三角恒等变换教案
三角恒等变换教案

三角恒等变换教案一、教学目标1. 知识与技能:(1)理解三角恒等变换的概念和意义;(2)掌握三角恒等变换的基本公式;(3)能够运用三角恒等变换解决实际问题。
2. 过程与方法:(1)通过观察、分析、归纳三角恒等变换的规律;(2)培养学生的逻辑思维能力和运算能力。
3. 情感态度与价值观:(1)激发学生对数学的兴趣和探究欲望;(2)培养学生的团队合作意识和克服困难的勇气。
二、教学内容1. 三角恒等变换的概念和意义;2. 三角恒等变换的基本公式;3. 三角恒等变换的运用。
三、教学重点与难点1. 教学重点:(1)三角恒等变换的概念和意义;(2)三角恒等变换的基本公式;(3)三角恒等变换的运用。
2. 教学难点:(1)三角恒等变换公式的灵活运用;(2)解决实际问题时的变形和计算。
四、教学方法1. 采用问题驱动法,引导学生主动探究三角恒等变换的规律;2. 通过示例讲解,让学生掌握三角恒等变换的基本公式;3. 利用练习题和小组讨论,提高学生的实际应用能力和团队合作意识。
五、教学过程1. 导入新课:(1)复习相关三角函数知识;(2)提问:什么是三角恒等变换?为什么学习三角恒等变换?2. 知识讲解:(1)讲解三角恒等变换的概念和意义;(2)介绍三角恒等变换的基本公式;(3)示例讲解:如何运用三角恒等变换解决实际问题。
3. 课堂练习:(1)布置练习题,让学生独立完成;(2)选取部分学生的作业进行讲解和评价。
4. 小组讨论:(1)让学生分组讨论,分享解题心得和经验;5. 课堂小结:(1)回顾本节课所学内容;(2)强调三角恒等变换在数学和实际生活中的重要性。
6. 课后作业:(1)布置巩固练习题;(2)鼓励学生自主学习,深入探究三角恒等变换的运用。
六、教学评价1. 课堂表现评价:观察学生在课堂上的参与程度、提问回答的正确性以及与同学的合作情况。
2. 练习作业评价:检查学生作业的完成质量,包括答案的正确性、解题方法的合理性以及书写的规范性。
三角恒等变换教案

三角恒等变换一、基础知识1、两角和与差的余弦cos(α+β)= cos(α-β)= 两角和与差的正弦sin(α+β)= sin(α-β)= 两角和与差的正切tan(α+β)= tan(α-β)= (α,β,α+β,α-β均不等于k π+π2,k ∈Z )同角基本公式: ;;2、辅助角公式a sin α+b cos α=a 2+b 2sin(α+φ),其中⎩⎪⎨⎪⎧cos φ= ,sin φ= ,tan φ=ba,角φ称为辅助角.3、二倍角的正弦、余弦、正切公式(1)sin2α=_____________;(2)cos2α=_____________=________________=______________; (3)tan 2α=_______________ (α≠k π2+π4且α≠k π+π2).4、半角的正弦、余弦、正切公式=αsin ________________; =αcos ______________=________________=_____________=αtan ________________5、公式的逆向变换及有关变形(1)sin αcos α=______________⇒cos α=sin 2α2sin α;(2)降幂公式:sin 2α=________________,cos 2α=__________________; (3)升幂公式:1+cos α=____________,1-cos α=________________; (4)1±sin 2α=sin 2α+cos 2α±2sin αcos α=_________________. (5) |2cos2sin|sin 1ααα+=+, |2c o s 2s i n |s i n 1ααα-=-二、例题练习三角函数恒等变换“四大策略”(1)常值代换:特别是“1”的代换,1=sin 2θ+cos 2θ=tan 45°等;(2)项的分拆与角的配凑:如sin 2α+2cos 2α=(sin 2α+cos 2α)+cos 2α,α=(α-β)+β等; (3)降次与升次:正用二倍角公式升次,逆用二倍角公式降次; (4)弦、切互化:一般是切化弦.