2018-2019学年浙江省温州市乐清市八年级(下)期末数学试卷1(解析版)
2019-2020学年浙江省温州市苍南县八年级(下)期末数学试卷 (解析版)

2019-2020学年浙江省温州市苍南县八年级(下)期末数学试卷一、选择题(共10小题,每题3分,共30分).1.以下电脑软件图标,属于中心对称图形的是()A .B .C .D .2.二次根式中,x的取值范围是()A.x>1B.x≥1C.x>﹣1D.x≥﹣13.反比例函数y =﹣的图象位于()A.第一、二象限B.第三、四象限C.第一、三象限D.第二、四象限4.七边形的内角和是()A.540°B.720°C.900°D.1080°5.甲、乙、丙、丁四名射击运动员参加射击预选赛,每人射击20发子弹.他们射击成绩的平均数及标准差如表所示.甲乙丙丁人员成绩平均数(环)8.68.69.19.1标准差S(环) 1.3 1.5 1.0 1.2若要选一名成绩较好且又稳定的运动员参赛,则应选运动()A.甲B.乙C.丙D.丁6.下列运算结果正确的()A .B.(3)2=18C .D .7.用配方法解一元二次方程x2+8x+7=0,则方程可化为()A.(x+4)2=9B.(x﹣4)2=9C.(x+8)2=23D.(x﹣8)2=9 8.如图,O为▱ABCD对角线AC,BD的交点,OE⊥BD,交边AD于点E,连结BE.若△BCD的周长比△ABE的周长大8,则BE的长有可能为()A.2B.3C.4D.59.若三点(3,y1),(1,y2),(0,y3)都在函数y=(常数k>0)的图象上,则y1,y2,y3的大小关系是()A.y1>y2>y3B.y3>y2>y1C.y1>y3>y2D.y2>y3>y1 10.对于一元二次方程,古代数学家研究过其几何解法.以方程x2+2x=34为例,三国时期的数学家赵爽(约公元3﹣4世纪)在其所著的《勾股圆方图注》中记载的方法是:构造如图所示的大正方形ABCD,它由四个全等的矩形加中间小正方形组成,根据面积关系可求得AB的长,从而解得x,参考此法,则图中正方形ABCD的面积为()A.144B.140C.137D.136二、填空题(本题有8小题,每小题3分,共24分)11.当x=2时,二次根式的值为.12.某校举行校园十佳歌手大赛,小聪同学的初赛成绩为80分,复赛成绩为90分.若总成绩按初赛成绩占40%,复赛成绩占60%来计算,则小聪同学的总成绩为分.13.如图,在菱形ABCD中,∠A=54°,连结BD,则∠CBD=度.14.关于x的一元二次方程x2﹣x+m2﹣4=0的一个根是1,则常数m=.15.某商场品牌消毒液经过2、3月份连续两次涨价,每瓶售价由100元涨到121元,设平均每次涨价的百分率为x,根据题意可列方程:.16.如图,在矩形ABCD中,E为边AD延长线上一点,DE=AC,连结BE,BD.若∠CAD =54°,则∠E=度.17.如图,E为正方形ABCD边AB上一点,BF⊥CE交边AD于点F,垂足为点O.若AE =1,AF=2,则OF=.18.如图,矩形OABC位于直角坐标系中,点B(6k,3k)在第一象限内,点A在x轴上,点C在y轴上,反比例函数y=的图象交AB于点F,交BC于点E,点D在边OA 上.若△DEF恰好是以EF为斜边的等腰直角三角形,则k的值为.三、解答题(本题有6小题,共46分)19.(1)计算:2÷﹣;(2)解方程:x2﹣2x﹣3=0.20.为了了解某班20名同学甲、乙两门课程的学习情况,分别对其测试后统计并整理数据如下:①20名同学甲课程的成绩(单位:分):61,65,68,71,72,72,73,73,73,73,75,78,82,84,86,86,88,90,93,98.②20名同学乙课程成绩的频数分布直方图(每一组包含前一个边界值,不包含后一个边界值)如图.根据以上信息,回答下列问题:(1)甲课程成绩的众数为分,中位数为分.(2)依次记左边50~60的分数段为第1组,90~100的分数段为第5组,则乙课程成绩的中位数在组内.(3)在此次测试中,小聪同学甲课程成绩为75分,乙课程成绩为78分,他哪一门课程的成绩排名更靠前?请说明理由.21.如图,反比例函数y=(k≠0)的图象经过点(2,4)和点A(a,2).(1)求该反比例函数的表达式和a的值.(2)若点A先左平移m个单位,再向下平移m单位(m>0),仍落在该反比例函数的图象上,求m的值.22.如图,已知菱形ABCD的对角线AC,BD相交于点O,点E在AB的延长线上,且AB =BE,连结CE.(1)求证:BD∥EC.(2)若AD=5,CE=6,求菱形ABCD的面积.23.某医药商店销售一款口罩,每袋成本价为30元,按物价部门规定,每袋售价大于30元但不得高于60元,且为整数.经市场调查发现,当售价为40元时,日均销售量为100袋,在此基础上,每袋售价每增加1元,日均销售量减少5袋;每袋售价每减少1元,日均销售量增加5袋.设该商店这款口罩售价为x元.(1)这款口罩日均销售量为袋.(用含x的代数式表示)(2)若该商店这款口罩日均销售额为2500元,求x的值.(销售额=销售量×售价)(3)是否存在x的值,使得该商店销售这款口罩的日均毛利润为1200元?若存在,求出x的值;若不存在,则说明理由.(毛利润=销售量×(售价﹣成本价))24.如图,P是矩形ABCD边BC上一动点,△ABP沿AP翻折得△AEP,直线PE交线段AD于点F,以AP,PF为边构造▱APFG.(1)当点E在矩形ABCD内部时,①小聪通过画图探究,得到以下数据,根据题意,将表格补充完整.∠BAP10°20°40°∠G80°70°∠GAF20°40°②写出∠G与∠GAF的数量关系,不必说明理由.(2)若AB=4,AD=9,AG=5,求所有符合条件的CP的长.(3)当点B关于AE的对称点恰好落在线段GF上,且不与点G重合时,直接写出此时的值.参考答案一、选择题(本题有10小题,每小题3分,共30分。
2018-2019学年湖北省武汉二中广雅中学八年级(下)段测数学试卷(六)(解析版)

2018-2019学年二中广雅中学八年级(下)段测数学试卷(六)一.选择题(共10小题)1.下列各图象不能表示y是x的函数的是()A.B.C.D.2.若函数y=(3﹣m)是正比例函数,则m的值是()A.﹣3B.3C.±3D.﹣13.下列计算,正确的是()A.(﹣1)=1B.=C.﹣=1D.=3 4.菱形具有而矩形不一定具有的特征是()A.对角相等B.对角线互相平分C.一组对边平行,另一组对边相等D.对角线互相垂直5.已知A(﹣,y1),B(﹣,y2)是一次函数y=﹣x+b的图象上的点.y1,y2的大小关系为()A.y1<y2B.y1>y2C.y1=y2D.以上结论都有可能6.如图,在▱ABCD中,AC、BD相交于点O,若BD=10,AC=6,则AB的取值范围为()A.4<AB<16B.4<AB<10C.2<AB<8D.3<AB<57.已知一次函数y=(m﹣4)x+2m+1的图象过一、二、四象限,则m的取值范围是()A.m<4B.m<﹣C.﹣<m<4D.无解8.甲乙两同学从A地出发,骑自行车在同一条路上行驶到B地,他们离出发地的距离s(千米)和行驶时间t(时)之间的函数关系的图象,如图所示.根据图中提供的信息,有下列说法:①他们都行驶了18千米.②甲车停留了0.5小时.③乙比甲晚出发了0.5小时.④相遇后甲的速度<乙的速度.⑤甲、乙两人同时到达目的地.其中符合图象描述的说法有()A.2个B.3个C.4个D.5个9.下列图形中,表示一次函数y=mx+n与正比例函数y=mnx(m,n为常数,且mn≠0)的图象的是()A.B.C.D.10.正方形ABCD中,E、F分别是AB、CB上的点,且AE=CF,CE交AF于M,∠CMF=45°,则的值为()A.B.C.D.二.填空题(共6小题)11.化简:=.12.已知关于x的方程mx+n=0的解是x=﹣2,则直线y=mx+n与x轴的交点坐标是.13.如图,将平行四边形ABCD沿对角线BD折叠,使点A落在点A'处.若∠1=∠2=50°,则∠A'为.14.如图,直线y=kx+b经过点A(﹣1,﹣2)和点B(﹣2,0),直线y=2x过点A,则不等式2x<kx+b<0的解集为.15.如图,将边长为8的正方形纸片ABCD折叠,使点D落在BC边的点E处,点A落在点F处,折痕为MN,若MN=4,则线段CN的长是.16.在同一平面直角坐标系中,直线y=kx﹣k与函数y=的图象恰好有三个不同的交点,则k的取值范围是.三.解答题(共8小题)17.计算:(1)(2)18.已知一次函数的图象过M(3,5),N(﹣4,﹣9).(1)求这个一次函数的解析式;(2)将直线MN向上平移1个单位,得直线l,l的解析式为(填空).19.为绿化校园,某校计划购进A、B两种树苗,共21课.已知A种树苗每棵90元,B种树苗每棵70元.设购买B种树苗x棵,购买两种树苗所需费用为y元.(1)求y与x的函数表达式;(2)若购买B种树苗的数量少于A种树苗的数量,请给出一种费用最省的方案,并求出该方案所需费用.20.已知点A(8,0)及在第四象限的动点P(x,y),且x+y=10.设△OP A的面积为S.(1)求S关于x的解析式,并直接写出x的取值范围;(2)画出函数S的图象.21.已知矩形ABCD,把△BCD沿BD翻折,得△BDG,BG,AD所在的直线交于点E,过点D作DF∥BE交BC所在直线于点F.(1)求证:四边形DEBF是菱形;(2)若AB=8,AD=4,求四边形BEDF的面积.22.在平面直角坐标系中,直线y=2x+4与两坐标轴分别交于A,B两点.(1)若一次函数y=﹣x+m与直线AB的交点在第二象限,求m的取值范围;(2)若M是y轴上一点,N是x轴上一点,直线AB上是否存在两点P,Q,使得以M,N,P,Q四点为顶点的四边形是正方形.若存在,求出M,N两点的坐标,若不存在,请说明理由.23.如图,已知正方形ABCD,点E在BA延长线上,点F在BC上,且∠CDE=2∠ADF.(1)求证:∠E=2∠CDF;(2)若F是BC中点,求证:AE+DE=2AD;(3)作AG⊥DF于点G,连CG.当CG取最小值时,直接写出AE:AB的值.24.已知,如图:直线AB:y=﹣3x+3与两坐标轴交于A,B两点.(1)过点O作OC⊥AB于点C,求OC的长;(2)将△AOB沿AB翻折到△ABD,点O与点D对应,求直线BD的解析式;(3)在(2)的条件下,正比例函数y=kx与直线BD交于P,直线AB交于Q,若OP =3OQ,求正比例函数的解析式.参考答案与试题解析一.选择题(共10小题)1.下列各图象不能表示y是x的函数的是()A.B.C.D.【分析】根据函数的意义即可求出答案,即对于每个自变量x的值,函数y都有唯一确定的值与其对应.函数的意义反映在图象上简单的判断方法是:作垂直于x轴的直线,在左右平移的过程中与函数图象只会有一个交点.【解答】解:C图象作垂直于x轴的直线,在左右平移的过程中与函数图象会有无数个交点.故选:C.2.若函数y=(3﹣m)是正比例函数,则m的值是()A.﹣3B.3C.±3D.﹣1【分析】根据正比例函数的定义解答.【解答】解:∵函数y=(3﹣m)是正比例函数,∴m2﹣8=1,解得:mm1=3,m2=﹣3;且3﹣m≠0,∴m=﹣3.故选:A.3.下列计算,正确的是()A.(﹣1)=1B.=C.﹣=1D.=3【分析】根据二次根式的混合运算顺序和运算法则逐一计算可得.【解答】解:A.(﹣1)=2﹣,此选项错误;B.==,此选项错误;C.与不是同类二次根式,不能合并,此选项错误;D.=|﹣3|=3,此选项正确;故选:D.4.菱形具有而矩形不一定具有的特征是()A.对角相等B.对角线互相平分C.一组对边平行,另一组对边相等D.对角线互相垂直【分析】根据矩形、菱形的性质逐个判断即可.【解答】解:菱形的性质有:对角相等、对角线互相平分、一组对边平行,另一组对边相等、对角线互相垂直,矩形的性质有:对角相等、对角线互相平分、一组对边平行,另一组对边相等、对角线相等;即菱形具有而矩形不一定具有的特征是对角线互相垂直,故选:D.5.已知A(﹣,y1),B(﹣,y2)是一次函数y=﹣x+b的图象上的点.y1,y2的大小关系为()A.y1<y2B.y1>y2C.y1=y2D.以上结论都有可能【分析】先根据一次函数y=﹣x+b中k=﹣1判断出函数的增减性,再根据﹣<﹣进行解答即可.【解答】解:∵一次函数y=﹣x+b中k=﹣1<0,∴y随x的增大而减小,∵﹣<﹣,∴y1>y2.故选:B.6.如图,在▱ABCD中,AC、BD相交于点O,若BD=10,AC=6,则AB的取值范围为()A.4<AB<16B.4<AB<10C.2<AB<8D.3<AB<5【分析】由在▱ABCD中,对角线AC与BD相交于点O,若BD=10,AC=6,根据平行四边形的对角线互相平分,可求得OA与OB的长,然后由三角形三边关系,求得答案.【解答】解:∵在▱ABCD中,对角线AC与BD相交于点O,BD=10,AC=6,∴OA=AC=3,OB=BD=5,∴边长AB的取值范围是:2<AB<8.故选:C.7.已知一次函数y=(m﹣4)x+2m+1的图象过一、二、四象限,则m的取值范围是()A.m<4B.m<﹣C.﹣<m<4D.无解【分析】若函数y=kx+b的图象过一、二、四象限,则此函数的k<0,b>0,据此求解.【解答】解:∵函数y=(m﹣4)x+2m+1的图象过一、二、四象限,∴m﹣4<0,2m+1>0解得﹣<m<4.故选:C.8.甲乙两同学从A地出发,骑自行车在同一条路上行驶到B地,他们离出发地的距离s(千米)和行驶时间t(时)之间的函数关系的图象,如图所示.根据图中提供的信息,有下列说法:①他们都行驶了18千米.②甲车停留了0.5小时.③乙比甲晚出发了0.5小时.④相遇后甲的速度<乙的速度.⑤甲、乙两人同时到达目的地.其中符合图象描述的说法有()A.2个B.3个C.4个D.5个【分析】要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.【解答】解:根据题意和图象可知:①他们都行驶了18千米.②甲车停留了0.5小时.③乙比甲晚出发了1﹣0.5=0.5小时.④相遇后甲的速度<乙的速度.⑤乙先到达目的地.故只有⑤不正确.故选:C.9.下列图形中,表示一次函数y=mx+n与正比例函数y=mnx(m,n为常数,且mn≠0)的图象的是()A.B.C.D.【分析】根据“两数相乘,同号得正,异号得负”分两种情况讨论mn的符号,然后根据m、n同正时,同负时,一正一负或一负一正时,利用一次函数的性质进行判断.【解答】解:①当mn>0,m,n同号,同正时y=mx+n过1,3,2象限,同负时过2,4,3象限;②当mn<0时,m,n异号,则y=mx+n过1,3,4象限或2,4,1象限.故选:A.10.正方形ABCD中,E、F分别是AB、CB上的点,且AE=CF,CE交AF于M,∠CMF=45°,则的值为()A.B.C.D.【分析】根据正方形的性质得到AB=BC,等量代换得到BE=BF,根据全等三角形的性质得到AM=CM,EM=FM,推出点M在点A和点C的对称轴上,连接BD,过M作MG⊥BC于G,则点M在BD上,根据等腰三角形的判定得到BE=BM,设BG=GM=x,得到BE=BM=x,根据相似三角形的性质即可得到结论.【解答】解:∵在正方形ABCD中,∴AB=BC,∵AE=CF,∴BE=BF,在△ABF与△CBE中,,∴△ABF≌△CBE(SAS),∴∠BAF=∠BCE,在△AEM与△CFM中,,∴△AEM≌△CFM(AAS),∴AM=CM,EM=FM,∴点M在点A和点C的对称轴上,连接BD,过M作MG⊥BC于G,则点M在BD上,∴∠ABM=∠CBM=45°,∵∠AME=∠CMF=45°,∴∠AME=∠CBM,∴∠BEM=∠BAM+∠AME=∠BME=∠CBM+∠BCM,∴BE=BM,∵MG⊥BC,∴BG=GM,设BG=GM=x,∴BE=BM=x,∵MG∥BE,∴△CMG∽△CEB,∴==,∴==+1,故选:A.二.填空题(共6小题)11.化简:=.【分析】原式被开方数变形后,开方即可得到结果.【解答】解:原式===.故答案为:.12.已知关于x的方程mx+n=0的解是x=﹣2,则直线y=mx+n与x轴的交点坐标是(﹣2,0).【分析】求直线与x轴的交点坐标,需使直线y=mx+n的y值为0,则mx+n=0;已知此方程的解为x=﹣2.因此可得答案.【解答】解:∵方程的解为x=﹣2,∴当x=﹣2时mx+n=0;又∵直线y=mx+n与x轴的交点的纵坐标是0,∴当y=0时,则有mx+n=0,∴x=﹣2时,y=0.∴直线y=mx+n与x轴的交点坐标是(﹣2,0).13.如图,将平行四边形ABCD沿对角线BD折叠,使点A落在点A'处.若∠1=∠2=50°,则∠A'为105°.【分析】由平行四边形的性质和折叠的性质,得出∠ADB=∠BDG=∠DBG,由三角形的外角性质求出∠BDG=∠DBG=∠1=25°,再由三角形内角和定理求出∠A,即可得到结果.【解答】解:∵AD∥BC,∴∠ADB=∠DBG,由折叠可得∠ADB=∠BDG,∴∠DBG=∠BDG,又∵∠1=∠BDG+∠DBG=50°,∴∠ADB=∠BDG=25°,又∵∠2=50°,∴△ABD中,∠A=105°,∴∠A'=∠A=105°,故答案为:105°.14.如图,直线y=kx+b经过点A(﹣1,﹣2)和点B(﹣2,0),直线y=2x过点A,则不等式2x<kx+b<0的解集为﹣2<x<﹣1.【分析】解不等式2x<kx+b<0的解集,就是指函数图象在A,B之间的部分的自变量的取值范围.【解答】解:根据题意得到y=kx+b与y=2x交点为A(﹣1,﹣2),解不等式2x<kx+b<0的解集,就是指函数图象在A,B之间的部分,又B(﹣2,0),此时自变量x的取值范围,是﹣2<x<﹣1.即不等式2x<kx+b<0的解集为:﹣2<x<﹣1.故答案为:﹣2<x<﹣1.15.如图,将边长为8的正方形纸片ABCD折叠,使点D落在BC边的点E处,点A落在点F处,折痕为MN,若MN=4,则线段CN的长是3.【分析】根据折叠的性质,只要求出DN就可以求出NE,在直角△CEN中,设DN=EN =x,则CN=8﹣x,在Rt△ENC中,EN2=CN2+EC2,根据勾股定理就可以列出方程,从而解出CN的长.