聚羧酸减水剂相关知识
碳五单体合成聚羧酸减水剂配方工艺

碳五单体合成聚羧酸减水剂配方工艺聚羧酸减水剂是一类常用于混凝土中的化学添加剂,它能够显著减小混凝土的水灰比,同时增加混凝土的可制动性和流动性。
在建筑工程中,使用聚羧酸减水剂可以大大提高混凝土的工作性能,从而提高施工效率和混凝土的强度。
碳五单体合成聚羧酸减水剂的配方工艺包括以下几个步骤:1. 原料准备:首先需要准备碳五单体(也称为磺化石油沥青),以及一些其他辅助原料。
其中,碳五单体是制备聚羧酸减水剂的主要原料,而其他辅助原料可以根据具体需要选择,如稳定剂、增稠剂和助剂等。
2. 真空脱气:将碳五单体倒入反应釜中,并进行真空脱气处理。
真空脱气的目的是去除碳五单体中的杂质和气体,以提高后续反应的效果。
3. 添加驱动剂:将事先准备好的驱动剂加入到碳五单体中。
驱动剂通常是二氧化硫(SO2)或硼酸(H3BO3),它们可以激活碳五单体的分子链,使其具有较好的反应性。
4. 添加辅助原料:根据具体需要,将一些辅助原料加入到反应釜中。
例如,稳定剂和增稠剂可以使聚羧酸减水剂具有更好的稳定性和流动性,助剂可以提高其使用效果。
5. 反应合成:将反应釜加热至适当温度(一般为80-100摄氏度),继续搅拌反应一段时间。
在反应过程中,碳五单体分子链之间会发生交联反应,形成聚羧酸减水剂。
反应时间一般为数小时,具体时间可以根据反应釜的规格和配方要求进行调整。
6. 过滤和干燥:将合成好的聚羧酸减水剂进行过滤,去除其中的杂质和固体颗粒。
然后,将过滤后的液体进行干燥,以去除其中的水分和溶剂。
7. 包装和存储:将干燥的聚羧酸减水剂装入适当的包装容器中,密封保存。
聚羧酸减水剂比较敏感,容易受到水分和温度的影响,因此在存储过程中需要注意避免潮湿和高温环境。
总之,碳五单体合成聚羧酸减水剂的配方工艺主要包括原料准备、真空脱气、添加驱动剂、添加辅助原料、反应合成、过滤和干燥、以及包装和存储等步骤。
通过这些步骤的合理控制,可以制备出性能稳定、效果良好的聚羧酸减水剂,提高混凝土的工作性能和施工效率。
聚羧酸高效减水剂标准

聚羧酸高效减水剂标准聚羧酸高效减水剂是一种常用的混凝土外加剂,它能够显著改善混凝土的工作性能和性能指标。
为了确保聚羧酸高效减水剂的质量和稳定性,制定了一系列的标准来规范其生产和应用。
本文将对聚羧酸高效减水剂标准进行详细介绍,以便广大生产厂家和施工单位更好地了解和应用这一产品。
首先,聚羧酸高效减水剂标准主要包括产品分类、技术要求、试验方法、检验规则、标志、包装、运输和贮存等内容。
其中,产品分类主要根据聚羧酸高效减水剂的性能和用途进行划分,如普通减水剂、高性能减水剂、自流平剂等。
技术要求则包括外观、固含量、PH值、流动度、凝结时间等指标,以保证产品的基本性能符合要求。
试验方法和检验规则则规定了对产品进行检验和评定的具体方法和标准,确保产品质量可控。
标志、包装、运输和贮存等内容则是对产品标识、包装方式、运输条件和贮存要求的规定,以保证产品在整个生产和使用过程中都能保持良好的状态。
其次,聚羧酸高效减水剂标准的制定和执行对于保障产品质量和使用效果具有重要意义。
只有严格按照标准要求进行生产和使用,才能够保证产品的性能稳定和可靠。
同时,标准的制定也有利于行业内的技术交流和经验分享,推动行业的健康发展。
因此,生产厂家和施工单位都应当重视聚羧酸高效减水剂标准的执行,严格按照标准要求进行生产和使用,确保产品质量和使用效果。
最后,随着混凝土技术的不断发展和深化,聚羧酸高效减水剂标准也需要不断更新和完善。
随着新材料、新工艺的不断涌现,对于聚羧酸高效减水剂的性能和要求也在不断提高,因此需要及时对标准进行修订和更新,以适应行业的发展需求。