考点1 两角和与差的正弦、余弦、正切公式 例1、已知1312cos -=θ,)23,(ππθ∈,求)4tan(πθ-的值.变式1、已知tan ⎝⎛⎭⎫π4+α=2,tan β=12. (1)求tan α的值; (2)求sin (α+β)-2sin αcos β2sin αsin β+cos (α+β)的值.考点2、辅助角公式例3、化简(1)x x cos 53sin 153+ (2)x x cos sin - (3))4cos(46)4sin(x x -+-ππ42考点3二倍角与半角 例4、(1)求125cos12cosππ的值. (2)已知135sin =α,),2(ππα∈,求α2sin 、α2cos 、α2tan变式2、若,53)4cos(=-απ则=α2sin ________________;例5、函数x x y 2sin cos 22+=的最小值是_____________;变式1、求函数y =7-4sin x cos x +4cos 2x -4cos 4x 的最大值和最小值.三、综合练习 例1、求值(1)︒︒-︒20cos 20sin 10cos 2;例2、若51)cos(=+βα,53)cos(=-βα,则=βαtan tan _________.例3、已知6πβα=+,且α、β满足0tan 3tan 2)tan (tan 3=+++βαβαa ,则αt a n 等于________;例4、已知sin(π4+2α)·sin(π4-2α)=14,α∈(π4,π2),求2sin 2α+tan α-1tan α-1的值.例5、已知函数f (x )= 4cos 4x -2cos 2x -1sin ⎝⎛⎭⎫π4+x sin ⎝⎛⎭⎫π4-x .(1)求f ⎝⎛⎭⎫-11π12的值; (2)当x ∈⎣⎡⎭⎫0,π4时,求g (x )=12f (x )+sin 2x 的最大值和最小值.例6、对任意R y x ∈,,)42cos()42sin(2cos sin ππ-++-=+y x yx y x 恒成立,则=2413cos 247sinππ______________课堂练习1.求下列各式的值:(1)︒︒+︒︒55cos 10cos 35cos 80cos ; (2)12cos 312sin ππ-;(3)12cos12sin ππ+;2.已知2tan =x ,则=-)4(2tan πx ( )A.34B.34-C.43D.43-3.函数x x y cos sin +=图象的一条对称轴方程是 ( )A .x =5π4B .x =3π4C .x =-π4D .x =-π24.若0sin )cos(cos )sin(=+-+ββαββα,则=-++)2sin()2sin(βαβα( ) A.1 B.-1 C.0 D.1±5.已知α是第三象限角,且2524sin -=α,则2tan α等于( ).A.43-B.43C.34D.34-6.已知0<α<π,3sin 2α=sin α,则cos(α-π)等于 ( )A.13 B .-13 C.16 D .-167.=⋅+αααα2cos cos 2cos 12sin 22( ) A.αtan B.α2tan C.1 D.21检测题1.52)tan(=+βα,41)5tan(=-πβ,那么)5tan(πα+的值为_________.2.在ABC ∆中,若B A B A cos cos sin sin <,则这个三角形是________三角形.3.函数x x x f 2sin cos 2)(2+=的最小值是_________.4.设sin α=35)(παπ<<2 ,tan(π-β)=12,则tan(α-β)=________.5.