【解答】解:过点M作MH⊥CD于点H.连接DE.根据题意可知MN垂直平分DE,易证∠EDC=∠MHN,MH=AD,∵四边形ABCD是正方形,∴MH=AD=CD,∵∠MHN=∠C=90°,∴△MHN≌△DCE(ASA),∴DE=MN=4,在Rt△DEC中,CE===4,设DN=EN=x,则CN=8﹣x,在Rt△ENC中,EN2=CN2+EC2,∴x2=(8﹣x)2+42,解得x=5,∴CN=8﹣x=3.故答案为3.16.在同一平面直角坐标系中,直线y=kx﹣k与函数y=的图象恰好有三个不同的交点,则k的取值范围是﹣2<k<﹣.【分析】根据题意把y=kx﹣k分别代入各个分段函数解析式,用k表示出x的值,再根据x的取值范围确定k的范围.【解答】解:直线y=kx﹣k与函数y=﹣2x﹣6在x<﹣4时有交点,则x=<﹣4,解得﹣2<k<﹣;直线y=kx﹣k与函数y=2在﹣4≤x<1时有交点,则k≤﹣;直线y=kx﹣k与函数y=﹣2x+4在x≥1时有交点,则x=<﹣4,解得k>﹣2.因此k的取值范围是﹣2<k<﹣.故答案为:﹣2<k<﹣.三.解答题(共8小题)17.计算:(1)(2)【分析】根据二次根式的运算法则即可求出答案.【解答】解:(1)原式=4﹣2+12=14(2)原式=2﹣18.已知一次函数的图象过M(3,5),N(﹣4,﹣9).(1)求这个一次函数的解析式;(2)将直线MN向上平移1个单位,得直线l,l的解析式为y=2x(填空).【分析】(1)利用待定系数法求一次函数解析式;(2)根据直线平移的规律在解析式y=2x﹣1的右边加上1即可.【解答】解:(1)设一次函数解析式为y=kx+b,把M(3,5),N(﹣4,﹣9)代入得,解得,所以一次函数解析式为y=2x﹣1;(2)将直线MN向上平移1个单位,得直线l,则l的解析式为y=2x﹣1+1=2x.故答案为y=2x.19.为绿化校园,某校计划购进A、B两种树苗,共21课.已知A种树苗每棵90元,B种树苗每棵70元.设购买B种树苗x棵,购买两种树苗所需费用为y元.(1)求y与x的函数表达式;(2)若购买B种树苗的数量少于A种树苗的数量,请给出一种费用最省的方案,并求出该方案所需费用.【分析】(1)设购买B种树苗x棵,则购买A种树苗(21﹣x)棵,根据“总费用=A种树苗的单价×购买A种树苗棵树+B种树苗的单价×购买B种树苗棵树”即可得出y关于x的函数关系式;(2)根据购买B种树苗的数量少于A种树苗的数量可得出关于x的一元一次不等式,解不等式即可求出x的取值范围,再结合一次函数的性质即可得出结论.【解答】解:(1)设购买B种树苗x棵,则购买A种树苗(21﹣x)棵,由已知得:y=70x+90(21﹣x)=﹣20x+1890(x为整数且0≤x≤21).(2)由已知得:x<21﹣x,解得:x<.∵y=﹣20x+1890中﹣20<0,∴当x=10时,y取最小值,最小值为1690.答:费用最省的方案为购买A种树苗11棵,B种树苗10棵,此时所需费用为1690元.20.已知点A(8,0)及在第四象限的动点P(x,y),且x+y=10.设△OP A的面积为S.(1)求S关于x的解析式,并直接写出x的取值范围;(2)画出函数S的图象.【分析】(1)首先把x+y=10,变形成y=10﹣x,再利用三角形的面积求法:底×高÷2=S,可以得到S关于x的函数表达式;P在第四象限,故x>0,y>0,可得到x的取值范围;(2)利用描点法画出函数图象即可.【解答】解:(1)∵x+y=10,∴y=﹣x+10,∴S=×8×|y|=4(x﹣10)=4x﹣40,∵第四象限的动点P(x,y),∴x>0,y<0,∴,∴x>10,即S=4x﹣40(x>10);(2)∵解析式为S=4x﹣40(x>10),∴函数图象经过点(10,0)(15,20)(但不包括(10,0)的射线).图象如图所示21.已知矩形ABCD,把△BCD沿BD翻折,得△BDG,BG,AD所在的直线交于点E,过点D作DF∥BE交BC所在直线于点F.(1)求证:四边形DEBF是菱形;(2)若AB=8,AD=4,求四边形BEDF的面积.【分析】(1)根据邻边相等的平行四边形为菱形进行证明;(2)根据菱形面积公式底×高进行计算.【解答】解:(1)证明:∵四边形ABCD为矩形,∴AD∥BC,∴∠EDB=∠DBC,根据题意可知△BCD≌△BDG,∴∠DBG=∠DBC,∴∠EDB=∠EBD,∴DE=BE,∵AD∥BC,DF∥BE,∴四边形BEDF为平行四边形,又∵DE=BE,∴四边形BEDF为菱形;(2)设菱形BEDF的边长为x,则AE=DE﹣AD=x﹣4,在Rt△AEB中,BE2=AE2+AB2,即x2=(x﹣4)2+82,解得x=10,∴菱形BEDF的面积=DE•AB=10×8=80.22.在平面直角坐标系中,直线y=2x+4与两坐标轴分别交于A,B两点.(1)若一次函数y=﹣x+m与直线AB的交点在第二象限,求m的取值范围;(2)若M是y轴上一点,N是x轴上一点,直线AB上是否存在两点P,Q,使得以M,N,P,Q四点为顶点的四边形是正方形.若存在,求出M,N两点的坐标,若不存在,请说明理由.【分析】(1)解析式联立得到2x+4=﹣x+m,解得x=(m﹣4),根据题意得到(m ﹣4)<0,解得即可;(2)分三种情况讨论,根据正方形的性质三角形全等的性质,三角形相似的性质即可求得M,N两点的坐标.【解答】解:(1)联立y=2x+4与y=﹣x+m,得2x+4=﹣x+m,解得x=(m﹣4),∵交点在第二象限,∴(m﹣4)<0,∴m<4;(2)当x=0时,y=2x+4=4,∴A(0,4),当y=0时,0=2x+4,x=﹣2,∴B(﹣2,0),∴OA=4,OB=2.如图1,过点Q作QH⊥x轴于H,∵MN∥AB,∴△NMO∽△BAO,∴==,设ON=a,则OM=2a,∵∠MNQ=90°,∴∠QNH+∠MNO=∠MNO+∠NMO=90°,∴∠QNH=∠NMO,在△QNH和△NMO中∴△QNH≌△NMO(AAS),∴QH=ON=a,HN=OM=2a,又∵△BQH∽△BAO,∴==,∴BH=a,∵OB=BH+HN+ON,∴2=a+2a+a,解得a=,∴M(0,),N(﹣,0);如图2,过点P作PH⊥x轴于H,易证△PNH∽△BAO,∴==,设PH=b,则NH=2b,同理证得△PNH≌△NMO,∴PH=ON=b,HN=OM=2b,∴OH=HN﹣OH=b,又∵△BPH∽△BAO,∴==,∴BH=b,∵OB=BH+OH,∴2=b+b,解得b=,∴M(0,﹣),N(,0);如图3,过点P作PH⊥x轴于H,PE⊥y轴于E,QF⊥y轴于F,易证△P AE∽△BAO,∴==,设PE=c,则AE=2c,同理证得△PNH≌△PME,∴PH=PE=OE=c,则AE=2c,∵OA=AE+OE,∴4=2c+c,解得c=,∵△MQF≌△PME,∴MF=PE=OE,EM=FQ,∴EM=OF=FQ,设EM=OF=FQ=m,则Q(﹣m,﹣m),代入y=2x+4中,得﹣m =﹣2m+4,解得m=4,∴NO=NH+OH=,∴N(﹣,0),∵OF=m=4,∴M(0,﹣4).综上所述M(0,),N(﹣,0)或M(0,﹣),N(,0)或M(0,﹣4),N(﹣,0);.23.如图,已知正方形ABCD,点E在BA延长线上,点F在BC上,且∠CDE=2∠ADF.(1)求证:∠E=2∠CDF;(2)若F是BC中点,求证:AE+DE=2AD;(3)作AG⊥DF于点G,连CG.当CG取最小值时,直接写出AE:AB的值.【分析】(1)将△ADE绕点D逆时针旋转90°得△CDM,证得∠CDE=∠ADM,得出∠E=∠M=180°﹣2∠DFM,可得出∠CDF=90°﹣∠DFM,则结论得证;(2)将△ADE绕点D逆时针旋转90°得△CDM,过点M作MH⊥DF于H.设BF=FC =x,则CD=2x,求出DF=x,证明△DFC∽△MFH,得出FM,AE=4x,则结论得证;(3)如图3﹣1中,取AD的中点N,连接GK,CK,当C、G、N三点共线时,CG最小.在图3﹣2中,证得四边形NCMD为平行四边形,得出CM=DN=AD,则答案可求出.【解答】(1)证明:如图1,将△ADE绕点D逆时针旋转90°得△CDM,∵∠DCB=∠DCM=90°,∴F、C、M三点共线,∵将△ADE绕点D逆时针旋转90°得△CDM,∴△ADE≌△CDM,∴∠E=∠M,∠EDA=∠CDM,∴∠CDE=∠ADM,∵∠CDE=2∠ADF,∴∠ADM=2∠ADF,∴∠FDM=∠ADF,∵正方形ABCD中AD∥BC,∴∠ADF=∠DFM=∠FDM,∴∠E=∠M=180°﹣2∠DFM,∵∠DCB=90°,∴∠CDF=90°﹣∠DFM,∴∠E=2∠CDF.(2)证明:如图2,将△ADE绕点D逆时针旋转90°得△CDM,作MH⊥DF于H.∵∠DCF=∠DCM=90°,∴F、C、M三点共线,过点M作MH⊥DF于H.∵若F是BC中点,设BF=FC=x,则CD=2x,在Rt△FDC中,DF==x,由(1)得,∠DFM=∠FDM,∴DM=FM,又∵HM⊥DF,∴FH=DF=x,∵∠DFC=∠MFH,∠DCB=∠MHF=90°,∴△DFC∽△MFH,∴,∴FM=x,∴CM=AE=FM﹣FC=x,∵DE=DM=FM=x,∴AE+DE=x+x=4x,∵CD=AD=2x,∴AE+DE=2AD=4x.(3)解:如图3﹣1中,取AD的中点K.∵AG⊥DF于点G,∴∠AGD=90°,∵AK=DK,∴GK=AD,∵CG≥CK﹣GK,∴当C、G、N三点共线时,CG最小.如图3﹣2中,当C、G、N共线时,将△ADE绕点D逆时针旋转90°得△CDM,∵∠DCF=∠DCM=90°,∴F、C、M三点共线,∵∠AGD=90°,N为AD中点,∴AN=NG=ND,∴∠NGD=∠ADF,由(1)∠ADF=∠FDM,∴∠NGD=∠FDM,∴DM∥NC,∵正方形ABCD中AD∥BC,∴四边形NCMD为平行四边形,∴CM=DN=AD,∵CM=AE,∴AE=AD=AB,∴AE:AB=1:2.24.已知,如图:直线AB:y=﹣3x+3与两坐标轴交于A,B两点.(1)过点O作OC⊥AB于点C,求OC的长;(2)将△AOB沿AB翻折到△ABD,点O与点D对应,求直线BD的解析式;(3)在(2)的条件下,正比例函数y=kx与直线BD交于P,直线AB交于Q,若OP =3OQ,求正比例函数的解析式.【分析】(1)分别求出点A、B的坐标,进而得出AB的长,再根据三角形的面积公式解答即可;(2)连接OD,过点D作DH⊥x轴于H,易证△AOB∽△OHD,根据相似三角形的性质求出点D的坐标,再利用待定系数法求解即可;(3)过点P作PM⊥x轴于M,点Q作QN⊥x轴于N,用k的代数式分别表示出OM、ON;由OP=3OQ可得ON=3OM,进而得出关于k的一元一次方程,求出k的值,问题得以解决.【解答】解:(1)∵直线AB解析式为y=﹣3x+3,∴A(0,3),B(1,0),∴OA=3,OB=1,∴AB=,∵S△AOB=OA•OB=AB•OC,∴OC==;(2)连接OD,过点D作DH⊥x轴于H,∵点O与点D关于AB对称,∴AB垂直平分OD,由(1)OC=,∴OD=2OC=,∵△AOB∽△OCB,△OCB∽△OHD,∴△AOB∽△OHD,∴,∴DH=,OH=,∴D(,).设直线BD解析式为y=kx+b,∵B(1,0),D(,),∴,解得,∴直线BD解析式为y=3x﹣3.(3)如图,过点P作PM⊥x轴于M,点Q作QN⊥x轴于N.∵正比例函数y=kx与直线BD交于P,∴kx=3x﹣3,解得x=,∴OM=.∵正比例函数y=kx与直线AB交于Q,∴kx=﹣3x+3,解得x=,∴ON=.∵OP=3OQ,∴ON=3OM,∴=3×,解得k=.∴正比例函数的解析式为.。
2018-2019学年度八年级上数学期末试卷(解析版)

2018-2019学年联考八年级(上)期末数学试卷一、选择题:本大题共14个小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)近似数0.13是精确到()A.十分位B.百分位C.千分位D.百位2.(3分)下列四张扑克牌中,左旋转180°后还是和原来一样的是()A.B.C.D.3.(3分)是2的()A.倒数B.平方根C.立方根D.算术平方根4.(3分)在3×3的方格中涂有阴影图形,下列阴影图形不是轴对称图形的是()A.B.C.D.5.(3分)下列选项中,可以用来证明命题“若|a﹣1|>1,则a>2”是假命题的反例是()A.a=2B.a=1C.a=0D.a=﹣16.(3分)如图是作△ABC的作图痕迹,则此作图的已知条件是()A.已知两边及夹角B.已知三边C.已知两角及夹边D.已知两边及一边对角7.(3分)在代数式和中,x均可以取的值为()A.9B.3C.0D.﹣28.(3分)如果把分式中的a、b同时扩大为原来的2倍,得到的分式的值不变,则W 中可以是()A.1B.C.ab D.a29.(3分)我国是最早了解勾股定理的国家之一.下面四幅图中,不能证明勾股定理的是()A.B.C.D.10.(3分)若(b为整数),则a的值可以是()A.B.27C.24D.2011.(3分)如图,AB⊥CD,且AB=CD,E,F是AD上两点,CE⊥AD,BF⊥AD.若CE =4,BF=3,EF=2,则AD的长为()A.3B.5C.6D.712.(3分)已知:△ABC中,AB=AC,求证:∠B<90°,下面写出可运用反证法证明这个命题的四个步骤:①∴∠A+∠B+∠C>180°,这与三角形内角和为180°矛盾②因此假设不成立.∴∠B<90°③假设在△ABC中,∠B≥90°④由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°.这四个步骤正确的顺序应是()A.③④①②B.③④②①C.①②③④D.④③①②13.(3分)已知x=,则代数式(7+4)x2+(2+)x+的值是()A.0B.C.D.2﹣14.(3分)在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2、4、3,则原直角三角形纸片的斜边长是()A.10B.C.10或D.10或二、填空题(本大题有3个小题,每小题4分,共20分.把答案写在题中横线上)15.(4分)=.16.(4分)如图,在△ABC中,∠B=∠ACB=2∠A,AC的垂直平分线交AB于点E,D 为垂足,连接EC,则∠ECD=.17.(4分)如图,在△ABC中,∠ACB=90°,∠A=30°,以点C为圆心,CB长为半径作弧,交AB于点D;再分别以点B和点D为圆心,大于的长为半径作弧,两弧相交于点E,作射线CE交AB于点F,若AF=6,则BC的长为.三、解答题(本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤.)18.如图,以O为圆心,以OB为半径画弧交数轴于A点;(1)说出数轴上点A所表示的数;(2)比较点A所表示的数与﹣2.5的大小.19.(1)发现.①;②;③;…………写出④;⑤;(2)归纳与猜想.如果n为正整数,用含n的式子表示这个运算规律;(3)证明这个猜想.20.如图,在△ABC中,AB=BC,BD是∠ABC的平分线,E为AB的中点,连接DE,若DE=5,AC=16,求DB的长.21.如图所示,△ABC中,∠BAC的平分线与BC的垂直平分线相交于点E,EF⊥AB,EG ⊥AC,垂足分别为F、G,则BF=CG吗?说明理由.22.已知代数式(﹣1)÷,则:(1)当x=﹣3时,求这个代数式的值;(2)这个代数式的值能等于﹣1吗?请说明理由.23.某超市为了促销,将本来售完后可得1800元的奶糖和900元的水果糖混合后配成杂拌糖出售.这种糖每千克比奶糖便宜4元,比水果糖贵6元.已知这两种糖混合前后质量相同,求杂拌糖的单价.24.如图,在△ABC中,∠BAC=90°,AB=AC,点D是BC上一动点,连接AD,过点A 作AE⊥AD,并且始终保持AE=AD,连接CE.(1)求证:△ABD≌△ACE;(2)若AF平分∠DA E交BC于F,探究线段BD,DF,FC之间的数量关系,并证明;(3)在(2)的条件下,若BD=3,CF=4,求AD的长.2018-2019学年河北省石家庄市八校联考八年级(上)期末数学试卷参考答案与试题解析一、选择题:本大题共14个小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)近似数0.13是精确到()A.十分位B.百分位C.千分位D.百位【分析】确定近似数精确到哪一位,就是看这个数的最后一位是什么位即可.【解答】解:近似数0.13是精确到百分位,故选:B.【点评】此题考查了近似数,用到的知识点是精确度,一个数最后一位所在的位置就是这个数的精确度.2.(3分)下列四张扑克牌中,左旋转180°后还是和原来一样的是()A.B.C.D.【分析】左旋转180°后还是和原来一样的图形是中心对称图形,根据中心对称图形的定义解答即可.【解答】解:左旋转180°后还是和原来一样的是只有C.故选:C.【点评】本题主要考查了中心对称图形的定义,是需要熟记的内容.3.(3分)是2的()A.倒数B.平方根C.立方根D.算术平方根【分析】根据算术平方根与平方根的定义即可求出答案.【解答】解:是2的算术平方根,故选:D.【点评】本题考查平方根,解题的关键是熟练运用平方根的定义,本题属于基础题型.4.(3分)在3×3的方格中涂有阴影图形,下列阴影图形不是轴对称图形的是()A.B.C.D.【分析】直接利用轴对称图形的定义判断得出即可.【解答】解:A、是轴对称图形,不合题意;B、是轴对称图形,不合题意;C、是轴对称图形,不合题意;D、不是轴对称图形,符合题意;故选:D.【点评】此题主要考查了轴对称图形的定义,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.5.(3分)下列选项中,可以用来证明命题“若|a﹣1|>1,则a>2”是假命题的反例是()A.a=2B.a=1C.a=0D.a=﹣1【分析】所选取的a的值符合题设,则不满足结论即作为反例.【解答】解:当a=﹣1时,满足|a﹣1|>1,但满足a>2,所以a=﹣1可作为证明命题“若|a﹣1|>1,则a>2”是假命题的反例.