同时,也需要加强对标准的宣传和推广,提高生产厂家和施工单位对标准的认识和执行力度,从而推动整个行业向着更加规范和健康的方向发展。
综上所述,聚羧酸高效减水剂标准是保障产品质量和使用效果的重要依据,生产厂家和施工单位都应当重视并严格执行。
同时,也需要不断完善和更新标准,以适应行业的发展需求。
相信在全行业的共同努力下,聚羧酸高效减水剂标准的执行将更加规范,产品质量和使用效果也将得到进一步提升。
聚羧酸系减水剂结构与作用机理

聚羧酸系减水剂结构与作用机理1 结构: 聚羧酸类减水剂是由各种乙烯类单体经共聚合反应获得的一类在主链上含有阴离子(如羧基、磺酸基)及其他极性基团(如羟基、醚、酰胺、胺)等的水溶性高分子,具有很多良好的使用性能。
其化学结构可表示为式中X为CH2、CH2R等,Y为CH2、CO 等,Z为O、NH等,R1为CH3、CH3CHOH等,R2为CH2CH2等,R3为C1~4,,M1、M2分别代表H、碱金属离子;M3代表H、碱金属离子、铵离子、有机胺。
主链上-COOH-和-SO3-提供静电斥力,梳形聚合物侧链触向水泥粒子各个部位,起着立体阻碍的重要作用,决定分散系统的稳定性,保持水泥浆体流动性。
由于主链长,极性基团多,静电斥力强,空间分子结构庞大,侧链多也较长,空间位阻大,从而对水泥粒子具有良好的分散、减水、稳定作用使得水泥浆用水量小而流动性好,粘聚性大而不易分层。
2 作用机理: 聚羧酸系减水剂在水泥粒子表面上以接枝共聚物的齿型吸附形态达到稳定的分散效果主要取决于被吸附聚羧酸分子的静电排斥力作用和立体排斥力作用。
根据DLVO理论,水泥粒子表面的Zeta电位大小与水泥粒子的分散性密切相关。
静电排斥力的分散稳定性取决于水泥粒子相互接近时产生的静电排斥力与范德华力之和的粒子间作用势能。
聚羧酸系减水剂主链中的活性基团链段,通过离子键、共价键氢键以及范德华力等相互作用,紧紧地吸附在强极性的水泥粒子表面上,并改变其表面电位;带活性基团的侧链嵌挂在主链上,当吸附于固体颗粒表面时,形成具有一定厚度的溶剂化层,同时传递一定的静电斥力。
根据Machor熵效应理论,立体效应斥力取决于表面活性剂的结构和吸附形态或者吸附层厚度等。
聚羧酸系减水剂对水泥粒子产生梳状吸附,并且其分子中含有多个醚键,由于与水分子形成氢键作用,从而形成亲水性立体保护膜。
由立体效应理论可推测,其侧链长度越长分散性越高,形成的立体保护膜厚度就越厚。
但在一般商品混凝土配合比条件下,长侧链聚合物并未显示出减水性增大的效果。
聚羧酸减水剂母液(高减水型)产品特点、使用方法及注意事项

聚羧酸减水剂母液(高减水型)产品特点、使用方法及注意事项聚羧酸减水剂母液(高减水型)聚羧酸减水剂高减水型采用聚氧乙烯醚大单体、不饱和酸和磺酸基单体经自由基聚合而成的新一代聚羧酸系高性能减水剂。
产品具有极高的减水率和低的坍落度损失性能,可保证配制混凝土所需的高减水率,可广泛应用于泵送混凝土、超流态自密实以及高强高性能混凝土和商品混凝土。
产品具有梳形结构,分子中采用具有更长长度是聚氧乙烯基长链和高密度磺酸基团,使得具有更大的空间位阻作用和静电斥力作用,为水泥提供了更大的分散性和更高的减水率。
一、产品特点极高的减水率产品具有极大的分散性和极高的减水率(减水率可达40%以上),为配制高等级混凝土提供了保证。
优异的工作性:新拌混凝土高流动性,容易浇筑和密实,能有效的降低混凝土粘度,粘聚性好,含气量适中,适于泵送;混凝土硬化和耐久性能好,混凝土各龄期强度高,体积稳定性好,抗渗、抗冻融、抗腐蚀和抗碳化性能突出;适应性广对硅酸盐水泥、普通硅酸盐水泥、矿渣硅酸盐、粉煤灰水泥、火山灰水泥和各种掺合料均具有广泛的适应性。
绿色、环保,所用原料无毒无害,生产过程中无三废产生。