已知53)3cos(-=+απ,135)32sin(=-βπ,且πβπα<<<<20,则)cos(αβ-的值为_______.6.=︒-︒80sin 310sin 1_________.7、已知函数21)cos (sin cos )(-+=x x x x f . (1)若20πα<<,且22sin =α,求)(αf 的值; (2)求函数)(x f 的最小正周期及单调递增区间.课堂提升1.若31)6sin(=-απ,则)3cos(απ+的值为( ) A.31- B.31C.322D.322-2.已知534sin )3sin(-=++απα,则)32cos(πα+等于( ) A .-45B .-35C.35D.453.已知tan(α+β)=25,41)4tan(=-πβ,那么)4tan(πα+等于 ( )A.1318B.1322C.322D.164.若f (x )=2tan x -2sin 2x 2-1sin x 2cos x 2,则)12(πf 的值为 ( )A .-433B .8C .4 3D .-4 35.33cos sin =+αα,则=α2cos ( ) A.35- B.95- C.±95 D.±356.)40sin(5)10cos(3)(︒--︒-=x x x f 的最大值是( ) A.211 B.213C.7D.8 7.若),2(ππα∈,且412cos sin 2=+αα,则αtan 的值等于( ) A. -3 B.33C. 3D.±38.已知)4,0(,πβα∈,412tan 12tan2=-αα,且)2sin(sin 3βαβ+=,则=+βα( ) A.6π B.4π C.3π D.125π9.已知tan α、tan β是方程x 2+33x +4=0的两根,且α、β∈),(22ππ-,则tan(α+β)=__________,α+β的值为________.10.若)4sin(2cos παα-=-22,则cos α+sin α的值为___11.设α为锐角,若54)6cos(=+πα,则)122sin(πα+的值为________.12.若),2(ππθ∈,且)4sin(2cos 3θπθ-=,则=θ2sin _______.13.21)2sin(cos cos sin 3)(-+-=x x x x x f π(1)求f (x )的最小正周期; (2)当]2,0[π∈x 时,求函数f (x )的最大值和最小值.检测题1.已知函数)2cos()sin()(θθ+++=x a x x f ,其中R ∈α,)2,2(ππθ-∈. (1)若2=a ,4πθ=时,求f (x )在区间],0[π上的最大值与最小值;(2)若0)2(=πf ,1)(=πf ,求α、θ的值.2.设函数f (x )= ,x ∈R 。
321简单的三角恒等变换教学设计

根据角度在直角三角形中的对边、邻边和斜边的比值,定义了正弦、余弦和正 切等三角函数。
三角函数的性质
包括周期性、奇偶性、增减性、最值等。例如,正弦函数和余弦函数具有周期 性,周期为2π;正切函数具有周期性,周期为π,并且在每一个周期内是增函 数。
三角函数图像与变换
三角函数图像
正弦函数、余弦函数和正切函数的图像分别是正弦曲线、余 弦曲线和正切曲线。这些图像具有特定的形状和性质,如振 幅、周期、相位等。
三角函数问题具有重要意义。
通过本课程的学习,学生将掌握 三角恒等变换的基本方法和技巧 ,提高数学素养和解决问题的能
力。
教学目标与要求
知识目标
掌握基本的三角恒等变换公式, 如和差化积、积化和差、倍角公
式等。
能力目标
能够运用三角恒等变换解决简单的 三角函数问题,如求值、化简、证 明等。
情感目标
培养学生对数学的兴趣和热爱,提 高学生的数学素养和审美能力。
角的变换法
通过角的变换,将所求角用已知角表示,然后代 入公式计算。
3
公式变形法
将公式进行变形,使得所求值能够直接代入计算 。
证明类问题解决方法
分析法
从结论出发,逆向思维, 寻找使结论成立的条件, 逐步推导至已知条件。