故选:D.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.6.(3分)如图是作△ABC的作图痕迹,则此作图的已知条件是()A.已知两边及夹角B.已知三边C.已知两角及夹边D.已知两边及一边对角【分析】观察图象可知已知线段AB,α,β,由此即可判断.【解答】解:观察图象可知:已知线段AB,∠CAB=α,∠CBA=β,故选:C.【点评】本题考查作图﹣复杂作图,解题的关键是理解题意,属于中考常考题型.7.(3分)在代数式和中,x均可以取的值为()A.9B.3C.0D.﹣2【分析】根据分式的分母不等于0且二次根式的被开方数是非负数得出x的范围,据此可得答案.【解答】解:由题意知,x﹣3≠0且x﹣3≥0,解得:x>3,故选:A.【点评】本题主要考查二次根式有意义的条件,解题的关键是掌握分式的分母不等于0且二次根式的被开方数是非负数.8.(3分)如果把分式中的a、b同时扩大为原来的2倍,得到的分式的值不变,则W 中可以是()A.1B.C.ab D.a2【分析】直接利用分式的基本性质分别代入判断得出答案.【解答】解:如果把分式中的a、b同时扩大为原来的2倍,得到的分式的值不变,则W中可以是:b.故选:B.【点评】此题主要考查了分式的基本性质,正确掌握分式的基本性质是解题关键.9.(3分)我国是最早了解勾股定理的国家之一.下面四幅图中,不能证明勾股定理的是()A.B.C.D.【分析】先表示出图形中各个部分的面积,再判断即可.【解答】解:A、∵+c2+ab=(a+b)(a+b),∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;B、∵4×+c2=(a+b)2,∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;C、∵4×+(b﹣a)2=c2,∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;D、根据图形不能证明勾股定理,故本选项符合题意;故选:D.【点评】本题考查了勾股定理的证明,能根据图形中各个部分的面积列出等式是解此题的关键.10.(3分)若(b为整数),则a的值可以是()A.B.27C.24D.20【分析】根据二次根式的运算法则即可求出答案.【解答】解:+=3+=b当a=20时,∴=2,∴b=5,符合题意,故选:D.【点评】本题考查二次根式的运算法则,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.11.(3分)如图,AB⊥CD,且AB=CD,E,F是AD上两点,CE⊥AD,BF⊥AD.若CE =4,BF=3,EF=2,则AD的长为()A.3B.5C.6D.7【分析】只要证明△ABF≌△CDE,可得AF=CE=4,BF=DE=3,推出AD=AF+DF =4+(3﹣2)=5;【解答】解:∵AB⊥CD,CE⊥AD,BF⊥AD,∴∠AFB=∠CED=90°,∠A+∠D=90°,∠C+∠D=90°,∴∠A=∠C,∵AB=CD,∴△ABF≌△CDE(AAS),∴AF=CE=4,BF=DE=3,∵EF=2,∴AD=AF+DF=4+(3﹣2)=5,故选:B.【点评】本题考查全等三角形的判定和性质,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.12.(3分)已知:△ABC中,AB=AC,求证:∠B<90°,下面写出可运用反证法证明这个命题的四个步骤:①∴∠A+∠B+∠C>180°,这与三角形内角和为180°矛盾②因此假设不成立.∴∠B<90°③假设在△ABC中,∠B≥90°④由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°.这四个步骤正确的顺序应是()A.③④①②B.③④②①C.①②③④D.④③①②【分析】通过反证法的证明步骤:①假设;②合情推理;③导出矛盾;④结论;理顺证明过程即可.【解答】解:由反证法的证明步骤:①假设;②合情推理;③导出矛盾;④结论;所以题目中“已知:△ABC中,AB=AC,求证:∠B<90°”.用反证法证明这个命题过程中的四个推理步骤:应该为:假设∠B≥90°;那么,由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°所以∠A+∠B+∠C>180°,这与三角形内角和定理相矛盾,;所以因此假设不成立.∴∠B<90°;原题正确顺序为:③④①②.故选:A.【点评】本题考查反证法证明步骤,考查基本知识的应用,逻辑推理能力.13.(3分)已知x=,则代数式(7+4)x2+(2+)x+的值是()A.0B.C.D.2﹣【分析】将x的值代入原式,再利用完全平方公式和平方差公式计算可得.【解答】解:当x=时,原式=(7+4)(2﹣)2+(2+)(2﹣)+=(7+4)(7﹣4)+4﹣3+=49﹣48+1+=2+,故选:C.【点评】本题主要考查二次根式的化简求值,解题的关键是熟练掌握完全平方公式、平方差公式及二次根式的运算法则.14.(3分)在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2、4、3,则原直角三角形纸片的斜边长是()A.10B.C.10或D.10或【分析】先根据题意画出图形,再根据勾股定理求出斜边上的中线,最后即可求出斜边的长.【解答】解:①如图:因为CD==2,点D是斜边AB的中点,所以AB=2CD=4,②如图:因为CE==5,点E是斜边AB的中点,所以AB=2CE=10,原直角三角形纸片的斜边长是10或,故选:C.【点评】此题考查了图形的剪拼,解题的关键是能够根据题意画出图形,在解题时要注意分两种情况画图,不要漏解.二、填空题(本大题有3个小题,每小题4分,共20分.把答案写在题中横线上)15.(4分)=﹣.【分析】如果一个数x的立方等于a,那么x是a的立方根,根据此定义求解即可.【解答】解:∵﹣的立方为﹣,∴﹣的立方根为﹣,故答案为﹣.【点评】此题主要考查了求一个数的立方根,解题时应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.16.(4分)如图,在△ABC中,∠B=∠ACB=2∠A,AC的垂直平分线交AB于点E,D 为垂足,连接EC,则∠ECD=36°.【分析】根据三角形内角和定理求出∠A,根据线段垂直平分线的性质得到EA=EC,根据等腰三角形的性质解答.【解答】解:设∠A=x,则∠B=∠ACB=2x,则x+2x+2x=180°,解得,x=36°,∴∠B=∠ACB=72°,∵DE是AC的垂直平分线,∴EA=EC,∴∠ECD=∠A=36°,故答案为:36°.【点评】本题考查的是线段的垂直平分线的性质、等腰三角形的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.17.(4分)如图,在△ABC中,∠ACB=90°,∠A=30°,以点C为圆心,CB长为半径作弧,交AB于点D;再分别以点B和点D为圆心,大于的长为半径作弧,两弧相交于点E,作射线CE交AB于点F,若AF=6,则BC的长为4.【分析】连接CD,根据在△ABC中,∠ACB=90°,∠A=30°,BC为x,可知AB=2BC=2x,再由作法可知BC=CD=x,CE是线段BD的垂直平分线,故CD是斜边AB 的中线,据此可得出BD=x,进而可得出结论.【解答】解:连接CD,∵在△ABC中,∠ACB=90°,∠A=30°,设BC=x,∴AB=2BC=2x.∵作法可知BC=CD=x,CE是线段BD的垂直平分线,∴CD是斜边AB的中线,∴BD=AD=x,∴BF=DF=x,∴AF=AD+DF=x+x=6.解得:x=4.故答案为:4【点评】本题考查的是作图﹣基本作图,熟知线段垂直平分线的作法和直角三角形的性质是解答此题的关键.三、解答题(本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤.)18.如图,以O为圆心,以OB为半径画弧交数轴于A点;(1)说出数轴上点A所表示的数;(2)比较点A所表示的数与﹣2.5的大小.【分析】(1)根据勾股定理求出OB的长度,再根据圆的半径定义得到OA,求出A;(2)根据A所代表的数,直接比较与﹣2.5的大小;【解答】解:(1)OB=,∵OB=OA=∴A所代表的数字为﹣\sqrt{5}$;(2)A点表示的数为﹣$\sqrt{5}$≈﹣2.235∴A点表示的数大于﹣2.5【点评】本题运用了勾股定理、数轴上负数大小比较的方法;19.(1)发现.①;②;③;…………写出④;⑤;(2)归纳与猜想.如果n为正整数,用含n的式子表示这个运算规律;(3)证明这个猜想.【分析】(1)根据题目中的例子可以写出例4;(2)根据(1)中特例,可以写出相应的猜想;(3)根据(2)中的猜想,对等号左边的式子化简,即可得到等号右边的式子,从而可以解答本题.【解答】解:(1)由例子可得,④为:,⑤,故答案为,,(2)如果n为正整数,用含n的式子表示这个运算规律:,故答案为:,(3)证明:∵n是正整数,∴.即.故答案为:∵n是正整数,∴.即.【点评】本题考查二次根式的混合运算、数字的变化类,解答本题的关键是明确题意,找出所求问题需要的条件.20.如图,在△ABC中,AB=BC,BD是∠ABC的平分线,E为AB的中点,连接DE,若DE=5,AC=16,求DB的长.【分析】根据等腰三角形的性质得到AD=8,AD⊥AC,根据直角三角形的性质求出AB,根据勾股定理计算即可.【解答】解:∵AB=BC,BD是∠ABC的平分线,∴AD=DC=AC=8,AD⊥AC,∴∠ADB=90°,又E为AB的中点,∴AB=2DE=10,由勾股定理得,BD==6.【点评】本题考查的是角平分线的定义、等腰三角形的性质、直角三角形的性质,掌握等腰三角形的三线合一是解题的关键.21.如图所示,△ABC中,∠BAC的平分线与BC的垂直平分线相交于点E,EF⊥AB,EG ⊥AC,垂足分别为F、G,则BF=CG吗?说明理由.【分析】先根据点E在BC的垂直平分线上可求出BE=CE,再根据点E在∠BAC的角平分线上,且EF⊥AB,EG⊥AC可求出EF=EG,再由HL定理可求出Rt△EFB≌Rt△EGC,由全等三角形的性质即可得出结论.【解答】解:BF=CG;理由如下:因为点E在BC的垂直平分线上,所以BE=CE.因为点E在∠BAC的角平分线上,且EF⊥AB,EG⊥AC,所以EF=EG,在Rt△EFB和Rt△EGC中,因为BE=CE,EF=EG,所以Rt△EFB≌Rt△EGC(HL).所以BF=CG.【点评】本题涉及到角平分线的性质、线段垂直平分线的性质、直角三角形全等的判定定理及全等三角形的性质,涉及面较广,难度适中.22.已知代数式(﹣1)÷,则:(1)当x=﹣3时,求这个代数式的值;(2)这个代数式的值能等于﹣1吗?请说明理由.【分析】(1)先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得;(2)假设分式的值等于﹣1,根据化简结果列出关于x的方程,解方程求出x的值,依据分式有意义的条件作出判断.【解答】解:(1)原式=(﹣)÷=•=,当x=﹣3时,原式==﹣2;(2)若原式的值为﹣1,则=﹣1,解得:x=﹣1,而当x =﹣1时,原式分母为0,无意义;所以原式的值不能等于﹣1.【点评】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.23.某超市为了促销,将本来售完后可得1800元的奶糖和900元的水果糖混合后配成杂拌糖出售.这种糖每千克比奶糖便宜4元,比水果糖贵6元.已知这两种糖混合前后质量相同,求杂拌糖的单价.【分析】设杂拌糖的单价为x 元,则奶糖的单价为(x +4)元,水果糖的单价为(x ﹣6)元,根据这两种糖混合前后质量相同列出方程,解方程即可.【解答】解:设杂拌糖的单价为x 元,则奶糖的单价为(x +4)元,水果糖的单价为(x ﹣6)元,根据题意得+=,解得:x =36.经检验,x =36是原方程的解.答:杂拌糖的单价为36元.【点评】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.24.如图,在△ABC 中,∠BAC =90°,AB =AC ,点D 是BC 上一动点,连接AD ,过点A 作AE ⊥AD ,并且始终保持AE =AD ,连接CE .(1)求证:△ABD ≌△ACE ;(2)若AF 平分∠DAE 交BC 于F ,探究线段BD ,DF ,FC 之间的数量关系,并证明;(3)在(2)的条件下,若BD =3,CF =4,求AD 的长.【分析】(1)根据SAS ,只要证明∠1=∠2即可解决问题;(2)结论:BD 2+FC 2=DF 2.连接FE ,想办法证明∠ECF =90°,EF =DF ,利用勾股定理即可解决问题;(3)过点A 作AG ⊥BC 于G ,在Rt △ADG 中,想办法求出AG 、DG 即可解决问题;【解答】(1)证明:∵AE ⊥AD ,∴∠DAE=∠DAC+∠2=90°,又∵∠BAC=∠DAC+∠1=90°,∴∠1=∠2,在△ABD和△ACE中,∴△ABD≌△ACE.(2)解:结论:BD2+FC2=DF2.理由如下:连接FE,∵∠BAC=90°,AB=AC,∴∠B=∠3=45°由(1)知△ABD≌△ACE∴∠4=∠B=45°,BD=CE∴∠ECF=∠3+∠4=90°,∴CE2+CF2=EF2,∴BD2+FC2=EF2,∵AF平分∠DAE,∴∠DAF=∠EAF,在△DAF和△EAF中,∴△DAF≌△EAF∴DF=EF∴BD2+FC2=DF2.(3)解:过点A作AG⊥BC于G,由(2)知DF2=BD2+FC2=32+42=25∴DF=5,∴BC=BD+DF+FC=3+5+4=12,∵AB=AC,AG⊥BC,∴BG=AG=BC=6,∴DG=BG﹣BD=6﹣3=3,∴在Rt△ADG中,AD===3.【点评】本题考查三角形综合题、等腰直角三角形的性质、勾股定理、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.。
2020-2021学年浙江省温州市乐清市八年级(下)期末数学试卷

2020-2021学年浙江省温州市乐清市八年级(下)期末数学试卷一、选择题(共10小题,每小题3分,满分30分)1.要使二次根式有意义,则x的取值范围是()A.x≥1B.x>1C.x≥﹣1D.x>﹣12.下列各式中,能与合并的是()A.2B.3C.D.3.下列图形中,是中心对称图形的是()A.B.C.D.4.在平面直角坐标系中,点A(2,﹣3)在反比例函数y=的图象上,下列各点在此反比例函数图象上的是()A.P(﹣2,3)B.Q(﹣2,﹣3)C.S(1,6)D.T(4,﹣2)5.将80辆环保电动汽车一次充电后行驶里程记录数据,获得如图所示条形统计图,根据统计图所测数据的中位数、众数分别是()A.165,160B.165,165C.170,165D.160,1656.已知关于x的一元二次方程x2﹣4x+m=0有两个相等的实数根,则m值是()A.0B.1C.2D.47.用反证法证明命题“如果a∥b,c∥b,那么a∥c”时,应假设()A.a⊥c B.c不平行b C.a不平行b D.a不平行c 8.如图,菱形ABCD中,AB=13,AC=10,则BD的长度为()A.24B.16C.12D.89.已知点(﹣1,y1),(﹣3,y2),(3,y3)在函数y=﹣的图象上,则()A.y1<y2<y3B.y2<y1<y3C.y3<y1<y2D.y3<y2<y1 10.已知关于x的方程x2﹣7x+6a=0的一个解是x1=2a,则原方程的另一个解是()A.x2=0或7B.x2=3或4C.x2=3或7D.x2=4或7二、填空题(本题有8个小题,每小题3分,共24分11.当x=时,值为0.12.若使平行四边形ABCD为矩形,需添加一个条件为.(填出一种情况即可)13.如图,在五边形ABCDE中,∠D=120°,与∠EAB相邻的外角是80°,与∠DEA,∠ABC相邻的外角都是60°,则∠C为度.14.一艘快艇的航线如图所示,从O港出发,1小时后到达A地,若快艇的行驶速度保持不变,则快艇驶完AB这段路程的时间为小时.15.如图,已知点P是正方形ABCD对角线BD上一点,且AP=3,PF⊥CD于点F,PE ⊥BC于点E,连结EF,则EF的长为.16.如图,O是等边三角形ABC内任意一点,过点O作OD∥AB,OE∥AC,OF∥BC分别交AC,BC,AB于点G,H,I,已知等边三角形ABC的周长18,则OD+OE+OF=.17.如图,点A在反比例函数y=(x>0)的图象上,作AB⊥y轴,AC⊥x轴分别交反比例函数y=(x>0)图象于点B,C,点C在点A的下方,连结BC,若△ABC的面积为,则k的值为.18.小李家大门上的矩形装饰物由金属丝焊接而成,该图形既是轴对称图形又是中心对称图形,如图,在矩形ABCD中,两个菱形由平行于AD的固定条固定,EF,IJ是中间的固定条,上下固定条都经过菱形各边中点,且所有固定条不经过菱形内部.已知F,M,G 分别到AB,BC,AD的距离都是2cm,若对角线FH=AB=FG,顶点H,K之间距离是EF的2倍,则金属丝总长(即图中所有线段之和)是cm.三、解答题(本题有5小题,共46分.解答时需要写出必要的文字说明、演算步骤或证明过程)19.(1)计算:(﹣)×;(2)解方程:x2﹣2x﹣1=0.20.如图,在7×7网格中,线段AB的两个端点和点C都在网格的格点上,分别按下列要求仅用无刻度直尺画图(保留作图痕迹).(1)在图甲中画线段AB的中点M.(2)在图乙中画线段CD,使得CD=AB.21.如图,小强同学根据乐清市某天上午和下午各四个整点时间的气温绘制成的折线统计图.(1)根据图中信息分别求出上午和下午四个整点时间的平均气温.(2)请你根据所学统计学知识,从四个整点时间温度猜测,这天上午和下午的气温哪个更稳定,并说明理由.22.学校的学生专用智能饮水机在工作过程:先进水加满,再加热至100℃时自动停止加热,进入冷却期,水温降至25℃时自动加热,水温升至100℃又自动停止加热,进入冷却期,此为一个循环加热周期,在不重新加入水的情况下,一直如此循环工作,如图,表示从加热阶段的某一时刻开始计时,时间为x(分)与对应的水温为y(℃)函数图象关系,已知AB段为线段,BC段为双曲线一部分,点A为(0,28),点B为(9,100),点C 为(a,25).(1)求出AB段加热过程的y与x的函数关系式和a的值.(2)若水温y(℃)在45≤y≤100时为不适饮水温度,在0≤x≤a内,在不重新加入水的情况下,不适饮水温度的持续时间为多少分?23.如图,正方形ABCD中,E,F,G分别是CD,AD,AB上的中点,连结BE,BF,AE,连结CG分别交BE,BF于点M,N,AE交BF于点H.(1)求证:AE∥CG;(2)当点P从点A匀速运动到点E时,点Q恰好从点C匀速运动到点N处,若AB=10,设CQ=4t.①求AH的长.②当AP>AH时,用含t代数式表示四边形QNHP的面积.③在P,Q整个运动过程中,当P,Q与四边形MNHE的两个顶点构成平行四边形时,求t的值.。
