及一点或对称轴或函数的最值,用顶点式求出函数的解析式。
5.例2 已知抛物线的顶点坐标为(-2,3),且经过点(-1,7),求函数的解析式。
解:设抛物线的解析式为2()yaxhk。
把顶点(-2,3),即h=-2 , k=3 代入表达式为
2
(2)3yax
再把(-1,7)代入上式为
2
7(12)3a
解得4a
所以函数解析式为24(2)3yx
即241619yxx
6.即时练习 (1)抛物线经过点(0,-8),当1x时,函数有最小值为-9,求抛物线的解析式。
(2)已知二次函数2()yaxhk,当2x时,函数有最大值2,其过点(0,2),求这个二次函数
的解析式。
四、方法探究(三)——已知两根及一点或对称轴或函数的最值,用两根式求出函数的解析式。
7.例3 已知抛物线经过(-1,0),(3,0),且过(2,6)三点,求二次函数的表达式。
解:设抛物线的解析式为12()()yaxxxx
把抛物线经过的(-1,0),(3,0)两点代入上式为:
(1)(3)yaxx
再把(2,6)带入上式为6(21)(3)ax
解得2a
所以函数的解析式为2(1)(3)yxx
即2246yxx
8.即时练习 已知抛物线经过A(-2,0),B(4,0),C(0,3),求二次函数的解析式。
五、反思小结——求二次函数解析式的方法
1.已知三点,求二次函数解析式的步骤是什么?
2.用顶点式求二次函数的解题思路是:已知顶点及一点或对称轴或函数的最值,用顶点式求解析式比较简
单。
3.用两根式求二次函数的解题思路是:已知两根及一点或对称轴或函数的最值,用两根式求解析式比较简
单。
【达标测评】求下列二次函数的解析式:
1.图象过点(1,0)、(0,-2)和(2,3)。
2.当x=2时,y最大值=3,且过点(1,-3)。
3.图象与x轴交点的横坐标分别为2和-4,且过点(1,-10)
求二次函数的解析式(二)
【学习目标】1.了解二次函数的三种表示方式;
2.会灵活地运用适当的方法求二次函数的解析式。
【学习重点】灵活地运用适当的方法求二次函数的解析式。
【学习过程】
一、学习准备
1.函数的表示方式有三种: 法, 法, 法。
2.二次函数的表达式有: 、 , 。
二、典型例题——用适当的方法求出二次函数的表达式
3.例1 已知抛物线2(0)yaxbxca与x轴的两个交点的横坐标是-1,3,顶点坐标是(1,-
2),求函数的解析式(用三种方法)
4.即时练习:用适当的方法求出二次函数的解析式。
一条抛物线的形状与2yx相同,且对称轴是直线12x,与y轴交于点(0,1),求抛物线的解析式。
5.例2 已知如图,抛物线baxaxy22与x轴的一个交点为A(-1,0),与y轴的正半轴交于点C。
⑴直接写出抛物线的对称轴,及抛物线与x轴的另一个交点B的坐标;
⑵当点CO=3时,求抛物线的解析式。
6.即时练习:已知直线y=2x-4与抛物线y=ax2+bx+c的图象相交于A(-2,m),B(n,2)两点,且抛物线
以直线x=3为对称轴,求抛物线的解析式。
三、反思小结——求二次函数解析式的方法
1.已知三点或三对x、y的对应值,通常用2(0)yaxbxca。
2.已知图象的顶点或对称轴,通常用2()(0)yaxhka。
3.已知图象与x轴的交点坐标,通常用12()()(0)yaxxxxa。
四、巩固训练
1.已知二次函数图象的顶点坐标为C(1,0),该二次函数的图象与x轴交于A、B两点,其中A点的坐标为
(4,0)。
(1)求B点的坐标
(2)求这个二次函数的关系式;
2.如图,在平面直角坐标系中,直线33yx与x轴交于点A,与y轴交于点C,抛物线
2
23
(0)3yaxxca
经过ABC,,三点。
A
O
x
y
B
F
C
(1)求过ABC,,三点抛物线的解析式并求出顶点F的坐标。
(2)在抛物线上是否存在点P,使ABP△为直角三角形,若存在,直接写出P点坐标;
若不存在,请说明理由。