综合法
从已知条件出发,通过逐 步推导,得出结论。
比较法
通过比较两个表达式之间 的差异,寻找联系,从而 证明结论。
题目二
化简 $sin^2alpha cos^2beta + cos^2alpha sin^2beta$。
题目三
求 $sin 2alpha cos 2beta + cos 2alpha sin 2beta$ 的值。
第三章三角恒等变换教案

高中数学必修4 第3章 三角恒等变换 3.1.1 两角差的余弦公式一、教学目标掌握用向量方法建立两角差的余弦公式.通过简单使用,使学生初步理解公式的结构及其功能,为建立其它和(差)公式打好基础. 二、教学重、难点1. 教学重点:通过探索得到两角差的余弦公式;2. 教学难点:探索过程的组织和适当引导,这里不但有学习积极性的问题,还有探索过程必用的基础知识是否已经具备的问题,使用已学知识和方法的水平问题,等等. 三、教学设想: (一)导入:问题1: 我们在初中时就知道 2cos 452=,3cos302=,由此我们能否得到()cos15cos 4530?=-=大家能够猜测,是不是等于cos 45cos30-呢?根据我们在第一章所学的知识可知我们的猜测是错误的!下面我们就一起探讨两角差的余弦公式()cos ?αβ-= (二)探讨过程:在第一章三角函数的学习当中我们知道,在设角α的终边与单位圆的交点为1P ,cos α等于角α与单位圆交点的横坐标,也能够用角α的余弦线来表示。
思考?.1角函数线来探求公式怎样联系单位圆上的三(1) 怎样构造角β和角αβ-?(注意:要与它们的正弦线、余弦线联系起来.)?)2(的余弦线和余弦线的正弦线怎样作出角βαβα-,、、思考2:怎样联系向量的数量积探求公式?(1)结合图形,明确应该选择哪几个向量,它们是怎样表示的?(2)怎样利用向量的数量积的概念的计算公式得到探索结果? 两角差的余弦公式:βαβαβαsin sin cos cos )cos(⋅+⋅=-(三)例题讲解例1、利用和、差角余弦公式求cos 75、cos15的值. 解:分析:把75、15构造成两个特殊角的和、差.()231cos75cos 4530cos 45cos30sin 45sin 30222=+=-=⨯=()231cos15cos 4530cos 45cos30sin 45sin 302222=-=+=⨯=点评:把一个具体角构造成两个角的和、差形式,有很多种构造方法,例如:()cos15cos 6045=-,要学会灵活使用.例2、已知4sin 5α=,5,,cos ,213παπββ⎛⎫∈=- ⎪⎝⎭是第三象限角,求()cos αβ-的值.解:因为,2παπ⎛⎫∈ ⎪⎝⎭,4sin 5α=由此得3cos 5α===-又因为5cos ,13ββ=-是第三象限角,所以12sin 13β===-所以3541233cos()cos cos sin sin 51351365αβαβαβ⎛⎫⎛⎫⎛⎫-=+=-⨯-+⨯-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭点评:注意角α、β的象限,也就是符号问题.思考:此题中没有),2ππα⎝⎛∈,呢? (四)练习:不查表计算以下各式的值:︒︒+︒︒20sin 80sin 20cos 80cos 1)(︒+︒15sin 2315cos 212)(解: ︒︒+︒︒20sin 80sin 20cos 80cos 1)( 2160cos )2080cos(=︒=︒-︒= (五)小结:两角差的余弦公式,首先要理解公式结构的特征,理解公式的推导过程,熟知由此衍变的两角和的余弦公式.在解题过程中注意角α、β的象限,也就是符号问题,学会灵活使用.(1)牢记公式.S S C C C ⋅+⋅=-)(βα(2)在“给值求值”题型中灵活处理已、未知关系. (六)作业3.1.2两角和与差的正弦、余弦、正切公式一、教材分析本节的主要内容是两角和与差的正弦、余弦和正切公式,为了引起学生学习本章的兴趣,理解以两角差的余弦公式为基础,推导两角和、差正弦和正切公式的方法,体会三角恒等变换特点的过程,理解推导过程,掌握其应用从而激发学生对本章内容的学习兴趣和求知欲。