2019-2020学年浙江省温州市八年级(下)期中数学试卷(附答案详解)

2019-2020学年浙江省温州市八年级(下)期中数学试卷一、选择题(本大题共10小题,共30.0分)1.二次根式√x−3中x的取值范围是()A. x≥0B. 3C. x≥3D. x≤−32.下列图案中,既是轴对称图形又是中心对称图形的是()A. B.C. D.3.方程x2=9x的解为()A. x=0B. x=9C. x1=0,x2=9D. x1=3,x2=−34.下列二次根式中,是最简二次根式的是()A. √8B. √10C. √16D. √275.甲、乙、丙、丁四名同学进行跳高测试,每人10次跳高成绩的平均数都是1.27m.方差分别是S甲2=0.60,S乙2=0.62,S丙2=0.57,S丁2=0.49,则这四名同学跳高成绩最稳定的是()A. 甲B. 乙C. 丙D. 丁6.如图,用一条宽度相等的足够长的纸条打一个结(如图1所示),然后轻轻拉紧、压平就可以得到如图2所示的正五边形ABCDE.图2中,∠BAC的大小是()A. 72°B. 36°C. 30°D. 54°7.如图,▱ABCD的对角线相交于点O,下列条件中能判定这个平行四边形是矩形的是()A. AC=BDB. AB=BCC. ∠BAC=∠CADD. AC⊥BD8.用反证法证明命题“若√a2=a,则a≥0”时,第一步应假设()A. √a2≠aB. a≤0C. a<0D. a>09.受益于电子商务的发展以及法治环境的改善等多重因素,“快递业”成为我国经济的一匹“黑马”,2018年我国快递业务量为500亿件,2020年快递量预计将达到740亿件,若设快递量平均每年增长率为x,则下列方程中,正确的是()A. 500(1+x)2=740B. 500(1+2x)=740C. 500(1+x)=740D. 500(1−x)2=74010.如图,菱形ABCD的对角线相交于点O,AC=12,BD=16,点P为边BC上一点,且P不与B、C重合.过P作PE⊥AC于E,PF⊥BD于F,连结EF,则EF 的最小值为()A. 4B. 4.8C. 5D. 6二、填空题(本大题共8小题,共24.0分)11.计算:√6÷√2=______.12.已知x=1是方程x2+ax+2=0的一个根,则a的值为______ .13.在某市举办的垂钓比赛上,7名垂钓爱好者参加了比赛,比赛结束后,统计了他们各自的钓鱼条数,成绩如下:4,5,10,6,10,7,9,则这组数据的众数是______ .14.若关于x的一元二次方程kx2−5x+4=0有两个相等的实数根,则k的值为______ .15.如图,河坝横断面迎水坡AB的坡比是1:√3(坡比是斜坡AB两点之间的高度差BC与水平距离AC之比),坝高BC=2m,则坡面AB的长度是______m.16.如图所示,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=4,BC=7,则EF的长为______ .17.七巧板又称“智慧板”,是我们古代祖先的一项卓越创造.小华利用七巧板(如图1)拼出一个房子模型(如图2),已知图1中正方形ABCD的边长为4cm,则图2中六边形EFGHIJ的周长是______ cm.18.如图1,在菱形ABCD中,动点P从点C出发,沿C−A−D运动至终点D.设点P的运动路程为x(cm),△BCP的面积为y(cm2).若y与x的函数图象如图2所示,则图中a的值为______ .三、解答题(本大题共6小题,共46.0分)19.计算与解方程:(1)计算(4+√32)×2−8;(2)解方程x2−4x+1=0.20.如图,在所给的8×8方格纸中,点A,B均为格点,请画出符合要求的格点四边形.(1)在图1中画出一个以AB为边的矩形.(2)在图2中画出一个以AB为对角线的正方形.21.近年来,共享单车逐渐成为高校学生喜爱的“绿色出行”方式之一,某高校为了解本校学生出行使用共享单车的情况,随机调查了某天50名出行学生使用共享单车的情况,并整理成如下统计表.使用次数(012345次)人数(名)12144884(1)这50名出行学生使用共享单车次数的中位数是______ 次.(2)这50名出行学生平均每人使用共享单车多少次?(3)若该校某天有1100名学生出行,请你估计这天使用共享单车次数在3次以上(含3次)的学生有多少人?22.在▱ABCD中,过点D作DE⊥AB于点E,点F在CD上,AE=CF,连接BF、AF.(1)求证:四边形DEBF是矩形;(2)若AF平分∠DAB,AE=3,DE=4.则AF长为______ .23.瑞安城市规划展览馆位于瑞样新区瑞祥公园内,是温州目前规模最大的城市规划展览馆.为了让参观的人方便停车,城市规划展览馆利用一块矩形空地建了一个停车场,其布局如图所示,已知停车场的长为58米,宽为22米,阴影部分为停车位,其余部分是等宽的通道,已知停车位的面积为700平方米.(1)求通道的宽是多少米?(2)该停车场共有车位70个,据调查分析,当每个车位的月租金为300元时,可全部租出:当每个车位的月租金每上涨10元,就会少租出1个车位,那么停车场的月租金收入最大为______ 元?(请直接写出答案)24.如图1,在平面直角坐标系中,正方形OABC的边OA,OC分别在x轴,y轴的正半轴上,直线y=2x−4经过线段OA的中点D,与y轴交于点G,E是射线CG上一点,作点E关于直线DG的对称点F,连接BE,BF,FG.设点E的坐标为(0,m).(1)求点B的坐标是(______ ,______ ).(2)如图2,当点F落在线段BA的延长线上时,求证:四边形BEGF为菱形.(3)在点E的整个运动过程中,①当S△BEG=58S正方形OABC时,求线段CE的长.②N为平面内任意一点,当B,E,F,N四点构成的四边形为矩形时,则m的值为______ .(请直接写出答案)答案和解析1.【答案】C【解析】解:由题意知x−3≥0,解得:x≥3,故选:C.根据二次根式的性质,被开方数大于或等于0,可以求出x的范围.本题考查的知识点为:二次根式的被开方数是非负数.2.【答案】B【解析】解:A、是轴对称图形,不是中心对称图形.故本选项错误;B、是轴对称图形,也是中心对称图形.故本选项正确;C、不是轴对称图形,是中心对称图形.故本选项错误;D、不是轴对称图形,是中心对称图形.故本选项错误.故选:B.根据轴对称图形与中心对称图形的概念求解.本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.【答案】C【解析】解:移项,得x2−9x=0,x(x−9)=0,即x=0或x−9=0∴x1=0,x2=9.故选:C.方程x2=9x移项,得x2−9x=0,再运用因式分解法求出方程的解,选出正确的答案.此类问题也可以根据方程的解的定义,把四个选项分别代入原方程进行检验得出正确的解.4.【答案】B【解析】解:A 、√8=√4×2=2√2,被开方数中含能开得尽方的因数,不是最简二次根式;B 、√10是最简二次根式;C 、√16=4,被开方数中含能开得尽方的因数,不是最简二次根式;D 、√27=√9×3=3√3,被开方数中含能开得尽方的因数,不是最简二次根式; 故选:B .根据最简二次根式的概念判断.本题考查的是最简二次根式的概念,被开方数不含分母、被开方数中不含能开得尽方的因数或因式的二次根式,叫做最简二次根式.5.【答案】D【解析】解:∵S 甲2=0.60,S 乙2=0.62,S 丙2=0.57,S 丁2=0.49, ∴S 丁2<S 丙2<S 甲2<S 乙2,∴这四名同学跳高成绩最稳定的是丁, 故选:D .根据方差的意义求解可得.本题主要考查方差,解题的关键是掌握方差的意义:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.6.【答案】B【解析】解:∵∠ABC =(5−2)×180°5=108°,△ABC 是等腰三角形,∴∠BAC =∠BCA =36°. 故选:B .利用多边形的内角和定理和等腰三角形的性质即可解决问题.本题主要考查了多边形的内角和定理和等腰三角形的性质.n 边形的内角和为:180°(n −2).7.【答案】A【解析】解:A、∵四边形ABCD是平行四边形,AC=BD,∴四边形ABCD是矩形;故选项A符合题意;B、∵四边形ABCD是平行四边形,AB=BC,∴平行四边形ABCD是菱形;故选项B不符合题意;C、∵四边形ABCD是平行四边形,∴AB//CD,∴∠BAC=∠ACD,∵∠BAC=∠CAD,∴∠ACD=∠CAD,∴AD=CD,∴平行四边形ABCD是菱形;故选项C不符合题意;D、∵四边形ABCD是平行四边形,AC⊥BD,∴平行四边形ABCD是菱形;故选项D不符合题意;故选:A.根据矩形的判定方法和菱形的判定方法分别对各个选项进行判断,即可得出结论.本题考查矩形的判定、菱形的判定、平行四边形的性质、等腰三角形的判定等知识;熟练掌握矩形和菱形的判定方法是解题的关键,属于中考常考题型.8.【答案】C【解析】解:用反证法证明命题“若√a2=a,则a≥0”时,第一步应假设a<0.故选:C.用反证法证明命题的真假,先假设命题的结论不成立,从这个结论出发,经过推理论证,得出矛盾;由矛盾判定假设不正确,从而肯定命题的结论正确.考查了反证法,反证法是指“证明某个命题时,先假设它的结论的否定成立,然后从这个假设出发,根据命题的条件和已知的真命题,经过推理,得出与已知事实(条件、公理、定义、定理、法则、公式等)相矛盾的结果.这样,就证明了结论的否定不成立,从而间接地肯定了原命题的结论成立.”9.【答案】A【解析】解:设快递量平均每年增长率为x,依题意,得:500(1+x)2=740.故选:A.设快递量平均每年增长率为x,根据我国2018年及2020年的快递业务量,即可得出关于x的一元二次方程,此题得解.本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.10.【答案】B【解析】解:连接OP,∵四边形ABCD是菱形,AC=12,BD=16,∴AC⊥BD,BO=12BD=8,OC=12AC=6,∴BC=√OB2+OC2=√64+36=10,∵PE⊥AC,PF⊥BD,AC⊥BD,∴四边形OEPF是矩形,∴FE=OP,∵当OP⊥BC时,OP有最小值,此时S△OBC=12OB×OC=12BC×OP,∴OP=6×810=4.8,∴EF的最小值为4.8,故选:B.由菱形的性质可得AC⊥BD,BO=12BD=8,OC=12AC=6,由勾股定理可求BC的长,可证四边形OEPF是矩形,可得EF=OP,OP⊥BC时,OP有最小值,由面积法可求解.本题考查了菱形的性质,矩形的判定和性质,勾股定理,掌握菱形的性质是本题的关键.11.【答案】√3【解析】解:√6÷√2=√6÷2=√3,故答案为:√3.根据二次根式的除法法则:√a√b =√ab(a≥0,b>0)进行计算即可.此题主要考查了二次根式的除法,关键是掌握计算法则.12.【答案】−3【解析】解:∵x=1是方程x2+ax+2=0的一个根,∴1+a+2=0,∴a=−3.故答案为:−3.把x=1代入方程得到关于a的方程,解方程即可.本题考查了一元二次方程的解的概念:使方程两边成立的未知数的值叫方程的解.13.【答案】10【解析】解:这组数据中数字10出现2次,次数最多,所以这组数据的众数是10,故答案为:10.根据众数的概念求解可得.本题主要考查众数,解题的关键是掌握众数的定义:一组数据中出现次数最多的数据叫做众数.14.【答案】2516【解析】解:根据题意得k≠0且△=(−5)2−4k×4=0,.解得k=2516.故答案为2516根据判别式的意义得到△=(−5)2−4k×4=0,本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2−4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.15.【答案】4【解析】解:∵坡AB的坡比是1:√3,坝高BC=2m,∴AC=2√3,由勾股定理得,AB=√BC2+AC2=4(m),故答案为:4.根据坡度的概念求出AC,根据勾股定理求出AB.本题考查的是解直角三角形的应用−坡度坡角问题,掌握坡度的概念是解题的关键.16.【答案】1.5【解析】解:∵DE为△ABC的中位线,BC=3.5,∴DE=12在Rt△AFB中,∠AFB=90°,D是AB的中点,∴DF=1AB=2,2∴EF=DE−DF=1.5,故答案为:1.5.根据三角形中位线定理求出DE,根据直角三角形的性质求出DF,结合图形计算,得到答案.本题考查的是三角形中位线定理、直角三角形的性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.17.【答案】8√2+4.【解析】解:在图2中加上节点K:观察图1和图2可知:EK=EF=FL=HG=12BD,JI=KH=LG=12EK=14BD,EJ=IH,∵正方形ABCD的边长为4CM,∴BD=√42+42=4√2,FL=EF=HG=12×4√2=2√2,JI=KH=LG=12EK=14×4√2=√2,则EJ=IH=2,∴六边形EFGKIJ的周长为:EJ+JI+IH+HG+(LG+FL)+EF,=2+√2+2+2√2+√2+2√2+2√2,=8√2+4,故答案为:8√2+4.七巧板由正方形分割成七小块(其中:五块等腰直角三角形,一块正方形和一块平行四边形组成),再根据图形的特点,由正方形的性质和勾股定理求出各板块的边长,即可求出图2中六边形的周长.本题考查七巧板的识图以及正方形的性质和勾股定理,数形结合是解决本题的关键.18.【答案】2512【解析】解:从图2知,AC=5,AD=2a,当点P在点A时,此时,y=4a=S△BCP=S△ABC,此时,AB=BC=AD=2a,即△ABC为等腰三角形,过点B作BH⊥AC于点H,则CH=AH=12AC=52,在△ABC中,S△ABC=12AC×BH=12×5×BH=4a,解得BH=8a5,在Rt△HBC中,BC2=BH2+CH2,即(2a)2=(8a5)2+(52)2,解得a=±2512(舍去负值),故答案为2512.从图2知,AC=5,AD=2a,在△ABC中利用S△ABC=12AC×BH=12×5×BH=4a,求得BH=8a5,最后在Rt△HBC中,利用勾股定理即可求解.本题考查的是动点图象问题,涉及到三角形的面积公式、菱形和等腰三角形的性质,勾股定理的运用等,此类问题关键是:弄清楚不同时间段,图象和图形的对应关系,进而求解.19.【答案】解:(1)原式=(4+4√2)×2−8=8+8√2−8=8√2;(2)∵x2−4x=−1,∴x2−4x+4=−1+4,即(x−2)2=3,则x−2=±√3,∴x=2±√3,即x1=2+√3,x2=2−√3.【解析】(1)先化简二次根式,再计算乘法,最后计算加减可得;(2)利用配方法求解可得.本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.20.【答案】解:(1)如图,矩形ABCD即为所求.(2)如图,正方形ADBC即为所求.【解析】(1)利用数形结合的思想解决问题即可.(2)利用数形结合的思想解决问题即可.本题考查作图−应用与设计,矩形的判定和性质,正方形的判定和性质等知识,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型.21.【答案】1=1(次),【解析】解:(1)这50名出行学生使用共享单车次数的中位数是1+12故答案为:1;×(0×12+1×14+2×4+3×8+ (2)这50名出行学生平均每人使用共享单车1504×8+5×4)=1.96(次);=440(人).(3)估计这天使用共享单车次数在3次以上(含3次)的学生有1100×8+8+450(1)根据中位数的概念求解可得;(2)利用加权平均数的概念列式计算可得;(3)用总人数乘以样本中使用共享单车次数在3次以上(含3次)的学生人数占被调查人数的比例.本题考查了中位数、平均数的概念以及利用样本平均数估计总体.抓住概念进行解题,难度不大,但是中位数一定要先将所给数据按照大小顺序重新排列后再求,以免出错.22.【答案】4√5【解析】(1)证明:∵四边形ABCD是平行四边形,∴AB=CD,AB//CD,∴DF//BE,∵CF=AE,∴DF=BE,∴四边形BFDE是平行四边形,∵DE⊥AB,∴∠DEB=90°,∴四边形BFDE是矩形.(2)解:∵AB//CD,∴∠BAF=∠AFD,∵AF平分∠BAD,∴∠DAF=∠AFD,∴AD=DF,在Rt△ADE中,∵AE=3,DE=4,∴AD=√32+42=5,∴DF=5,∵四边形DEBF是矩形,∴BE=DF=5,BF=DE=4,∠ABF=90°,∴AB=AE+BE=8,∴AF=√AB2+BF2=√82+42=4√5;故答案为:4√5.(1)根据有一个角是90度的平行四边形是矩形即可判定.(2)首先证明AD=DF,求出AD=5,由矩形的性质得BE=DF=5,BF=DE=4,则AB=AE+BE=8,由勾股定理即可解决问题.