二、技术指标表1 减水剂匀质性指标检验项目质量指标检验结果外观/ 浅棕黄色透明液体密度g/cm3 1.020-1.050pH / 6~8固含量/ 40±1碱含量(Na2O+0.658K2O %)≤10.0 2.1氯离子含量(%)≤0.2000.018硫酸钠含量(%)≤10.00 1.20水泥净浆流动度mm ≥270300表2 混凝土物理力学性能检验项目质量指标检验结果减水率(%)≥2535常压泌水率比(%)≤200压力泌水率比(%)≤9035含气量(%)≤5.0 3.5坍落度保留值mm 30min ≥18022060min ≥150180抗压强度比(%)3d ≥1701957d ≥15018028d ≥135155对钢筋锈蚀作用无锈蚀无锈蚀收缩率比(%)≤135103三、应用范围1、适用于配制早强型混凝土、缓凝型混凝土、预制混凝土、现浇混凝土、大流态混凝土、自密实混凝土、大体积混凝土、高性能混凝土和清水混凝土,各种工业及民用建筑中的预拌和现浇混凝土。
聚羧酸减水剂粉剂使用方法

聚羧酸减水剂粉剂使用方法
聚羧酸减水剂粉剂是一种常用的混凝土外加剂,它能够显著降低混凝土的水灰比,提高混凝土的流动性和可泵性。
使用聚羧酸减水剂粉剂可以帮助混凝土制品的施工更加顺利,提高混凝土的性能。
使用聚羧酸减水剂粉剂的方法如下:
1. 粉剂的配比:根据混凝土的设计配合比确定聚羧酸减水剂粉剂的用量。
通常情况下,聚羧酸减水剂粉剂的用量为混凝土总重量的0.1%-0.3%。
需要注意的是,使用过多的减水剂会导致混凝土的强度下降,所以要根据具体情况适量调整剂量。
2. 粉剂的加入:将聚羧酸减水剂粉剂均匀地撒在混凝土的表面上。
注意要避免直接将粉剂投放到水中,以免形成团块。
在撒粉剂的同时,可以使用搅拌机或者人工搅拌工具进行充分的搅拌,使粉剂均匀地分散在混凝土中。
3. 搅拌的时间:在加入聚羧酸减水剂粉剂后,需要进行充分的搅拌,使其与混凝土充分混合。
搅拌的时间一般为3-5分钟,具体时间可以根据混凝土的施工情况进行调整。
4. 混凝土的施工:在混凝土搅拌完成后,即可进行施工。
由于聚羧酸减水剂粉剂的作用,混凝土的流动性和可泵性会得到显著提高,可以更加轻松地进行浇筑和模压等工作。
需要注意的是,聚羧酸减水剂粉剂应存放在干燥通风的地方,避免潮湿和阳光直射。
另外,在使用过程中要严格按照使用说明进行操作,避免过量使用或者与其他外加剂混合使用,以免影响混凝土的性能和施工效果。
总之,聚羧酸减水剂粉剂使用方法简单,但在使用过程中应注意合理配比和充分搅拌,以确保混凝土的性能和施工质量。
聚羧酸高性能减水剂

目录1.减水机理 (2)2.优良的性能 (2)2.1 减水剂的匀质性分析 (2)2.2 水泥水化热-电性能分析 (3)2.3 早强效应 (3)2.4减水性能分析 (4)2.5 环保分析 (4)聚羧酸高性能减水剂聚羧酸系高性能混凝土减水剂是20世纪80年代中期由日本首先开发应用的新型混凝土减水剂。
它主要是通过不饱和单体在引发剂作用下共聚,将带活性基团的侧链接枝到聚合物的主链上,使其同时具有高效、控制坍落度损失和抗收缩、不影响水泥的凝结硬化等作用。
聚羧酸系高性能减水剂是完全不同于萘磺酸盐甲醛缩合物NSF 和三聚氰铵磺酸盐甲醛缩合物MSF减水剂,即使在低掺量时也能使混凝土具有高流动性,并且在低水灰比时也具有低粘度和坍落度保持性能。
它与不同水泥有相对更好的相容性,是高强高流动性混凝土所不可缺少的材料。
聚羧酸系混凝土减水剂是继木钙和萘系减水剂之后发展起来的第三代高性能化学减水剂,与传统减水剂相比主要具有以下几个突出的优点:a.高减水率:聚羧酸高性能减水剂减水率可达25-40%。