三角恒等变换教案

三角恒等变换教案一、教学目标1. 知识与技能:(1)理解三角恒等变换的概念和意义;(2)掌握三角恒等变换的基本公式;(3)能够运用三角恒等变换解决实际问题。
2. 过程与方法:(1)通过观察和分析,培养学生的逻辑思维能力;(2)通过练习和应用,提高学生解决实际问题的能力。
3. 情感态度与价值观:(1)培养学生对数学学科的兴趣和好奇心;(2)培养学生的团队合作意识和解决问题的自信心。
二、教学内容1. 三角恒等变换的概念和意义(1)引入三角函数的定义和图像;(2)解释三角恒等变换的含义和作用。
2. 三角恒等变换的基本公式(1)sin(α±β)的公式;(2)cos(α±β)的公式;(3)tan(α±β)的公式。
三、教学过程1. 导入(1)复习相关三角函数的定义和图像;(2)提出问题,引导学生思考三角恒等变换的必要性。
2. 新课讲解(1)讲解三角恒等变换的概念和意义;(2)引导学生推导三角恒等变换的基本公式。
3. 练习与应用(1)布置相关的练习题,巩固学生对三角恒等变换的理解;(2)引导学生运用三角恒等变换解决实际问题。
四、教学评价1. 课堂讲解的评价:(1)观察学生在课堂上的参与度和理解程度;(2)通过提问和回答,检查学生对三角恒等变换的理解。
2. 练习题的评价:(1)检查学生完成练习题的情况和答案的正确性;(2)分析学生在解题过程中存在的问题和错误,及时进行反馈和指导。
五、教学资源1. 教学PPT:包含三角恒等变换的概念、意义和基本公式的讲解;2. 练习题:提供相关的练习题,供学生巩固和应用所学知识;3. 教学参考书:提供详细的三角恒等变换的讲解和例题。
六、教学策略1. 案例分析:通过分析具体的三角函数例子,让学生理解恒等变换的应用。
2. 小组讨论:让学生分组讨论三角恒等变换的性质,促进学生之间的交流和合作。
3. 问题解决:设计一些实际问题,让学生运用所学的三角恒等变换知识去解决,提高学生的应用能力。
数学必修4教学案:3.2 简单的三角恒等变换(教学案)

数学必修4教学案:3.2 简单的三角恒等变换(教学案)数学必修4教学案:3.2简单的三角恒等变换(教、学案)3.2简单三角恒等式变换【教学目标】能够用所学公式简化、评估和证明三角函数公式,引导学生推导半角公式、和差公式和和差积公式(公式不需要记忆),使学生进一步提高运用变换、变换、方程等数学思想解决问题的能力。
【教学重点、难点】教学重点:引导学生学习三角变换的内容、思想和方法,了解三角变换的特点,在现有公式的基础上提高其推理和计算能力,并以半角公式、和差公式和和差积公式的推导为基础训练。
教学难点:认识三角变换的特点,并能运用数学思想方法指导变换过程的设计,不断提高从整体上把握变换过程的能力。
【教学过程】回顾介绍:回顾角度倍增公式s2?、c2、t2?首先,让学生写下三倍角度的公式,注意等号两侧角度之间的关系,并特别注意C2?。
既然我们可以用单角度来表示双角度,我们可以用双角度来表示单角度吗?半角公式的推导和理解:例1、试以cos?表示sin2?2,cos2?2,tan22?2.分析:我们可以通过双角度cos??2cos角度公式?第二代?,21和cos??1?2sin2?2来做此题.(二倍(一代人?)22解决方案:cos??1.因为什么??2cos2?2.你能得到sin2吗?2.1.余弦?;2.2.1.你能得到Cos2吗?2.1.因为?。
2.你能用两个公式除以Tan 2吗?2.2.1.因为?。
?1.余弦?cos22sin2?Sin评论:⑴ 上述结果也可以表示为:21cos21cos2cos2tan21cos1cos并称之为半角公式(不要求记忆),符号由2角的象限决定。