本题考查了平行四边形的判定和性质,矩形的判定和性质、角平分线的定义、等腰三角形的判定、勾股定理等知识,解题的关键是灵活运用所学知识解决问题.23.【答案】25000【解析】解:(1)设通道的宽为x米,根据题意得:(58−2x)(22−2x)=700,解得:x=36(舍去)或x=4,答:甬道的宽为4米;(2)设月租金上涨a元,设停车场的月租金收入为w元,根据题意得:w=(300+a)(70−110a)=−110(a−700)(a+300),∵−110<0,故w有最大值,当a=12(700−300)=200(元)时,w的最大值为25000(元),故答案为25000.(1)设通道的宽为x米,根据矩形的面积公式列出方程并解答.(2)设车位的月租金上涨a元,则租出的车位数量是(70−110a)个,根据“月租金=每个车位的月租金×车位数”列出函数表达式,进而求解.本题考查了二次函数的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,进而求解.24.【答案】4 4 83【解析】解:(1)对于y=2x−4,令x=0,则y=−4,令y=0,即2x−4=0,解得x=2,故点D、G的坐标分别为(2,0)、(0,−4),则点A(4,0),即正方形的边长为4,故点B(4,4),故答案为4,4;(2)如题干图2,∵点E、点F关于直线DG对称,∴BE=BF,EG=GF,而BG=BG,∴△BGE≌△BGF(SSS),∴∠EBG=∠FBG,∵BF//EG,∴∠GBF=∠EGB,∴∠EBG=∠EGB,∴BE=GE,∵BE=BF,EG=GF,∴EB=BF=FG=GE,∴四边形BEGF为菱形;(3)①∵S△BEG=58S正方形OABC,∴12×GE×BC=58×4×4,即12×|m+4|×4=10,解得m=1或−9,故CE=3或13;②如下图,当B,E,F,N四点构成的四边形为矩形时,∵BE=BF,则该矩形为正方形,则∠EBF为直角,故点F作x轴的平行线交BA的延长线于点T,∵∠CBE+∠EBA=90°,∠EBA+∠FBA=90°,∴∠CBE=∠FBA,∵∠BCE=∠BTF=90°,BE=BF,∴△BCE≌△BTF(AAS),∴CE=TF=4−m,BT=BC,故点A、T重合,则点F在x轴上,则AF=CE=4−m,故点F(8−m,0),∵GE=GF,∴(m+4)2=(8−m)2+(−4)2,解得:m=83,故答案为83.(1)对于y=2x−4,令x=0,则y=−4,令y=0,即2x−4=0,解得x=2,故点D、G的坐标分别为(2,0)、(0,−4),则点A(4,0),即可求解;(2)证明△BGE≌△BGF(SSS),则可证∠EBG=∠EGB,则BE=GE,进而求解;(3)①S△BEG=58S正方形OABC,即12×GE×BC=58×4×4,则12×|m+4|×4=10,即可求解;②当B,E,F,N四点构成的四边形为矩形时,则该矩形为正方形,然后证明△BCE≌△BGF(AAS),得到F(8−m,0),再利用GE=GF,即可求解.本题考查的是一次函数综合运用,涉及到一次函数的性质、菱形的性质、三角形全等等,其中(3)①,要注意分类求解,避免遗漏.。
2019-2020学年浙江省温州市瑞安市八年级下学期期末数学试卷 (word版,含解析)

2019-2020学年浙江温州市瑞安市八年级第二学期期末数学试卷一、选择题(共10小题).1.(3分)要使二次根式有意义,x必须满足()A.x≥2B.x≤2C.x<2D.x>22.(3分)四边形的内角和为()A.180°B.360°C.540°D.720°3.(3分)下列选项中,计算正确的是()A.3+2=5B.﹣=9C.×=D.÷=4 4.(3分)用反证法证明“若a>b>0,则>”时应假设()A.≤B.<C.≥D.=5.(3分)下列手机应用软件的图标中,属于中心对称图形的是()A.B.C.D.6.(3分)用配方法解一元二次方程x2﹣2x﹣5=0,下列配方正确的是()A.(x+1)2=6B.(x+1)2=9C.(x﹣1)2=9D.(x﹣1)2=6 7.(3分)在▱ABCD中,若∠A+∠C=80°,则∠B的度数为()A.100°B.130°C.140°D.150°8.(3分)某品牌运动服原来每件售价400元,受疫情影响经过连续两次降价后,现在每件售价为256元.设平均每次降价的百分率为x,根据题意可列方程()A.400(1﹣2x)=256B.400(1﹣x)2=256C.400(1﹣x2)=256D.256(1+x)2=4009.(3分)已知反比例函数y=(k≠0),当﹣2≤x≤﹣1时,y的最大值是4,则当x ≥2时,y有()A.最小值﹣4B.最小值﹣2C.最大值﹣4D.最大值﹣2 10.(3分)“勾股图”有着悠久的历史,它曾引起很多人的兴趣.1955年希腊发行了以“勾股图”为背景的邮票(如图1),欧几里得在《几何原本》中曾对该图做了深入研究.如图2,在△ABC中,∠ACB=90°,分别以△ABC的三条边为边向外作正方形.连结EB,CM,DG,CM分别与AB,BE相交于点P,Q.若∠ABE=30°,则的值为()A.B.C.D.﹣1二、填空题(共6小题).11.(3分)当x=1时,二次根式的值为.12.(3分)甲、乙两人各进行10次射击比赛,平均成绩均为9环,方差分别是:S甲2=2,S乙2=4,则射击成绩较稳定的是(选填“甲”或“乙”).13.(3分)若一元二次方程x2﹣2x+a=0有两个相等的实数根,则a的值是.14.(3分)若矩形中较短的边长为4,两对角线的夹角为60°,则矩形对角线的长是.15.(3分)如图,已知点A在反比例函数y=(x>0)的图象上,过点A作x轴的平行线交反比例函数y=(x>0)的图象于点B,连结OA,过点B作BC∥OA交y轴于点C,连结AC,则△AOC的面积为.16.(3分)如图1,某学校楼梯墙面上悬挂了四幅全等的正方形画框,画框下边缘与水平地面平行.如图2,画框的左上角顶点B,E,F,G都在直线AB上,且BE=EF=FG,楼梯装饰线条所在直线CD∥AB,延长画框的边BH,MN得到▱ABCD.若直线PQ恰好经过点D,AB=275cm,CH=100cm,∠A=60°,则正方形画框的边长为cm.三、解答题(本题有7小题,共52分,解答需写出必要的文字说明、演算步骤或证明过程)17.(6分)解下列方程:(1)x2﹣3x=0.(2)(x﹣1)2=4.18.(6分)如图,在四边形ABCD中,AB=CD,DE⊥AC于点E,BF⊥AC于点F,且DE=BF.求证:四边形ABCD是平行四边形.19.(6分)我们把每个顶点都在格点的四边形叫做格点四边形.如图,在所给的8×6方格纸中,点A,B均为格点,请画出符合要求的格点四边形.(1)在图1中画出一个以AB为边的矩形ABCD,且它的面积为整数.(2)在图2中画出一个以AB为对角线的菱形APBQ,且它的周长为整数.20.(8分)某车间有工人15人,某月他们生产的零件个数统计如下表:生产零件的个数(个)60048022018012090工人人数(人)113334(1)求这15名工人该月生产零件的平均个数.(2)为了调动工人的积极性,决定实行目标管理,对完成目标的工人进行适当的奖励.如果想让一半左右的工人都能获得奖励,请你从平均数、中位数、众数的角度进行分析,该如何确定月生产目标?21.(8分)如图,菱形ABCD放置在平面直角坐标系中,已知点A(﹣3,0),B(2,0),点D在y轴正半轴上,反比例函数的图象经过点C.(1)求反比例函数的表达式.(2)将菱形ABCD向上平移,使点B恰好落在双曲线上,此时A,B,C,D的对应点分别为A′,B′,C′,D′,且C′D′与双曲线交于点E,求点E的坐标.22.(8分)某商店销售一款口罩,每袋的进价为12元.经市场调查发现,每袋售价每增加1元,日均销售量减少5袋.当售价为每袋18元时,日均销售量为100袋.设口罩每袋的售价为x元,日均销售量为y袋.(1)用含x的代数式表示y.(2)物价部门规定,该款口罩的每袋售价不得高于22元.当每袋售价定为多少元时,商店销售该款口罩所得的日均毛利润为720元?23.(10分)如图,正方形ABCD的边长为6.E,F分别是射线AB,AD上的点(不与点A重合),且EC⊥CF,M为EF的中点.P为线段AD上一点,AP=1,连结PM.(1)求证:CE=CF.(2)当△PMF为直角三角形时,求AE的长.(3)记BC边的中点为N,连结MN,若MN=,则△PMF的面积为.(在横线上直接写出答案)参考答案一、选择题(共10小题).1.(3分)要使二次根式有意义,x必须满足()A.x≥2B.x≤2C.x<2D.x>2解:由题意,得x﹣2≥0,解得x≥2,故选:A.2.(3分)四边形的内角和为()A.180°B.360°C.540°D.720°解:四边形的内角和=(4﹣2)•180°=360°.故选:B.3.(3分)下列选项中,计算正确的是()A.3+2=5B.﹣=9C.×=D.÷=4解:A.3与2不是同类二次根式,不能合并,此选项计算错误;B.﹣=2﹣=,此选项计算错误;C.×==,此选项计算正确;D.÷===2,此选项计算错误;故选:C.4.(3分)用反证法证明“若a>b>0,则>”时应假设()A.≤B.<C.≥D.=解:反证法证明“若a>b>0,则>”时,假设≤,故选:A.5.(3分)下列手机应用软件的图标中,属于中心对称图形的是()A.B.C.D.解:A、不是中心对称图形,故本选项不符合题意;B、不是中心对称图形,故本选项不符合题意;C、是中心对称图形,故本选项符合题意;D、不是中心对称图形,故本选项不符合题意.故选:C.6.(3分)用配方法解一元二次方程x2﹣2x﹣5=0,下列配方正确的是()A.(x+1)2=6B.(x+1)2=9C.(x﹣1)2=9D.(x﹣1)2=6解:x2﹣2x=5,x2﹣2x+1=5+1,即(x﹣1)2=6,故选:D.7.(3分)在▱ABCD中,若∠A+∠C=80°,则∠B的度数为()A.100°B.130°C.140°D.150°解:∵四边形ABCD为平行四边形,∴∠A=∠C,∠A+∠B=180°,∵∠A+∠C=80°,∴∠A=40°,∴∠B=180°﹣40°=140°,故选:C.8.(3分)某品牌运动服原来每件售价400元,受疫情影响经过连续两次降价后,现在每件售价为256元.设平均每次降价的百分率为x,根据题意可列方程()A.400(1﹣2x)=256B.400(1﹣x)2=256C.400(1﹣x2)=256D.256(1+x)2=400解:设平均每次降价的百分率为x,根据题意可列方程400(1﹣x)2=256,故选:B.9.(3分)已知反比例函数y=(k≠0),当﹣2≤x≤﹣1时,y的最大值是4,则当x ≥2时,y有()A.最小值﹣4B.最小值﹣2C.最大值﹣4D.最大值﹣2解:∵当﹣2≤x≤﹣1时,y的最大值是4,∴反比例函数经过第二象限,∴k<0,∴在﹣2≤x≤﹣1上,y值随x值的增大而增大,∴当x=﹣1时,y有最大值﹣k,∵y的最大值是4,∴﹣k=4,∴k=﹣4,∴y=﹣,当x≥2时,y=﹣有最小值﹣2,故选:B.10.(3分)“勾股图”有着悠久的历史,它曾引起很多人的兴趣.1955年希腊发行了以“勾股图”为背景的邮票(如图1),欧几里得在《几何原本》中曾对该图做了深入研究.如图2,在△ABC中,∠ACB=90°,分别以△ABC的三条边为边向外作正方形.连结EB,CM,DG,CM分别与AB,BE相交于点P,Q.若∠ABE=30°,则的值为()A.B.C.D.﹣1解:∵四边形AEDC和AMNB为正方形,∴AE=AC,AB=AM,∠EAC=∠MAB=90°∴∠EAB=∠CAM,∴在△EAB和△CAM中,,∴△EAB≌△CAM(SAS),∴∠EBA=∠CMA=30°,∴∠BPQ=∠APM=60°,∴∠BQP=90°,∴PQ=PB,设AP=1,则AM=,PM=2,PB=﹣1,PQ=,∴QM=QP+PM=+2=,∵在Rt△ACB和Rt△DCG中,,∴Rt△ACB≌Rt△DCG(HL),∴DG=AB=,∴==﹣1.故选:D.二、填空题(本题有6小题,每小题3分,共18分)11.(3分)当x=1时,二次根式的值为2.解:将x=1代入,得:====2,故答案为:2.12.(3分)甲、乙两人各进行10次射击比赛,平均成绩均为9环,方差分别是:S甲2=2,S乙2=4,则射击成绩较稳定的是甲(选填“甲”或“乙”).解:因为甲的方差最小,所以射击成绩较稳定的是甲;故答案为:甲13.(3分)若一元二次方程x2﹣2x+a=0有两个相等的实数根,则a的值是1.解:∵一元二次方程x2﹣2x+a=0的二次项系数a=1,一次项系数b=﹣2,常数项c=a,且一元二次方程x2﹣2x+a=0有两个相等的实数根,∴△=b2﹣4ac=0,即△=(﹣2)2﹣4×1×a=0,解得a=1.故答案是:1.14.(3分)若矩形中较短的边长为4,两对角线的夹角为60°,则矩形对角线的长是8.解:由题意可知:AB=CD=4,∠AOB=60°,∵四边形ABCD是矩形,∴OA=OB,∴△AOB是等边三角形,∴AB=OA=OB=4,∴AC=2AO=8,故答案为:815.(3分)如图,已知点A在反比例函数y=(x>0)的图象上,过点A作x轴的平行线交反比例函数y=(x>0)的图象于点B,连结OA,过点B作BC∥OA交y轴于点C,连结AC,则△AOC的面积为3.解:设A(),B(),则AB=,连接OB,∵BC∥OA,∴,故答案为:3.16.(3分)如图1,某学校楼梯墙面上悬挂了四幅全等的正方形画框,画框下边缘与水平地面平行.如图2,画框的左上角顶点B,E,F,G都在直线AB上,且BE=EF=FG,楼梯装饰线条所在直线CD∥AB,延长画框的边BH,MN得到▱ABCD.若直线PQ恰好经过点D,AB=275cm,CH=100cm,∠A=60°,则正方形画框的边长为25cm.解:延长EP,与CD交于点K,如图,∵AB∥CD,BC∥EK,∴四边形BCKE是平行四边形,∴BE=CK,BC=EK,∵BH=EP,∴PK=CH=100cm,∵∠A=60°,四边形ABCD是平行四边形,∴∠C=∠A=60°,AB=CD=275cm,∵BC∥EK,∴∠PKD=∠C=60°,∴DK=cm,∴BE=CK=CD﹣DK=75cm,∵BE=EF=FG,∴AG=AB﹣3BE=275﹣75×3=50cm,∴GM=AG•sin∠A=50×=25cm.正方形画框的边长为25cm.故答案为:25.三、解答题(本题有7小题,共52分,解答需写出必要的文字说明、演算步骤或证明过程)17.(6分)解下列方程:(1)x2﹣3x=0.(2)(x﹣1)2=4.解:(1)x2﹣3x=0,x(x﹣3)=0,x=0,x﹣3=0,x1=0,x2=3;(2)(x﹣1)2=4,开方得:x﹣1=±2,解得:x1=3,x2=﹣1.18.(6分)如图,在四边形ABCD中,AB=CD,DE⊥AC于点E,BF⊥AC于点F,且DE=BF.求证:四边形ABCD是平行四边形.【解答】证明:∵DE⊥AC于点E,BF⊥AC于点F,∴∠DEC=∠BFA=90°,在Rt△ABF和Rt△CDE中,∴Rt△ABF≌Rt△CDE(HL),∴∠DCE=∠BAF,∴AB∥CD,又∵AB=CD,∴四边形ABCD是平行四边形.19.(6分)我们把每个顶点都在格点的四边形叫做格点四边形.如图,在所给的8×6方格纸中,点A,B均为格点,请画出符合要求的格点四边形.(1)在图1中画出一个以AB为边的矩形ABCD,且它的面积为整数.(2)在图2中画出一个以AB为对角线的菱形APBQ,且它的周长为整数.解:(1)平行四边形ABCD如图所示.(2)菱形APBQ如图所示.20.(8分)某车间有工人15人,某月他们生产的零件个数统计如下表:生产零件的个数(个)60048022018012090工人人数(人)113334(1)求这15名工人该月生产零件的平均个数.(2)为了调动工人的积极性,决定实行目标管理,对完成目标的工人进行适当的奖励.如果想让一半左右的工人都能获得奖励,请你从平均数、中位数、众数的角度进行分析,该如何确定月生产目标?解:(1)根据题意得:×(600+480+220×3+180×3+120×3+90×4)=200(个);答:这一天15名工人生产零件的平均个数为200个;(2)∵共有15名工人,∴中位数为180,众数为90,当定额为180个时,有8人达标,5人获奖,不利于提高工人的积极性;当定额为120个时,有11人达标,8人获奖,有利于提高大多数工人的积极性;则定额为120个时,有利于提高大多数工人的积极性.21.(8分)如图,菱形ABCD放置在平面直角坐标系中,已知点A(﹣3,0),B(2,0),点D在y轴正半轴上,反比例函数的图象经过点C.(1)求反比例函数的表达式.(2)将菱形ABCD向上平移,使点B恰好落在双曲线上,此时A,B,C,D的对应点分别为A′,B′,C′,D′,且C′D′与双曲线交于点E,求点E的坐标.解:(1)点A(﹣3,0),B(2,0),则AB=5=AD=CD=BC,在Rt△AOD中,OA=3,AD=5,则OD=4,故点C(5,4),设反比例函数表达式为:y=,将点C的坐标代入上式并解得:m=20,故反比例函数表达式为:y=;(2)设菱形ABCD向上平移n个单位,则点B′、C′的坐标分别为(2,n)、(5,4+n),将点B′的坐标代入y=得,2n=20,解得:n=10,故点B′、C′的坐标分别为(2,10)、(5,14),则C′D′所在的直线为:y=14,当y=14时,y==14,解得:x=,故点E(,14).22.(8分)某商店销售一款口罩,每袋的进价为12元.经市场调查发现,每袋售价每增加1元,日均销售量减少5袋.当售价为每袋18元时,日均销售量为100袋.设口罩每袋的售价为x元,日均销售量为y袋.(1)用含x的代数式表示y.(2)物价部门规定,该款口罩的每袋售价不得高于22元.当每袋售价定为多少元时,商店销售该款口罩所得的日均毛利润为720元?解:(1)设口罩每袋的售价为x元,日均销售量为y袋.由题意得,y=100﹣5(x﹣18)=﹣5x+190.(2)设每袋售价定为x元时,商店销售该款口罩所得的日均毛利润为720元.根据题意可得:(x﹣12)(﹣5x+190)=720.解得:x1=20,x2=30.∵该款口罩的每袋售价不得高于22元,∴x=30舍去.∴x=20.答:每袋售价定为20元时,商店销售该款口罩所得的日均毛利润为720元.23.(10分)如图,正方形ABCD的边长为6.E,F分别是射线AB,AD上的点(不与点A重合),且EC⊥CF,M为EF的中点.P为线段AD上一点,AP=1,连结PM.(1)求证:CE=CF.(2)当△PMF为直角三角形时,求AE的长.(3)记BC边的中点为N,连结MN,若MN=,则△PMF的面积为7.(在横线上直接写出答案)【解答】(1)证明:如图1中,∵四边形ABCD是正方形,∴∠CBE=∠BCD=∠ADC=∠CDF=90°,∵EC⊥CF,∴∠ECF=90°,∵∠BCD=∠ECF=90°,∴∠BCE=∠DCF,∵CB=CD,∴△CBE≌△CDF(AAS),∴CE=CF.(2)解:如图2中,当∠PMF=90°时,∵△CBE≌△CDF,∴BE=DF,∵EM=MF,PM⊥EF,∴PE=PF,设AE=x,则BE=DF=6﹣x,∵PA=1,∴PE=PF=5+6﹣x=11﹣x,在Rt△PAE中,∵PE2=AE2+PA2,∴(11﹣x)2=x2+12,∴x=,∴AE=.如图3中,当∠MPF=90°.∵∠A=∠MPF=90°,∴MP∥AE,∵ME=MP,∴PA=PF=1,∴DF=BE=4,∴AE=AB+BE=10,综上所述,AE的值为或10.(3)如图4中,如图,过点F作FT⊥BC交BC的延长线于T,交BD的延长线于H,连接CH.过点M作MJ⊥AD于J.∵∠BCD=∠T=90°,∴TH∥CD∥AB,∴∠MBE=∠MHF,∵ME=MF,∠BME=∠FMH,∴△BME≌△HMF(AAS),∴BM=MH,∵BN=CN,∴MN=CH,∵MN=,∴CH=2,∵∠T=∠TCD=∠CDF=90°,∴四边形CDFT是矩形,∴CT=DF,CD=TF=6,∠DFT=∠DFB=90°,设CT=DF=x,∵∠BDF=∠CDB=45°,∠DFB=90°,∴DF=FH=x,在Rt△CTH中,∵CH2=CT2+TH2,∴(2)2=x2+(x+6)2,∴x=2或﹣8(舍弃),∴BE=DF=2,PF=5+2=7,AE=4,∵MJ⊥AD,∴∠MJD=∠A=90°,∴MJ∥AE,∵EM=MF,∴AJ=JF,∴MJ=AE=2,∴S△PMF=•PF•MJ=×7×2=7.故答案为7.。