b. 高强度增长率:很高的强度增长率,尤其是早期强度增长率较高。
c.保坍性优异:极好的保坍性能,可保证混凝土极小的经时损失。
d.匀质性良好:所配混凝土有非常好的流动性,容易浇注和密实,适用于自流平、自密实混凝土。
e. 生产可控性:可通过对聚合物分子量、侧链的长短、疏密及侧链基团种类的调整来调节该系列减水剂的减水率、保塑性和引气性能。
f.适应性广泛:对各种纯硅、普硅、矿渣硅酸盐水泥及各种掺合料制混凝土均具有良好的分散性及保塑性。
g.低收缩性:能有效提升混凝土的体积稳定性,较萘系减水剂混凝土28d收缩降低了20%左右,有效的减少了混凝土开裂带来的危害。
h.绿色环保:无毒性、无腐蚀性,不含甲醛及其他有害成分。
1.减水机理聚羧酸高性能减水剂是运用分子结构设计原理,以DLVO电荷排斥理论和空间位阻效应理论为基础,将带有不同功能的活性基团接枝到主链上聚合而成。
聚羧酸减水剂的掺量

聚羧酸减水剂的掺量聚羧酸减水剂的掺量【引言】聚羧酸减水剂是一种广泛应用于混凝土工程中的化学添加剂,它能够显著降低混凝土的水泥用量、提高流动性和强度,被誉为现代混凝土技术的革命性进展。
然而,正确的聚羧酸减水剂掺量选择对于混凝土工程的质量和性能至关重要。
本文将从深度和广度两个方面对聚羧酸减水剂的掺量进行全面评估,为读者提供深入理解和灵活应用聚羧酸减水剂的指导。
【深度:聚羧酸减水剂的工作原理】在混凝土中,水泥颗粒之间存在着静电排斥力和极化作用,这使得混凝土难以流动和维持一定的强度。
而聚羧酸减水剂作为一种表面活性剂,在混凝土中形成了一层吸附膜,能够改善水泥颗粒之间的相互关系,降低内部摩擦力,使混凝土更易于流动和流平,从而提高施工性能。
聚羧酸减水剂还能与水泥颗粒发生化学反应,形成致密的凝胶,有效填充孔隙,提高混凝土的强度和耐久性。
【深度:聚羧酸减水剂的掺量影响因素】聚羧酸减水剂的掺量选择受多个因素的影响,包括混凝土的配合比、施工环境条件、预期的混凝土性能等。
一般来说,随着聚羧酸减水剂掺量的增加,混凝土的流动性和工作性会显著改善,然而过量的添加会导致混凝土流动性过大、气泡过多,影响混凝土的强度和耐久性。
在实际应用中,需要综合考虑多个因素来选择适宜的掺量。
【深度:聚羧酸减水剂的掺量测定方法】确定聚羧酸减水剂的掺量需要借助实验室测试和实际生产中的经验。
常见的掺量测定方法包括塔巴试验、稀释法、电导率法等。
这些方法能够通过测定混凝土的流动性、坍落度和电导率等指标,来评估聚羧酸减水剂的效果和适宜的使用量。
【广度:聚羧酸减水剂掺量的应用实例】1. 根据混凝土的预期性能选择掺量:需要保证较高强度的混凝土,在掺量上应该适当增加聚羧酸减水剂的使用量,以提高强度和耐久性。
2. 根据施工环境条件选择掺量:当施工温度较高或水泥含水率较高时,聚羧酸减水剂的掺量应适当增加,以提高流动性和减少开裂的风险。
3. 根据经验选择掺量:在实际生产中,经验和试验结果是选择聚羧酸减水剂掺量的重要依据。
PC型聚羧酸减水剂

PC型聚羧酸减水剂聚羧酸减水剂,是以羧酸类接枝聚合物为主体的复合添加剂,具有大减水、高保坍、高增强等功能,特别适用于配制高耐久、高流态、高保坍、高强以及对外观质量要求高的混凝土工程。
一、特点:1、较高的减水作用,低掺量可达到高减水率,减水率20~30%。
2、改善混凝土工作性,良好的和易性、泵送性能。
3、良好的坍落度保持性能。
4、高强度增长,增加早期的强度发展,提高混凝土后期强度。
5、更强的塑化和分散水泥颗粒作用。
6、可以在极低水灰比下使用,如生产C100。
7、降低混凝土收缩。
8、降低混凝土的碳化率和氯离子侵蚀。
9、较低的碱含量(<1.0%]。
10、增加混凝土的密实性,改善混凝土的外观质量。
11、混凝土具有良好的触变性,易于施工。