⑵ 在三角函数公式的简化、求值和证明中,广泛使用了降幂和增幂公式以及降幂和增幂公式。
⑶ 代数变换通常侧重于公式的子结构形式的变换。
三角恒等式变换通常首先寻找公式中包含的角度之间的联系,并在此基础上选择合适的公式来联系它们,这是三角恒等式变换的一个重要特征。
三角恒等变换教案

2024/1/30
1
目录
2024/1/30
• 引言 • 三角恒等变换基本概念 • 三角恒等变换公式推导 • 三角恒等变换在解题中的应用 • 学生自主思考与探究 • 课堂练习与巩固提高
2
01
引言
2024/1/30
3
教学目标
知识与技能
掌握三角恒等变换的基本公式,能够 熟练运用公式进行三角函数的化简、 求值和证明。
情感态度与价值观
激发学生的学习兴趣,培养学生的数 学应用意识和创新精神,提高学生的 数学素养。
过程与方法
通过实例引入三角恒等变换的概念, 引导学生探究三角恒等变换的规律和 特点,培养学生的逻辑思维能力和数 学运算能力。
2024/1/30
4
教学内容
2024/1/30
三角恒等变换的基本公式
01
包括和差角公式、倍角公式、半角公式等。
三角恒等变换的应用
02
包括化简三角函数式、求三角函数的值、证明三角恒等式等。
三角恒等变换的解题技巧
03
包括观察法、配方法、换元法等。
5
教学重点与难点
教学重点
三角恒等变换的基本公式及其应用。
教学难点
三角恒等变换的灵活运用和解题技巧。
2024/1/30
突破方法
通过大量练习和典型例题的分析,帮助学生掌握三角恒等变换的规律和特点,提高学生的 解题能力。同时,注重培养学生的逻辑思维能力和数学运算能力,为学生的学习打下坚实 的基础。
方法三
应用三角函数的半角公式进行变换。对于涉及到半角的三角函数表达 式,学生可以利用半角公式进行化简和求解。
2024/1/30
20ห้องสมุดไป่ตู้
高中数学教案《三角恒等变换》

教学计划:《三角恒等变换》一、教学目标知识与技能:学生能够理解并掌握三角恒等变换的基本公式,包括和差化积、积化和差、二倍角公式等。
学生能够熟练运用三角恒等变换公式进行化简、求值及证明。
培养学生的逻辑推理能力和代数运算能力。
过程与方法:通过观察、分析、归纳等数学活动,引导学生发现三角恒等变换的规律。
采用“公式推导—例题讲解—练习巩固”的教学模式,帮助学生逐步掌握三角恒等变换的方法。
鼓励学生自主探究,通过小组合作解决复杂问题,培养团队协作能力。
情感态度与价值观:激发学生对数学学习的兴趣,感受数学的美妙与和谐。
培养学生的耐心和细心,养成严谨的科学态度。
引导学生认识到数学在解决实际问题中的重要性,增强应用数学的意识。
二、教学重点和难点重点:三角恒等变换的基本公式及其推导过程;运用公式进行化简、求值及证明。
难点:灵活运用三角恒等变换公式解决复杂问题;理解并记忆众多公式的内在联系。
三、教学过程1. 导入新课(5分钟)情境引入:通过展示一些与三角恒等变换相关的实际问题(如天文学中的角度计算、物理学中的波动分析等),引导学生思考这些问题背后可能涉及的数学知识,从而引出三角恒等变换的主题。
复习旧知:简要回顾三角函数的基本性质、图像及诱导公式,为学习三角恒等变换做好铺垫。
明确目标:介绍本节课的学习目标,即掌握三角恒等变换的基本公式及其应用。
2. 公式推导(15分钟)和差化积公式推导:通过图形展示和代数运算相结合的方式,引导学生推导出和差化积公式。
强调公式的推导过程,帮助学生理解公式的来源和含义。
积化和差公式推导:类比和差化积公式的推导过程,引导学生自主推导积化和差公式。
鼓励学生提出疑问和见解,促进课堂互动。
二倍角公式推导:利用三角函数的倍角关系,引导学生推导出二倍角公式。
强调公式的记忆方法和应用技巧。