2018-2019学年 八年级(上)期末数学试卷(有答案和解析)

2018-2019学年八年级(上)期末数学试卷一、选择题(每题3分,共30分)1.如图所示的图案是我国几家银行标志,其中不是轴对称图形的是()A.B.C.D.2.下列运算中,正确的是()A.a2•a4=a8B.a10÷a5=a2C.(a5)2=a10D.(2a)4=8a43.下列变形属于因式分解的是()A.4x+x=5x B.(x+2)2=x2+4x+4C.x2+x+1=x(x+1)+1D.x2﹣3x=x(x﹣3)4.石墨烯目前是世界上最薄却也是最坚硬的纳米材料,同时还是导电性最好的材料,其理论厚度仅0.000 000 000 34米,将这个数用科学记数法表示为()A.0.34×10﹣9B.3.4×10﹣9C.3.4×10﹣10D.3.4×10﹣115.已知图中的两个三角形全等,图中的字母表示三角形的边长,则∠1等于()A.72°B.60°C.50°D.58°6.如图,等腰△ABC的周长为21,底边BC=5,AB的垂直平分线DE交AB于点D,交AC于点E,则△BEC的周长为()A.13B.16C.8D.107.下列各式成立的是()A.B.(﹣a﹣b)2=(a+b)2C.(a﹣b)2=a2﹣b2D.(a+b)2﹣(a﹣b)2=2ab8.如图,在△ABC和△DEF中,∠B=∠DEF,AB=DE,添加下列一个条件后,仍然不能证明△ABC≌△DEF,这个条件是()A.∠A=∠D B.BC=EF C.∠ACB=∠F D.AC=DF9.下列三角形:①有两个角等于60°的三角形;②有一个角等于60°的等腰三角形;③三个外角(每个顶点处各取一个外角)都相等的三角形;④一腰上的中线也是这条腰上的高的等腰三角形.其中是等边三角形的有()A.①②③④B.①②④C.①③D.②③④10.已知x=3y+5,且x2﹣7xy+9y2=24,则x2y﹣3xy2的值为()A.0B.1C.5D.12二、填空题(本大题共6小题,每小题3分,共18分)11.因式分解:2a2﹣8=.12.若代数式有意义,则实数x的取值范围是.13.一个n边形的内角和是540°,那么n=.14.如图,Rt△ABC中,∠C=90°,AD为△ABC的角平分线,与BC相交于点D,若CD=4,AB =15,则△ABD的面积是.15.如图,在△ABC中,AB=AC,点D在AC上,过点D作DF⊥BC于点F,且BD=BC=AD,则∠CDF的度数为.16.如图,△ABC角平分线AE、CF交于点P,BD是△ABC的高,点H在AC上,AF=AH,下列结论:①∠APC=90°+ABC;②PH平分∠APC;③若BC>AB,连接BP,则∠DBP=∠BAC﹣∠BCA;④若PH∥BD,则△ABC为等腰三角形,其中正确的结论有(填序号).三、解答题17.(10分)计算(1)(2﹣)0﹣()﹣2(2)(﹣3a2)3÷6a+a2•a318.(10分)计算(1)(x+1)2﹣(x+1)(x﹣1)(2)﹣x﹣219.(10分)如图,D、C、F、B四点在一条直线上,AB=DE,AC⊥BD,EF⊥BD,垂足分别为点C、点F,CD=BF.求证:(1)△ABC≌△EDF;(2)AB∥DE.20.(10分)如图,已知A(﹣2,4),B(4,2),C(2,﹣1)(1)作△ABC关于x轴的对称图形△A1B1C1,写出点C关于x轴的对称点C1的坐标;(2)P为x轴上一点,请在图中找出使△PAB的周长最小时的点P并直接写出此时点P的坐标(保留作图痕迹).21.(12分)某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需要时间与原计划生产450台机器所需时间相同.(1)现在平均每天生产多少台机器;(2)生产3000台机器,现在比原计划提前几天完成.22.(10分)已知代数式.(1)先化简,再求当x=3时,原代数式的值;(2)原代数式的值能等于﹣1吗?为什么?23.(12分)如图,已知△ABC中AB=AC,在AC上有一点D,连接BD,并延长至点E,使AE =AB.(1)画图:作∠EAC的平分线AF,AF交DE于点F(用尺规作图,保留作图痕迹,不写作法);(2)在(1)的条件下,连接CF,求证:∠ABE=∠ACF;(3)若AC=8,∠E=15°,求三角形ABE的面积.24.(14分)因式分解是把多项式变形为几个整式乘积的形式的过程.(1)设有多项式x2+2x﹣m分解后有一个因式是x+4,求m的值.(2)若有甲、乙两个等容积的长方体容器,甲容器长为x﹣1,宽为x﹣2.体积为x4﹣x3+ax2+bx ﹣6,(x为整数),乙容器的底面是正方形.①求出a,b的值;②分别求出甲、乙两容器的高.(用含x的代数式表示)25.(14分)在Rt△ABC中,∠B=90°,AB=8,CB=5,动点M从C点开始沿CB运动,动点N从B点开始沿BA运动,同时出发,两点均以1个单位/秒的速度匀速运动(当M运动到B点即同时停止),运动时间为t秒.(1)AN=;CM=.(用含t的代数式表示)(2)连接CN,AM交于点P.①当t为何值时,△CPM和△APN的面积相等?请说明理由.②当t=3时,试求∠APN的度数.2018-2019学年八年级(上)期末数学试卷参考答案与试题解析一、选择题(每题3分,共30分)1.【分析】根据轴对称图形的概念对各选项分析判断即可得解.【解答】解:A、是轴对称图形,故本选项不符合题意;B、不是轴对称图形,故本选项符合题意;C、是轴对称图形,故本选项不符合题意;D、是轴对称图形,故本选项不符合题意.故选:B.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.【分析】根据同底数幂的乘除法则,及幂的乘方法则,结合各选项进行判断即可.【解答】解:A、a2•a4=a6,计算错误,故本选项错误;B、a10÷a5=a5,计算错误,故本选项错误;C、(a5)2=a10,计算正确,故本选项正确;D、(2a)4=16a4,计算错误,故本选项错误;故选:C.【点评】本题考查了同底数幂的乘除运算及幂的乘方的运算,属于基础题,掌握运算法则是关键.3.【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式,结合选项进行判断即可.【解答】解:A、是整式的计算,不是因式分解,故本选项错误;B、右边不是整式积的形式,不是因式分解,故本选项错误;C、右边不是整式积的形式,不是因式分解,故本选项错误;D、符合因式分解的定义,故本选项正确.故选:D.【点评】本题考查了因式分解的意义,属于基础题,掌握因式分解的定义是关键.4.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000 000 000 34=3.4×10﹣10;故选:C.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.5.【分析】根据全等三角形的性质即可求出答案.【解答】解:由于两个三角形全等,∴∠1=180﹣50°﹣72°=58°,故选:D.【点评】本题考查了全等三角形的性质,属于基础题型.解答本题的关键是熟练运用全等三角形的性质6.【分析】由于△ABC是等腰三角形,底边BC=5,周长为21,由此求出AC=AB=8,又DE是AB的垂直平分线,根据线段的垂直平分线的性质得到AE=BE,由此得到△BEC的周长=BE+CE+CB=AE+CE+BC=AC+CB,然后利用已知条件即可求出结果.【解答】解:∵△ABC是等腰三角形,底边BC=5,周长为21,∴AC=AB=8,又∵DE是AB的垂直平分线,∴AE=BE,∴△BEC的周长=BE+CE+CB=AE+CE+BC=AC+CB=13,∴△BEC的周长为13.故选:A.【点评】此题主要考查线段的垂直平分线的性质等几何知识.线段的垂直平分线上的点到线段的两个端点的距离相等.7.【分析】根据完全平方公式和分式的化简判断即可.【解答】解:A、,错误;B、(﹣a﹣b)2=(a+b)2,正确;C、(a﹣b)2=a2﹣2ab+b2,错误;D、(a+b)2﹣(a﹣b)2=4ab,错误;故选:B.【点评】此题考查完全平方公式,关键是根据完全平方公式和分式的化简判断.8.【分析】根据全等三角形的判定,利用ASA、SAS、AAS即可得答案.【解答】解:∵∠B=∠DEF,AB=DE,∴添加∠A=∠D,利用ASA可得△ABC≌△DEF;∴添加BC=EF,利用SAS可得△ABC≌△DEF;∴添加∠ACB=∠F,利用AAS可得△ABC≌△DEF;故选:D.【点评】本题考查了全等三角形的判定,掌握全等三角形的判定方法:SSS、ASA、SAS、AAS和HL是解题的关键.9.【分析】根据等边三角形的判定判断,三条边都相等的三角形是等边三角形;三个角都相等的三角形是等边三角形;有一个角是60°的等腰三角形是等边三角形.【解答】解:①两个角为60度,则第三个角也是60度,则其是等边三角形;②有一个角等于60°的等腰三角形是等边三角形;③三个外角相等,则三个内角相等,则其是等边三角形;④根据等边三角形的性质,可得该等腰三角形的腰与底边相等,则三角形三边相等.所以都正确.故选:A.【点评】此题主要考查等边三角形的判定,三条边都相等的三角形是等边三角形;三个角都相等的三角形是等边三角形;有一个角是60°的等腰三角形是等边三角形.10.【分析】依据x﹣3y=5两边平方,可得x2﹣6xy+9y2=25,再根据x2﹣7xy+9y2=24,即可得到xy的值,进而得出x2y﹣3xy2的值.【解答】解:∵x=3y+5,∴x﹣3y=5,两边平方,可得x2﹣6xy+9y2=25,又∵x2﹣7xy+9y2=24,两式相减,可得xy=1,∴x2y﹣3xy2=xy(x﹣3y)=1×5=5,故选:C.【点评】本题主要考查了完全平方公式的运用,应用完全平方公式时,要注意:公式中的a,b 可是单项式,也可以是多项式;对形如两数和(或差)的平方的计算,都可以用这个公式.二、填空题(本大题共6小题,每小题3分,共18分)11.【分析】首先提取公因式2,进而利用平方差公式分解因式即可.【解答】解:2a2﹣8=2(a2﹣4)=2(a+2)(a﹣2).故答案为:2(a+2)(a﹣2).【点评】此题主要考查了提取公因式法以及公式法分解因式,熟练应用乘法公式是解题关键.12.【分析】根据分式有意义的条件可得x﹣3≠0,再解即可.【解答】解:由题意得:x﹣3≠0,解得:x≠3,故答案为:x≠3.【点评】此题主要考查了分式有意义的条件,关键是掌握分式有意义的条件是分母不等于零.13.【分析】根据n边形的内角和为(n﹣2)•180°得到(n﹣2)•180°=540°,然后解方程即可.【解答】解:设这个多边形的边数为n,由题意,得(n﹣2)•180°=540°,解得n=5.故答案为:5.【点评】本题考查了多边的内角和定理:n边形的内角和为(n﹣2)•180°.14.【分析】作DE⊥AB于E,根据角平分线的性质求出DE,根据三角形的面积公式计算即可.【解答】解:作DE⊥AB于E,∵AD是△ABC的角平分线,∠C=90°,DE⊥AB,∴DE=CD=4,∴△ABD的面积=,故答案为:30【点评】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.15.【分析】设∠A=α,可得∠ABD=α,∠C=∠BDC=2α,∠ABC=2α,再根据△ABC中,∠A+∠ABC+∠C=180°,即可得到∠C的度数,再根据DF⊥BC,即可得出∠CDF的度数.【解答】解:∵AB=AC,BD=BC=AD,∴∠ACB=∠ABC,∠A=∠ABD,∠C=∠BDC,设∠A=α,则∠ABD=α,∠C=∠BDC=2α,∠ABC=2α,∵△ABC中,∠A+∠ABC+∠C=180°,∴α+2α+2α=180°,∴α=36°,∴∠C=72°,又∵DF⊥BC,∴Rt△CDF中,∠CDF=90°﹣72°=18°,故答案为:18°.【点评】本题主要考查了等腰三角形的性质以及三角形内角和定理的运用,解题时注意:等腰三角形的两个底角相等.16.【分析】①利用三角形的内角和定理以及角平分线的定义即可判断.②利用反证法进行判断.③根据∠DBP=∠DBC﹣∠PBC=90°﹣∠ACB﹣(180°﹣∠BAC﹣∠ACB)=(∠BAC﹣∠ACB),由此即可判断.④利用全等三角形的性质证明CA=CB即可判断.【解答】解:∵△ABC角平分线AE、CF交于点P,∴∠CAP=∠BAC,∠ACP=∠ACB,∴∠APC=180°﹣(∠CAP+∠ACP)=180°﹣(∠BAC+∠ACB)=180°﹣(180°﹣∠ABC)=90°+∠ABC,故①正确,∵PA=PA,∠PAF=∠PAH,AF=AH,∴△PAF≌△PAH(SAS),∴∠APF=∠APH,若PH是∠APC的平分线,则∠APF=60°,显然不可能,故②错误,∵∠DBP=∠DBC﹣∠PBC=90°﹣∠ACB﹣(180°﹣∠BAC﹣∠ACB)=(∠BAC﹣∠ACB),故③错误,∵BD⊥AC,PH∥BD,∴PH⊥AC,∴∠PHA=∠PFA=90°,∵∠ACF=∠BCF,CF=CF,∠CFA=∠CFB=90°,∴△CFA≌△CFB(ASA),∴CA=CB,故④正确,故答案为①④.【点评】本题考查全等三角形的判定和性质,角平分线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.三、解答题17.【分析】(1)直接利用零指数幂的性质以及负指数幂的性质分别化简得出答案;(2)直接利用积的乘方运算法则以及整式的乘除运算法则计算得出答案.【解答】解:(1)原式=1﹣4=﹣3;(2)原式=﹣27a6÷6a+a2•a3=﹣a5+a5=﹣3a5.【点评】此题主要考查了整式的乘除运算,正确掌握相关运算法则是解题关键.18.【分析】(1)先利用完全平方公式和平方差公式计算,再去括号、合并同类项即可得;(2)根据分式的混合运算顺序和运算法则计算可得.【解答】解:(1)原式=x2+2x+1﹣(x2﹣1)=x2+2x+1﹣x2+1=2x+2;(2)原式=﹣=﹣=.【点评】本题主要考查分式的加减法,解题的关键是熟练掌握分式的加减混合运算顺序和运算法则及完全平方公式、平方差公式.19.【分析】(1)由垂直的定义,结合题目已知条件可利用HL证得结论;(2)由(1)中结论可得到∠D=∠B,则可证得结论.【解答】证明:(1)∵AC⊥BD,EF⊥BD,∴△ABC和△EDF为直角三角形,∵CD=BF,∴CF+BF=CF+CD,即BC=DF,在Rt△ABC和Rt△EDF中,∴Rt△ABC≌Rt△EDF(HL);(2)由(1)可知△ABC≌△EDF,∴∠B=∠D,∴AB∥DE.【点评】本题主要考查全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和性质(即对应边相等、对应角相等)是解题的关键.20.【分析】(1)分别作出点A、B、C关于x轴的对称点,再顺次连接可得;(2)连接AB1,交x轴于点P,根据图形可得点P的坐标.【解答】解:(1)如图1所示,△A1B1C1即为所求;C1的坐标为(2,1).(2)如图所示,连接AB1,交x轴于点P,点P的坐标为(2,0).【点评】本题主要考查作图﹣轴对称变换,解题的关键是熟练掌握轴对称变换的定义和性质.21.【分析】(1)设原计划平均每天生产x台机器,则现在平均每天生产(x+50)台机器,根据工作时间=工作总量÷工作效率结合现在生产600台机器所需要时间与原计划生产450台机器所需时间相同,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)由提前完成的天数=工作总量÷原计划工作效率﹣工作总量÷现在工作效率,即可得出结论.