12、良好的引气性能,混凝土含气量在2.0~3.0%,有利于混凝土耐久性能的提高。
13、降低原材料成本。
二、主要技术性能指标1、大减水,混凝土减水率最高可达35%以上。
混凝土早、后期强度高,混凝土塌落度损失特别小或几乎不损失,有高流动可泵性,对各种水泥和掺合料的适应性特别好;2、高增强,混凝土3d抗压强度提高50~120%,28d抗压强度提高40~80%,90d抗压强度提高30~50%;3、高保坍,混凝土2h坍落度基本不损失,且几乎不受温度变化的影响;4、和易性好,抗泌水、抗离析性能好,混凝土泵送阻力小,便于输送;混凝土表面无泌水、无大气泡、色差小、混凝土外观质量好;5、碱含量低。
几乎不含氯盐和硫酸钠,无毒、不燃;6、不含氯离子,对钢筋无腐蚀性;7、抗冻融能力和抗碳化能力较普通混凝土显著提高;混凝土28d 收缩率较萘系类高效减水剂降低20%以上;8、产品适应性强,适应于多种规格、型号的水泥,尤其适宜与优质粉煤灰、矿渣等活性掺合料相配伍制备高耐久性、自密实等高性能混凝土。
尤其适用于大掺量矿粉和粉煤灰的混凝土,使用后可获得高强(C80或以上),高弹性模量、高抗渗性,低收缩徐变和良好耐久性的高性能混凝土,而且对钢筋没有锈蚀危害;9、产品性能稳定,长期贮存不分层、无沉淀,冬季无结晶;10、产品无毒无污染,不含甲醛,对环境安全。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 粉煤灰:是从煤燃烧后的烟 气中收捕下来的细灰,主要 氧化物组成为:SiO2、Al2O3、 FeO、Fe2O3、CaO、TiO2等 。在混凝土中掺加粉煤灰节 约了大量的水泥和细骨料; 减少了用水量;并改善了拌 合物的工作性。
一般认为,聚羧酸系减水 剂通过主链吸附在水泥颗粒 上,羧基等离子基团吸附在 水泥颗粒上起锚固作用,聚 氧乙烯基侧链悬挂于溶液中 ,并多少盘绕在一起。吸附 量增大,其分散能力越大, 水泥浆流动性越大。
CO O CO O -
CO O -
水泥颗粒CO O - Nhomakorabea二、减水剂发展历程及减水机理
影响聚羧酸系减水剂分散性能和保持性的分子 结构因素:
引发剂: 过硫酸盐:过硫酸钾、过硫酸铵 氧化还原体系:双氧水-抗坏血酸 偶氮二异丁腈(AIBN)
分子量调节剂: 巯基乙酸、巯基丙酸
三、聚羧酸减水剂的合成及检测
投料方式: 将活性较低的大单体放入釜底,活性较高的小单体和
+
粘土
CaO+CO2 SiO2+ Al2O3+Fe2O3+H2O
水泥熟料主要矿物组成
3CaO·SiO2(硅酸三钙C3S) 2CaO·SiO2(硅酸二钙C2S) 3CaO·Al2O3 (铝酸三钙C3A) 4CaO·Al2O3·Fe2O3(铁铝酸 酸四钙C4AF)
熟料中, C3S和C2S占75%左右, C3A和C4AF占22% 左右。
三、聚羧酸减水剂的合成及检测
聚羧酸减水剂根据主链支链连接方式的不同一般分 为酯类和醚类。
酯类减水剂合成分两步: (1)用不同分子量的甲氧基聚氧乙烯醚(MPEG,也
叫聚乙二醇单甲醚)在浓硫酸或对甲苯磺酸等催化剂的 作用下与含不饱和键的羧酸(如丙烯酸、甲基丙烯酸、 富马酸、衣糠酸等)进行酯化,形成“酯化大单体”;
在疏水性的分 子主链段上引入一 定比例的阴离子基 团(如羧基、磺酸 基等)来提供电子 斥力,侧链上引入 亲水性的聚氧乙烯 长链段形成梳形聚 合物。
CH3
CH3
H2C C
CH2 C
COONa
COO(CH2CH2O)nCH3 n
主链(约20nm) 侧链(约7nm)
二、减水剂发展历程及减水机理
聚羧酸减水剂的减水机理:
——“大单体”,和含有不饱和键的小分子单体——“小 单体”,在酸性条件下共聚而成。