3. 例题讲解(10分钟)基础例题:选取具有代表性的基础例题进行讲解,如利用三角恒等变换公式化简表达式、求三角函数值等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教学过程一、课堂导入思路1.我们知道变换是数学的重要工具,也是数学学习的主要对象之一,三角函数主要有以下三个基本的恒等变换:代数变换、公式的逆向变换和多向变换以及引入辅助角的变换.前面已经利用诱导公式进行了简单的恒等变换,本节将综合运用和(差)角公式、倍角公式进行更加丰富的三角恒等变换.思路2.三角函数的化简、求值、证明,都离不开三角恒等变换.学习了和角公式,差角公式,倍角公式以后,我们就有了进行三角变换的新工具,从而使三角变换的内容、思路和方法更加丰富和灵活,同时也为培养和提高我们的推理、运算、实践能力提供了广阔的空间和发展的平台.对于三角变换,由于不同的三角函数式不仅会有结构形式方面的差异,而且还会有所包含的角,以及这些角的三角函数种类方面的差异,因此三角恒等变换常常首先寻找式子所包含的各个角之间的联系,并以此为依据选择可以联系它们的适当公式,这是三角式恒等变换的重要特点.二、复习预习复习三角函数值的计算及诱导公式(一)-(六)。
απαsin )2sin(=+k , απαcos )2cos(=+k , απαtan )2tan(=+k (公式一) sin()sin , cos()cos , tan()tan (公式二) sin()sin , cos()cos , tan()tan (公式三)ααπsin sin(=-), ααπ-cos cos(=-), ααπtan tan(-=-) (公式四)sin()cos 2 (公式五)sin()cos 2 (公式六)cos()sin2cos()sin2三、知识讲解考点1两角和的正弦、余弦、正切公式⑴()cos cos cos sin sin αβαβαβ-=+;⑵()cos cos cos sin sin αβαβαβ+=-;⑶()sin sin cos cos sin αβαβαβ-=-;⑷()sin sin cos cos sin αβαβαβ+=+; ⑸()tan tan tan 1tan tan αβαβαβ--=+ ⇒ (()()tan tan tan 1tan tan αβαβαβ-=-+);⑹()tan tan tan 1tan tan αβαβαβ++=- ⇒ (()()tan tan tan 1tan tan αβαβαβ+=+-).考点2二倍角的正弦、余弦、正切公式⑴sin22sin cos ααα=.222)cos (sin cos sin 2cos sin 2sin 1ααααααα±=±+=±⇒ ⑵2222cos2cossin 2cos 112sin ααααα=-=-=-⇒升幂公式2sin2cos 1,2cos2cos 122αααα=-=+ ⇒降幂公式2cos 21cos 2αα+=,21cos 2sin 2αα-=. ⑶22tan tan 21tan ααα=-.2tan12tan 1 cos ;2tan12tan 2 sin :222αααααα万能公式+-=+=考点3 辅助角公式把两个三角函数的和或差化为“一个三角函数,一个角,一次方”的 B x A y ++=)sin(ϕϖ形式。
()sin cos αααϕA +B =+,其中tan ϕB =A.四、例题精析考点一 两角和的正弦、余弦、正切公式 例1已知α∈(4π,43π),β∈(0,4π),cos (α-4π)=53,sin(43π+β)=135,求sin(α+β)的值.【规范解答】∵α-4π+43π+β=α+β+2π,α∈(43,4ππ) β∈(0,1sin 311≤-≤-x )∴α-4π∈(0,2π) β+43π∈(43π,π)∴sin(α-4π)=54 cos(βπ+43)=-1312 ∴sin(α+β)=-cos[2π+(α+β)]=-cos[(α-4π)+(βπ+43)]=6556【总结与反思】这道题主要考察了诱导公式及两角和的余弦公式,先通过诱导公式的变形然后带入余弦公式即可。