【解答】解:(1)设原计划平均每天生产x台机器,则现在平均每天生产(x+50)台机器,依题意,得:=,解得:x=150,经检验,x=150是原方程的解,且符合题意,∴x+50=200.答:现在平均每天生产200台机器.(2)﹣=20﹣15=5(天).答:现在比原计划提前5天完成.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.22.【分析】(1)先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得;(2)根据题意得出=﹣1,解之求得x的值,再根据分式有意义的条件即可作出判断.【解答】解:(1)原式=[﹣]•=(﹣)•=•=,当x=3时,原式==2;(2)若原代数式的值等于﹣1,则=﹣1,解得x=0,而x=0时,原分式无意义,所以原代数式的值不能等于﹣1.【点评】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则及分式有意义的条件.23.【分析】(1)以点A为圆心,以任意长为半径画弧,分别与AC、AE相交,然后以这两点为圆心,以大于它们长度为半径画弧,两弧相交于一点,过点A与这一点作出射线与BE的交点即为所求的点F;(2)求出AE=AC,根据角平分线的定义可得∠EAF=∠CAF,再利用“边角边”证明△AEF和△ACF全等,根据全等三角形对应角相等可得∠ABE=∠ACF;(3)作高线EG,根据三角形的外角性质得∠EAG=30°,根据直角三角形的性质可得高线EG =4,根据三角形面积公式可得结论.【解答】(1)解:如图所示;(2)证明:∵AB=AC,AE=AB,∴AE=AC,∵AF是∠EAC的平分线,∴∠EAF=∠CAF,在△AEF和△ACF中,,∴△AEF≌△ACF(SAS),∴∠E=∠ACF,∵AB=AE,∴∠ABE=∠E,∴∠ABE=∠ACF.(3)解:如图,过E作EG⊥AB,交BA的延长线于G,∵AB=AC=AE=8,∴∠ABE=∠AEB=15°,∴∠GAE=∠ABE+∠AEB=30°,∴EG=AE=4,∴三角形ABE的面积===16.【点评】本题考查了全等三角形的判断与性质,等腰三角形的性质,角平分线的作法,确定出全等三角形的条件是解题的关键.24.【分析】(1)根据分解因式的定义,假设未知数,进行求解;(2)同上一问,假设未知数,进行求解;然后对体积的表达式进行因式分解,得到乙容器的高;【解答】解:(1)设原式分解后的另一个因式为x+n,则有:x2+2x﹣m=(x +4)(x +n )=x 2+(4+n )x +4n∴4+n =2可得n =﹣24n =﹣m 可得m =8综上所述:m =8(2)①设甲容器的高为x 2+mx ﹣3,则有:(x ﹣1)(x ﹣2)(x 2+mx ﹣3)=x 4﹣x 3+ax 2+bx ﹣6 ∴x •(﹣2)•x 2+(﹣1)•x •x 2+x •x •mx =﹣2x 3﹣x 3+mx 3=(m ﹣3)x 3=﹣x 3从而得m ﹣3=﹣1m =2原甲容器的体积=(x ﹣1)(x ﹣2)(x 2+2x ﹣3)=x 4﹣x 3﹣9x 2+13x ﹣6从而得a =﹣9,b =13②由乙容器的底面为正方形可得:x 4﹣x 3﹣9x 2+13x ﹣6=(x ﹣1)(x ﹣2)(x 2+2x ﹣3)=(x ﹣1)(x ﹣2)(x +3)(x ﹣1)=(x ﹣1)2(x 2+x ﹣6)故答案为:甲容器的高为x 2+2x ﹣3,乙容器的高为x 2+x ﹣6【点评】该题通过设置未知数,运用多项式乘多项式的方法求解未知数的值.25.【分析】(1)根据路程=速度×时间,可用含t 的代数式表示BN ,CM 的长,即可用含t 的代数式表示AN 的长;(2)①由题意可得S △ABM =S △BNC ,根据三角形面积公式可求t 的值;②过点P 作PF ⊥BC ,PG ⊥AB ,过点A 作AE ⊥CN ,交CN 的延长线于点E ,连接BP ,可证四边形PGBF 是矩形,可得PF =BG ,根据三角形的面积公式,可得方程组,求出PG ,PF 的长,根据勾股定理可求PN 的长,通过证△ANE ∽△CNB ,可求AE ,NE 的长,即可求∠APN 的度数.【解答】解:(1)∵M ,N 两点均以1个单位/秒的速度匀速运动,∴CM =BN =t ,∴AN =8﹣t ,故答案为:8﹣t ,t ;(2)①若△CPM 和△APN 的面积相等∴S △CPM +S 四边形BMPN =S △APN +S 四边形BMPN ,∴S △ABM =S △BNC ,∴=∴8×(5﹣t )=5t∴t =∴当t =时,△CPM 和△APN 的面积相等;②如图,过点P 作PF ⊥BC ,PG ⊥AB ,过点A 作AE ⊥CN ,交CN 的延长线于点E ,连接BP ,∵PG ⊥AB ,PF ⊥BC ,∠B =90°,∴四边形PGBF 是矩形,∴PF =BG ,∵t =3,∴CM =3=BN ,∴BM =2,AN =5,∵S △ABM =S △ABP +S △BPM ,∴∴16=8PG +2PF ①∵S △BCN =S △BCP +S △BPN ,∴×5×3=∴15=3PG +5PF ②由①②组成方程组解得:PG =,PF =,∴BG =∴NG =BN ﹣BG =3﹣=在Rt△PGN中,PN==,在Rt△BCN中,CN==∵∠B=∠E=90°,∠ANE=∠BNC∴△ANE∽△CNB∴∴∴AE=,NE=∵PE=EN+PN∴PE=+=∴AE=PE,且AE⊥PE∴∠APN=45°【点评】本题是三角形综合题,考查了三角形的面积公式,勾股定理,矩形的判定,相似三角形的判定和性质等知识,本题的关键是求出PN的长.。
2019年浙江省乐清市中考数学最后一卷模拟题解析版

2019年浙江省乐清市中考数学最后一卷模拟题亲爱的同学:欢迎参加考试!请你认真审题,积极思考,细心答题,发挥最佳水平.答题时,请注意以下几点:1.全卷共4页,有三大题,24小题.全卷满分150分.考试时间120分钟.2.答案必须写在答题纸相应的位置上,写在试题卷、草稿纸上均无效.卷Ⅰ一、选择题(本题有10小题,每小题4分,共40分.每小题只有一个选项是正确的,不选、多选、错选,均不给分)1.﹣2的倒数是()A.﹣2 B.2 C.﹣D.2.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.下列运算中,正确的是()A.(x2)3=x5B.x3•x3=x6C.3x2+2x3=5x5D.(x+y)2=x2+y24.在禁毒知识考试中,全班同学的成绩统计如表:则得分的众数和中位数分别为()A.70分,70分B.80分,80分C.70分,80分D.80分,70分5.在Rt△ABC中,∠C=90°,a=1,c=4,则sin B=()A.B.C.D.6.如图天平右盘中的每个砝码的质量都是1g,则物体A的质量m(g)的取值范围在数轴上可表示为()A.B.C.D.7.某学习小组做“用频率估计概率”的试验时,统计了某一结果出现的频率,绘制了如下折线统计图,则符合这一结果的试验最有可能的是()A.袋中装有大小和质地都相同的3个红球和2个黄球,从中随机取一个,取到红球B.掷一枚质地均匀的正六面体骰子,向上的面的点数是偶数C.先后两次掷一枚质地均匀的硬币,两次都出现反面D.先后两次掷一枚质地均匀的正六面体骰子,两次向上的面的点数之和是7或超过9 8.)如图,在四边形ABDC中,∠B=∠D=90°,∠BAC与∠ACD的平分线交于点O,且点O在线段BD上,BD=4,则点O到边AC的距离是()A.1 B.1.5 C.2 D.39.如图所示,在正方形ABCD中,G为CD边中点,连接AG并延长交BC边的延长线于E 点,对角线BD交AG于F点.已知FG=2,则线段AE的长度为()A.6 B.8 C.10 D.1210.在平面直角坐标系xOy中,将一块含有45°角的直角三角板如图放置,直角顶点C的坐标为(1,0),顶点A的坐标(0,2),顶点B恰好落在第一象限的双曲线上,现将直角三角板沿x轴正方向平移,当顶点A恰好落在该双曲线上时停止运动,则此时点C 的对应点C′的坐标为()A.(,0)B.(2,0)C.(,0)D.(3,0)卷Ⅱ二、填空题(本题有6题,每小题5分,共30分)11.分解因式:3x2﹣12y2=.12.一个圆锥的冰淇淋纸筒,其底面直径为6cm,母线长为5cm,围成这样的冰淇淋纸筒所需纸片的面积为.13.如图,在Rt△ABC中,∠C=90o,AB=5,AC=4,线段AD由线段AB绕点A按逆时针方向旋转90o得到,△EFG由△ABC沿CB方向平移得到,且直线EF过点D,BD交AE于H,则AH=.14.已知x1,x2是关于x一元二次方程x2+(3a﹣1)x+2a2﹣1=0的两个实根,且满足(x1+2)(x2+2)=13,则a的值等于.15.在圆环形路上有均匀分布的四家工厂甲、乙、丙、丁,每家工厂都有足够的仓库供产品储存.现要将所有产品集中到一家工厂的仓库储存,已知甲、乙、丙、丁四家工厂的产量之比为1:2:3:5.若运费与路程、运的数量成正比例,为使选定的工厂仓库储存所有产品时总的运费最省,应选的工厂是.16.如图,在平面直角坐标系xoy中,A(﹣3,0),B(0,1),形状相同的抛物线∁n(n=1,2,3,4,…)的顶点在直线AB上,其对称轴与x轴的交点的横坐标依次为2,3,5,8,13,…,根据上述规律,抛物线C2的顶点坐标为;抛物线C8的顶点坐标为.三、解答题(本题有8小题,共80分,解答需写出必要的文字说明、演算步骤或证明过程)17.(本题10分)(1)计算:﹣(﹣3)+|﹣2|﹣2sin60°+(2)化简:2a(1﹣2a)+(2a+1)(2a﹣1)【分析】先算乘法,再合并同类项即可.【解答】解:原式=2a﹣4a2+4a2﹣1,=2a﹣1,【点评】此题考查了整式的混合运算﹣化简,熟练掌握运算法则是解本题的关键.18.(本题8分)如图,将Rt△ABC绕直角顶点B逆时针旋转90°得到△DBE,DE的延长线恰好经过AC的中点F,连接AD,CE.(1)求证:AE=CE;(2)若BC=,求AB的长.19.(本题8分)某校对交通法规的了解情况在全校随机调查了部分学生,调查结果分为四种:A.非常了解,B.比较了解,C.基本了节,D.不太了解,并将此次调查结果整理绘制成下面不完整的条形统计图和扇形统计图.(1)本次共调查名学生;扇形统计图中C所对应扇形的圆心角度数是;(2)补全条形统计图;(3)学校准备从甲、乙、丙、丁四位学生中随机抽取两名学生参加市区交通法规竞赛,请用列表或画树状图的方法求甲和乙两名学生同时被选中的概率.20.(本题8分)如图,由6个形状、大小完全相同的小矩形组成大矩形网格,小矩形的顶点称为这个矩形网格的格点,由格点构成的四边形称为格点四边形,请按要求作图(标出所画图形的顶点字母).(1)在图1中画出一个格点正方形;(2)在图2中画出一个一般的格点平行四边形(非菱形、矩形).21.(本题10分)如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,过点B作⊙O的切线,交AC的延长线于点F.(1)求证:∠CBF=∠BAC;(2)若⊙O的半径为5,tan∠CBF=,求BC和BF的长.22.(本题10分)儿童游乐场有一项射击游戏,从O处发射小球,将球投入正方形篮筐DABC.正方形篮筐三个顶点为A(2,2),B(3,2),D(2,3).小球按照抛物线y =﹣x2+bx+c飞行.小球落地点P坐标(n,0).(1)点C坐标为.(2)求c,b并写出小球飞行中最高点N的坐标(用含有n的代数式表示);(3)若小球发射之后能够直接入篮,球没有接触篮筐,请直接写出n的取值范围.23.(本题12分)某品牌手机去年每台的售价y(元)与月份x之间满足函数关系:y=﹣50x+2600,去年的月销量p(万台)与月份x之间成一次函数关系,其中1﹣6月份的销售情况如下表:(1)求p关于x的函数关系式;(2)求该品牌手机在去年哪个月的销售金额最大?最大是多少万元?(3)今年1月份该品牌手机的售价比去年12月份下降了m%,而销售量也比去年12月份下降了1.5m%.今年2月份,经销商决定对该手机以1月份价格的“八折”销售,这样2月份的销售量比今年1月份增加了1.5万台.若今年2月份这种品牌手机的销售额为6400万元,求m的值.24.(本题14分)如图,在平面直角坐标系中,矩形ABCO的面积为15,边OA比OC大2.E为BC的中点,以OE为直径的⊙O′交x轴于D点,过点D作DF⊥AE于点F.(1)求OA、OC的长;(2)求证:DF为⊙O′的切线;(3)小明在解答本题时,发现△AOE是等腰三角形.由此,他断定:“直线BC上一定存在除点E以外的点P,使△AOP也是等腰三角形,且点P一定在⊙O′外”.你同意他的看法吗?请充分说明理由.2019年浙江省乐清市中考数学最后一卷模拟题亲爱的同学:欢迎参加考试!请你认真审题,积极思考,细心答题,发挥最佳水平.答题时,请注意以下几点:1.全卷共4页,有三大题,24小题.全卷满分150分.考试时间120分钟.2.答案必须写在答题纸相应的位置上,写在试题卷、草稿纸上均无效.卷Ⅰ一、选择题(本题有10小题,每小题4分,共40分.每小题只有一个选项是正确的,不选、多选、错选,均不给分)1.﹣2的倒数是()A.﹣2 B.2 C.﹣D.【分析】根据倒数的定义:乘积是1的两数互为倒数.一般地,a•=1 (a≠0),就说a(a≠0)的倒数是.【解答】解:﹣2的倒数是﹣,故选:C.【点评】此题主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项错误;C、既是轴对称图形,又是中心对称图形,故此选项正确;D、不是轴对称图形,也不是中心对称图形,故此选项错误;故选:C.【点评】此题主要考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.下列运算中,正确的是()A.(x2)3=x5B.x3•x3=x6C.3x2+2x3=5x5D.(x+y)2=x2+y2【分析】直接利用幂的乘方运算法则以及完全平方公式、合并同类项法则分别判断得出答案.【解答】解:A、(x2)3=x6,故此选项错误;B、x3•x3=x6,正确;C、3x2+2x3,无法计算,故此选项错误;D、(x+y)2=x2+2xy+y2,故此选项错误;故选:B.【点评】此题主要考查了幂的乘方运算以及完全平方公式、合并同类项,正确掌握相关运算法则是解题关键.4.在禁毒知识考试中,全班同学的成绩统计如表:则得分的众数和中位数分别为()A.70分,70分B.80分,80分C.70分,80分D.80分,70分【分析】利用众数及中位数的定义解答即可.【解答】解:∵得分为70分的人数最多,有22人,∴众数为70分,∵共7+22+10+8+3=50人,∴中位数为第25和第26人的平均数,∴中位数为70分,故选:A.【点评】本题考查了众数、中位数的知识,掌握各知识点的概念是解答本题的关键.5.在Rt△ABC中,∠C=90°,a=1,c=4,则sin B=()A.B.C.D.【分析】先由勾股定理求出b的长度,再依据正弦函数的定义求解可得.【解答】解:在Rt△ABC中,∵∠C=90°,a=1,c=4,∴b===,则sin B==,故选:D.【点评】本题主要考查锐角三角函数的定义,解题的关键是掌握勾股定理和正弦函数的定义.6.如图天平右盘中的每个砝码的质量都是1g,则物体A的质量m(g)的取值范围在数轴上可表示为()A.B.C.D.【分析】根据图示,可得不等式组的解集,可得答案.【解答】解:由图示得A>1,A<2,【点评】本题考查了在数轴上表示不等式的解集,先求出不等式的解集,再在数轴上表示出来,注意,不包括点1、2,用空心点表示.7.某学习小组做“用频率估计概率”的试验时,统计了某一结果出现的频率,绘制了如下折线统计图,则符合这一结果的试验最有可能的是()C.袋中装有大小和质地都相同的3个红球和2个黄球,从中随机取一个,取到红球D.掷一枚质地均匀的正六面体骰子,向上的面的点数是偶数C.先后两次掷一枚质地均匀的硬币,两次都出现反面D.先后两次掷一枚质地均匀的正六面体骰子,两次向上的面的点数之和是7或超过9 【分析】根据统计图可知,试验结果在0.33附近波动,即其概率P≈0.33,计算四个选项的概率,约为0.33者即为正确答案.【解答】解:A、袋中装有大小和质地都相同的3个红球和2个黄球,从中随机取一个,取到红球的概率为,不符合题意;B、掷一枚质地均匀的正六面体骰子,向上的面的点数是偶数的概率为,不符合题意;C、先后两次掷一枚质地均匀的硬币,两次都出现反面的概率为,不符合题意;D、先后两次掷一枚质地均匀的正六面体骰子,两次向上的面的点数之和是7或超过9的概率为,符合题意;【点评】此题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.8.)如图,在四边形ABDC中,∠B=∠D=90°,∠BAC与∠ACD的平分线交于点O,且点O在线段BD上,BD=4,则点O到边AC的距离是()A.1 B.1.5 C.2 D.3【分析】过O作OE⊥AC于E,根据角平分线的性质即可得到结论.【解答】解:过O作OE⊥AC于E,∵∠B=∠D=90°,∠BAC与∠ACD的平分线交于点O,∴OB=OE=OD,∵BD=4,∴OB=OE=OD=2,∴点O到边AC的距离是2,故选:C.【点评】本题考查了角平分线的性质,熟练掌握角平分线的性质是解题的关键.9.如图所示,在正方形ABCD中,G为CD边中点,连接AG并延长交BC边的延长线于E 点,对角线BD交AG于F点.已知FG=2,则线段AE的长度为()A.6 B.8 C.10 D.12【解答】解:∵四边形ABCD为正方形,∴AB=CD,AB∥CD,∴∠ABF=∠GDF,∠BAF=∠DGF,∴△ABF∽△GDF,∴==2,∴AF=2GF=4,∴AG=6.∵CG∥AB,AB=2CG,∴CG为△EAB的中位线,∴AE=2AG=12.故选:D.10.在平面直角坐标系xOy中,将一块含有45°角的直角三角板如图放置,直角顶点C的坐标为(1,0),顶点A的坐标(0,2),顶点B恰好落在第一象限的双曲线上,现将直角三角板沿x轴正方向平移,当顶点A恰好落在该双曲线上时停止运动,则此时点C 的对应点C′的坐标为()A.