大单体(由聚醚大单体厂家直接提供): APEG:烯丙醇封端聚氧乙烯醚,如:APEG1200、
APEG2400(F54、540) HPEG:异丁烯醇封端聚氧乙烯醚(有的叫国产封端改
性聚醚),如:HPEG2400(GPEG、SPEG、VPEG、HM004) TPEG:异戊烯醇封端聚氧乙烯醚(有的叫国外封端改性
一、相关术语和基础知识
水泥的水化:
一、相关术语和基础知识
水泥水化过程引起的一系列变化:
流变性能 (流动性、凝结、硬化、蠕变)
热焓 (水化热)
水泥水化
组成 (化学和矿物组成)
体积 (化学收缩)
微观结构 (孔隙率、形貌)
一、相关术语和基础知识
混凝土外加剂定义: 是在拌制混凝土过程中掺入,用以改善混凝
掺入一定减水剂后,减 水剂的憎水基团会定向吸附 在水泥颗粒的表面,而亲水 基团指向水溶液,构成单分 子或多分子吸附膜,起到吸 附分散、润湿、润滑作用, 因此只要加入较少量的水就 可以使混凝土的和易性得到 明显的改善。
二、减水剂发展历程及减水机理
不同系列的减水剂,作用机理不完全相同,新一 代的聚羧酸减水剂由于分子结构的特殊性(梳形), 空间位阻起到的作用更大。
(2)用“酯化大单体”和其他含有不饱和键的小分 子单体(如:丙烯酸、甲基丙烯酸、甲基丙烯酸甲酯等) 在酸性条件下进行开链共聚,生成聚羧酸酯类高性能减 水剂。
由于酯类减水剂合成工艺复杂,酯化率低,产品不 稳定,且能耗高,成本高,因此近年来逐渐被淘汰。
三、聚羧酸减水剂的合成及检测
醚类聚羧酸减水剂的合成: 直接用一定分子量的含有不饱和键封端的聚氧乙烯醚
聚羧酸减水剂 相关知识
TS
聚羧酸减水剂相关知识
一、相关术语和基础知识 二、减水剂发展历程及减水机理 三、聚羧酸减水剂的合成及检测 四、大单体各项指标对减水剂合成 的影响 五、销售部反馈的客户问题
一、相关术语和基础知识
混凝土
• 集料:要说明的是目前不少 地区的集料已经面临资源枯 竭,因此人们积极寻找替代 品,如海砂及海卵石、工业 废渣(冶金渣)、二次集料 等。
一、相关术语和基础知识
水泥定义:
粉状水硬性无机胶凝材料。加水搅拌后成浆体,能在空气中 硬化或者在水中更好的硬化,并能把砂、石等材料牢固地胶结 在一起。
通常说的水泥指的是由硅酸盐水泥熟料、石灰石、矿渣、石 膏等磨细而成的水硬性胶凝材料。
一、相关术语和基础知识
水泥熟料的生产过程示意图:
水泥生料
煅烧
石灰石
土性能的物质。通常情况下,外加剂掺量不大于水 泥用量的5%(有时掺量也会超过5%,如膨胀剂、防 冻剂等)
一、相关术语和基础知识
减水剂: 是指在混凝土拌和物坍落度基本相同的条件下,
用来减少拌合用水量和增强作用的外加剂。
• 减少混凝土拌和物拌合用水量, 提高混凝土强度。
• 改善混凝土的孔结构,提高其密 实度。
• 减少混凝土拌和物泌水、离析现 象,延缓拌和物凝结时间等。
• 可节约水泥用量,降低工程成本 • 提高建设工程中的混凝土质量,
提高其使用年限。
二、减水剂发展历程及减水机理
减水剂发展历程:
二、减水剂发展历程及减水机理
减水机理:
水泥在加水搅拌过程中会产生一些 絮凝状结构,大量的拌合水被包裹在内 部,不能为浆体的流动性做贡献,因此 需要的拌水量增加,导致混凝土的性能 下降,如强度降低、抗渗性变差等。
聚醚),如:TPEG2400(F-108、OXAB501)
注:异丁烯醇——2-甲基-2-丙烯-1醇(也有叫2-甲基烯丙醇); 异戊烯醇——3-甲基-2-丁烯-1醇(也有叫二甲基烯丙醇)。
三、聚羧酸减水剂的合成及检测
小单体: 马来酸酐MA、富马酸、丙烯酸AA、丙烯磺酸钠AS、
甲基丙烯磺酸钠MAS、丙烯酰胺、丙烯酸羟乙酯、醋酸 乙烯酯等。