例2计算sin 68°sin 67°-sin 23°cos 68°的值为().A.-22D.1【规范解答】原式=sin 68°cos 23°-cos 68°sin 23°=sin(68°-23°)=sin 45°=22. 【总结与反思】本题考察了两角差的正弦公式,带入公式即可。
考点二二倍角公式的应用例3化简4221 2cos2cos22tan()sin()44x xx xππ-+-+【规范解答】切化弦,合理使用倍角公式.原式=22212sin cos22sin()cos() 44cos()4x xx xxπππ-+---=21(1sin2)22sin()cos()44xx xππ---=21cos22sin(2)2xxπ-=12cos 2x.【总结与反思】三角函数式的化简要遵循“三看”原则:(1)一看“角”,这是最重要的一环,通过看角之间的差别与联系,把角进行合理的拆分,从而正确使用公式;(2)二看“函数名称”,看函数名称之间的差异,从而确定使用的公式,常见的有“切化弦”;(3)三看“结构特征”,分析结构特征,可以帮助我们找到变形的方向,常见的有“遇到分式要通分”等.例4 化简:(sin α+cos α-1)(sin α-cos α+1)sin 2α.【规范解答】原式=⎝⎛⎭⎪⎫2sinα2cosα2-2sin2α2⎝⎛⎭⎪⎫2sinα2cosα2+2sin2α24sinα2cosα2cos α=⎝⎛⎭⎪⎫cosα2-sinα2⎝⎛⎭⎪⎫cosα2+sinα2sinα2cosα2cos α=⎝⎛⎭⎪⎫cos2α2-sin2α2sinα2cosα2cos α=cos αsinα2cosα2cos α=tanα2.【总结与反思】三角函数式的化简要遵循“三看”原则:(1)一看“角”,这是最重要的一环,通过看角之间的差别与联系,把角进行合理的拆分,从而正确使用公式;(2)二看“函数名称”,看函数名称之间的差异,从而确定使用的公式,常见的有“切化弦”;(3)三看“结构特征”,分析结构特征,可以帮助我们找到变形的方向,常见的有“遇到分式要通分”等.考点三 辅助角公式的应用例5 已知函数f(x)=2cos 2x +sin2x.(1)求()3f 的值; 2)求f(x)的最大值和最小值.高考对两角和与差的正弦、余弦、正切公式及二倍角公式的考查还往往渗透在研究三角函数性质中.需要利用这些公式,先把函数解析式化为y=A sin(ωx+φ)的形式,再进一步讨论其定义域、值域和最值、单调性、奇偶性、周期性、对称性等性质.课程小结1.本节课主要是三角恒等变换的应用,通过三角恒等变形,把形如y=a sin x+b cos x的函数转化为形如y=A sin(ωx+φ)的函数,从而能顺利考查函数的若干性质,达到解决问题的目的.在教学中教师要强调:分析、研究三角函数的性质,是三角函数的重要内容.如果给出的三角函数的表达式较为复杂,我们必须先通过三角恒等变换,将三角函数的解析式变形化简,然后再根据化简后的三角函数,讨论其图象和性质.因此,三角恒等变换是求解三角函数问题的一个基本步骤.但需注意的是,在三角恒等变换过程中,由于消项、约分、合并等原因,函数的定义域往往会发生一些变化,从而导致变形化简后的三角函数与原三角函数不等价.因此,在对三角函数式进行三角恒等变换后,还要确定原三角函数的定义域,并在这个定义域内分析其性质.2.在三角恒等变化中,首先是掌握利用向量的数量积推导出两角差的余弦公式,并由此导出角和与差的正弦、余弦、正切公式,二倍角公式和积化差、和差化积及半角公式,以此作为基本训练.其次要搞清楚各公式之间的内在联系,自己画出知识结构图.第三就是在三角恒等变换中,要结合第一章的三角函数关系、诱导公式等基础知识,对三角知识有整体的把握.3.今后高考对三角变换的考查估计仍以考查求值为主.和、差、倍、半角的三角函数公式、同角关系的运用仍然是重点考查的地方,应该引起足够重视,特别是对角的范围的讨论,从而确定符号.另外,在三角形中的三角变换问题,以及平面向量为模型的三角变换问题将是高考的热点.。