(,0)B.(2,0)C.(,0)D.(3,0)【分析】过点B作BD⊥x轴于点D,易证△ACO≌△BCD(AAS),从而可求出B的坐标,进而可求出反比例函数的解析式,根据解析式与A的坐标即可得知平移的单位长度,从而求出C的对应点.【解答】解:过点B作BD⊥x轴于点D,∵∠ACO+∠BCD=90°,∠OAC+∠ACO=90°,∴∠OAC=∠BCD,在△ACO与△BCD中,∴△ACO≌△BCD(AAS)∴OC=BD,OA=CD,∵A(0,2),C(1,0)∴OD=3,BD=1,∴B(3,1),∴设反比例函数的解析式为y=,将B(3,1)代入y=,∴k=3,∴y=,∴把y=2代入,∴x=,当顶点A恰好落在该双曲线上时,此时点A移动了个单位长度,∴C也移动了个单位长度,此时点C的对应点C′的坐标为(,0)故选:A.【点评】本题考查反比例函数的综合问题,涉及全等三角形的性质与判定,反比例函数的解析式,平移的性质等知识,综合程度较高,属于中等题型.卷Ⅱ二、填空题(本题有6题,每小题5分,共30分)11.分解因式:3x2﹣12y2=.【分析】先提取公因式3,再对余下的多项式利用平方差公式继续分解.【解答】解:3x2﹣12y2,=3(x2﹣4y2),=3(x+2y)(x﹣2y).【点评】本题考查了提公因式法,公式法分解因式,关键在于提取公因式后,可以利用平方差公式进行二次分解.12.一个圆锥的冰淇淋纸筒,其底面直径为6cm,母线长为5cm,围成这样的冰淇淋纸筒所需纸片的面积为.【分析】圆锥的侧面积=底面周长×母线长÷2.【解答】解:底面直径为6cm,则底面周长=6πcm,所需纸片为扇形,扇形的面积=×6π×5=15π(cm2).【点评】本题考查了圆锥的计算,掌握圆锥的侧面积公式是解题的关键.13.如图,在Rt△ABC中,∠C=90o,AB=5,AC=4,线段AD由线段AB绕点A按逆时针方向旋转90o得到,△EFG由△ABC沿CB方向平移得到,且直线EF过点D,BD交AE于H,则AH=.【解答】解:如图所示:∵Rt△ABC中,∠C=90o,AB=5,AC=4,∴BC==3,由旋转的性质得:AD=AB=5,由平移的性质得,AE∥CG,AB∥EF,∴∠DEA=∠DFC=∠ABC,∠ADE+∠DAB=180°,∵∠DAB=90°,∴∠ADE=90°,∵∠ACB=90°,∴∠ADE=∠ACB,∴△ADE∽△ACB,∴==,即==,∴AE=,DE=,∵AB∥EF,∴△DEH∽△BAH,∴=,即=,解得:AH=;故答案为:.14.已知x1,x2是关于x一元二次方程x2+(3a﹣1)x+2a2﹣1=0的两个实根,且满足(x1+2)(x2+2)=13,则a的值等于.【解答】解:∵x1,x2是关于x一元二次方程x2+(3a﹣1)x+2a2﹣1=0的两个实根,∴△=a2﹣6a+5≥0∴a≥5或a≤1;∴x1+x2=﹣(3a﹣1)=1﹣3a,x1•x2=2a2﹣1,∵(x1+2)(x2+2)=13,∴整理得:x1•x2+2(x2+x1)+4=13,∴2a2﹣1+2(1﹣3a)+4=13,∴a=4或a=﹣1,∴a=﹣1;故答案为﹣1;15.在圆环形路上有均匀分布的四家工厂甲、乙、丙、丁,每家工厂都有足够的仓库供产品储存.现要将所有产品集中到一家工厂的仓库储存,已知甲、乙、丙、丁四家工厂的产量之比为1:2:3:5.若运费与路程、运的数量成正比例,为使选定的工厂仓库储存所有产品时总的运费最省,应选的工厂是.【分析】本题可先设出相邻两个工程间的距离,以及甲、乙、丙、丁四厂的产量.然后分别计算出以甲、乙、丙、丁为仓库时,各自路程与运量的乘积的和,由于运费与路程、运量成正比,因此当所求的和最小时,运费最少,由此可判断出正确的选项.【解答】解:设相邻两个厂之间的路程为a,甲的产量为b;若仓库在甲,那么(路程×运量)的和为:2ab+6ab+5ab=13ab;若仓库在乙,那么(路程×运量)的和为:ab+3ab+10ab=14ab;若仓库在丙,那么(路程×运量)的和为:2ab+2ab+5ab=9ab;若仓库在丁,那么(路程×运量)的和为:ab+4ab+3ab=8ab.由于运费与路程、运的数量成正比例,因此当运费最少时,应选的工厂是丁.【点评】解决本题的关键是根据仓库的不同位置算出总的数量与路程的和.16.如图,在平面直角坐标系xoy中,A(﹣3,0),B(0,1),形状相同的抛物线∁n(n =1,2,3,4,…)的顶点在直线AB上,其对称轴与x轴的交点的横坐标依次为2,3,5,8,13,…,根据上述规律,抛物线C2的顶点坐标为;抛物线C8的顶点坐标为.【分析】根据A(﹣3,0),B(0,1)的坐标求直线AB的解析式为y=x+1,因为顶点C2的在直线AB上,C2坐标可求;根据横坐标的变化规律可知,C8的横坐标为55,代入直线AB的解析式y=x+1中,可求纵坐标.【解答】解:设直线AB的解析式为y=kx+b则解得k=,b=1∴直线AB的解析式为y=x+1∵抛物线C2的顶点坐标的横坐标为3,且顶点在直线AB上∴抛物线C2的顶点坐标为(3,2)∵对称轴与x轴的交点的横坐标依次为2,3,5,8,13,…∴每个数都是前两个数的和∴抛物线C8的顶点坐标的横坐标为55∴抛物线C8的顶点坐标为(55,).【点评】此题考查了待定系数法求一次函数的解析式,还考查了点与函数关系式的关系,考查了学生的分析归纳能力.三、解答题(本题有8小题,共80分,解答需写出必要的文字说明、演算步骤或证明过程)17.(本题10分)(1)计算:﹣(﹣3)+|﹣2|﹣2sin60°+【分析】直接利用特殊角的三角函数值以及绝对值的性质和二次根式的性质分别化简得出答案.【解答】解:原式=3+2﹣﹣2×+2=5.【点评】此题主要考查了实数运算,正确化简各数是解题关键.(3)化简:2a(1﹣2a)+(2a+1)(2a﹣1)【分析】先算乘法,再合并同类项即可.【解答】解:原式=2a﹣4a2+4a2﹣1,=2a﹣1,【点评】此题考查了整式的混合运算﹣化简,熟练掌握运算法则是解本题的关键.18.(本题8分)如图,将Rt△ABC绕直角顶点B逆时针旋转90°得到△DBE,DE的延长线恰好经过AC的中点F,连接AD,CE.(1)求证:AE=CE;(2)若BC=,求AB的长.【解答】解:(1)∵将Rt△ABC绕直角顶点B逆时针旋转90°得到△DBE ∴△ABC≌△DBE∴∠BAC=∠CDF∵∠BAC+∠ACB=90°∴∠CDF+∠ACB=90°∴DF⊥AC,且点F是AC中点∴DF垂直平分AC∴AE=CE(2)∵△ABC≌△DBE∴BE=CE=∴CE=AE=2∴AB=AE+BE=2+19.(本题8分)某校对交通法规的了解情况在全校随机调查了部分学生,调查结果分为四种:A.非常了解,B.比较了解,C.基本了节,D.不太了解,并将此次调查结果整理绘制成下面不完整的条形统计图和扇形统计图.(1)本次共调查名学生;扇形统计图中C所对应扇形的圆心角度数是;(2)补全条形统计图;(3)学校准备从甲、乙、丙、丁四位学生中随机抽取两名学生参加市区交通法规竞赛,请用列表或画树状图的方法求甲和乙两名学生同时被选中的概率.【解答】解:(1)24÷40%=60,所以本次调查了60名学生;扇形统计图中C所对应扇形的圆心角度数=×360°=90°;故答案为60;90°;(2)D类学生数为60×5%=3(名),B类学生数为60﹣24﹣15﹣3=18(名),补全条形统计图为:(3)画树状图为:共有12种等可能的结果数,其中甲和乙两名学生同时被选中的结果数为2,所以甲和乙两名学生同时被选中的概率==.20.(本题8分)如图,由6个形状、大小完全相同的小矩形组成大矩形网格,小矩形的顶点称为这个矩形网格的格点,由格点构成的四边形称为格点四边形,请按要求作图(标出所画图形的顶点字母).(1)在图1中画出一个格点正方形;(2)在图2中画出一个一般的格点平行四边形(非菱形、矩形).【分析】(1)根据正方形的判定方法解决问题即可(答案不唯一).(2)根据平行四边形的判定方法即可解决问题(大不唯一).【解答】解:(1)如图1中,正方形ABCD即为所求.(2)平行四边形ABCD即为所求.【点评】本题考查作图﹣应用与设计,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.21.(本题10分)如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,过点B作⊙O的切线,交AC的延长线于点F.(1)求证:∠CBF=∠BAC;(2)若⊙O的半径为5,tan∠CBF=,求BC和BF的长.【解答】解:(1)连接AE,∵AB为⊙O直径,∴∠AEB=90°,∵AB=AC,∴∠BAE=∠BAC,∵BF是⊙O的切线,∴∠BAE+∠ABE=∠CBF+∠ABE=90°,∴∠CBF=∠BAE=∠BAC;(2)在Rt△BAE中,∵tan∠BCE=tan∠CBF=,∴=,∴=,∴BE=AB=2,过C作CG⊥AB于G,AE=2BE=4,BC=4,AB=10,∴CG==8,∴BG=4,∴AG=AB﹣BG=6,∵CG∥BF,∴△AGC∽△ABF,∴=,即=,∴BF=.22.(本题10分)儿童游乐场有一项射击游戏,从O处发射小球,将球投入正方形篮筐DABC.正方形篮筐三个顶点为A(2,2),B(3,2),D(2,3).小球按照抛物线y =﹣x2+bx+c飞行.小球落地点P坐标(n,0).(1)点C坐标为.(2)求c,b并写出小球飞行中最高点N的坐标(用含有n的代数式表示);(3)若小球发射之后能够直接入篮,球没有接触篮筐,请直接写出n的取值范围.【分析】(1)由正方形的性质及A、B、D三点的坐标求得AD=BC=1即可得;(2)把(0,0)(n,0)代入y=﹣x2+bx+c求得b=n、c=0,据此可得函数解析式,配方成顶点式即可得出答案;(3)根据“小球发射之后能够直接入篮,球没有接触篮筐”知:当x=2时y>3,当x =3时y<2,据此列出关于n的不等式组,解之可得.【解答】解:(1)∵A(2,2),B(3,2),D(2,3),∴AD=BC=1,则点C(3,3),故答案为:(3,3);(2)把(0,0)(n,0)代入y=﹣x2+bx+c得:,解得:,∴抛物线解析式为y=﹣x2+nx=﹣(x﹣)2+,∴顶点N坐标为(,);故答案为:(,);(3)根据题意,得:当x=2时y>3,当x=3时y<2,即,解得:<n<.【点评】本题主要考查二次函数的应用,解题的关键是掌握待定系数法求函数解析式、二次函数的性质及将实际问题转化为二次函数的问题能力.23.(本题12分)某品牌手机去年每台的售价y(元)与月份x之间满足函数关系:y=﹣50x+2600,去年的月销量p(万台)与月份x之间成一次函数关系,其中1﹣6月份的销售情况如下表:(1)求p关于x的函数关系式;(2)求该品牌手机在去年哪个月的销售金额最大?最大是多少万元?(3)今年1月份该品牌手机的售价比去年12月份下降了m%,而销售量也比去年12月份下降了1.5m%.今年2月份,经销商决定对该手机以1月份价格的“八折”销售,这样2月份的销售量比今年1月份增加了1.5万台.若今年2月份这种品牌手机的销售额为6400万元,求m的值.【分析】(1)直接利用待定系数法求一次函数解析式即可;(2)利用销量×售价=销售金额,进而利用二次函数最值求法求出即可;(3)分别表示出1,2月份的销量以及售价,进而利用今年2月份这种品牌手机的销售额为6400万元,得出等式求出即可.【解答】解:(1)设p=kx+b,把p=3.9,x=1;p=4.0,x=2分别代入p=kx+b中,得:,解得:,∴p=0.1x+3.8;(2)设该品牌手机在去年第x个月的销售金额为w万元,w=(﹣50x+2600)(0.1x+3.8)=﹣5x2+70x+9880=﹣5(x﹣7)2+10125,=10125,当x=7时,w最大答:该品牌手机在去年七月份的销售金额最大,最大为10125万元;(3)当x=12时,y=2000,p=5,1月份的售价为:2000(1﹣m%)元,则2月份的售价为:0.8×2000(1﹣m%)元;1月份的销量为:5×(1﹣1.5m%)万台,则2月份的销量为:[5×(1﹣1.5m%)+1.5]万台;∴0.8×2000(1﹣m%)×[5×(1﹣1.5m%)+1.5]=6400,解得:m1%=(舍去),m2%=,∴m=20,答:m的值为20.【点评】此题主要考查了二次函数的应用以及待定系数法求一次函数解析式,根据题意表示出2月份的销量与售价是解题关键.24.(本题14分)如图,在平面直角坐标系中,矩形ABCO的面积为15,边OA比OC大2.E为BC的中点,以OE为直径的⊙O′交x轴于D点,过点D作DF⊥AE于点F.(1)求OA、OC的长;(2)求证:DF为⊙O′的切线;(3)小明在解答本题时,发现△AOE是等腰三角形.由此,他断定:“直线BC上一定存在除点E以外的点P,使△AOP也是等腰三角形,且点P一定在⊙O′外”.你同意他的看法吗?请充分说明理由.【分析】(1)在矩形OABC中,利用边长之间的关系和面积公式即可求得OC,OA的长;(2)连接O′D,通过证明△OCE≌△ABE得到DF⊥O′D,所以DF为⊙O′切线;(3)分两种情况进行分析:①当AO=AP;②当OA=OP,从而得到在直线BC上,除了E点外,既存在⊙O′内的点P,又存在⊙O′外的点P2、P3、P4,它们分别使△AOP 为等腰三角形.【解答】(1)解:在矩形OABC中,设OC=x,则OA=x+2∴x(x+2)=15∴x1=3,x2=﹣5∵x2=﹣5(不合题意,舍去)∴OC=3,OA=5;(2)证明:连接O′D;∵在矩形OABC中,,∴△0CE≌△ABE(SAS),∴EA=EO,∴∠1=∠2;∵在⊙O′中,O′O=O′D,∴∠1=∠3,∴∠3=∠2,∴O′D∥AE;∵DF⊥AE,∴DF⊥O′D,∵点D在⊙O′上,O′D为⊙O′的半径,∴DF为⊙O′切线;(3)解:不同意.理由如下:①当A0=AP时,以点A为圆心,以AO为半径画弧交BC于P1和P4两点过P1点作P1H⊥OA于点H,P1H=0C=3;∵AP l=OA=5,∴AH=4,∴OH=l,求得点P1(1,3)同理可得:P4(9,3)(7分);②当OA=OP时,同上可求得P2(4,3),P3(﹣4,3),(9分)∴在直线BC上,除了E点外,既存在⊙O′内的点P1,又存在⊙O′外的点P2、P3、P4,它们分别使△AOP为等腰三角形.(10分)【点评】主要考查了矩形的性质和圆中的有关性质,等腰三角形的判定以及一元二次方程在几何图形中的运用.要熟练掌握这些性质才能灵活运用.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018-2019学年浙江省温州市乐清市八年级(下)期末数学试卷一、选择題(本题有10个小题,每小题3分,共30分)1.下列视力表的部分图案中,既是轴对称图形又是中心对称图形的是( ) A .B .C .D .2有意义,则x 应满足( ) A .3xB .3x >C .3x -D .3x ≠3.五边形的内角和是( ) A .180︒B .360︒C .540︒D .720︒4.某班18名男生参加中考体育模拟测试,1000m 跑步项目成绩如下表:则该班男生成绩的中位数是( ) A .7B .7.5C .8D .95.用配方法解方程2640x x --=,下列配方正确的是( ) A .2(3)13x -=B .2(3)13x +=C .2(6)4x -=D .2(3)5x -=6a =,则0a ”时,第一步应假设( )A a ≠B .0aC .0a <D .0a >7.下列命题是真命题的是( ) A .对角线互相垂直的四边形是菱形 B .对角线相等的菱形是正方形C .对角线互相垂直且相等的四边形是正方形D .对角线相等的四边形是矩形 8.反比例函数ky x=的图象如图所示,则k 的值可能是( )A.3-B.1C.2D.49.如图,在正方形ABCD中,E为边BC上一点,将ABE∆沿AE折叠至ABE∆处,BE与AC 交于点F,若69EFC∠=︒,则CAE∠的大小为()A.10︒B.12︒C.14︒D.15︒10.在平面直角坐标系中,反比例函数kyx=的图象上有三点(2,2)P,(4,)Q m-,(,)M a b,若0a<且PM PQ>,则b的取值范围为()A.4b<B.1b<-或40b-<<C.10b-<<D.4b<-或10b-<<二、填空题(本题有6小题,每小题3分,共18分)11.当2x=-的值为.12.甲,乙,丙三位同学近5次快速阅读模拟比赛成绩平均分均为86分,且甲,乙,丙的方差是2100S=甲,2110S=乙,290S=丙,则发挥最稳定的同学是.13.若关于x的方程240x x m++=有实数根,则m的值可以是.(写出一个即可)14.如图,在矩形ABCD中,E,F分别是边AD和CD的中点,3EF=,则BD的长为.15.如图,在平行四边形ABCD中,5AB=,3AD=,BAD∠的平分线AE交CD于点E,连结BE,若BAD BEC∠=∠,则平行四边形ABCD的面积为.16.如图,正方形ABCD面积为1,延长DA至点G,使得AG AD=,以DG为边在正方形另一侧作菱形DGFE,其中45∠=︒,依次延长AB,BC,CD类似以上操作再作三个EFG形状大小都相同的菱形,形成风车状图形,依次连结点F,H,M,N,则四边形FHMN 的面积为.三、解答题(本题共有7小题,共52分)17.(1-(2)解方程:270-=x x18.某校举办的八年级学生数学素养大赛共设3个项目:七巧板拼图,趣题巧解,数学应用,每个项目得分都按一定百分比折算后计入总分,总分高的获胜,下表为小米和小麦两位同学的得分情况(单位:分):(1)若七巧板拼图,趣题巧解,数学应用三项得分分别按40%,20%,40%折算计入总分,最终谁能获胜?(2)若七巧板拼图按20%折算,小麦(填“可能”或“不可能”)获胜.19.如图,在平行四边形ABCD中,AC是它的一条对角线,BE AC⊥于点E,DF AC⊥于点F,求证:四边形BEDF是平行四边形.20.如图,在66⨯的方格纸中,每一个小正方形的边长均为1,点A,B在格点上,用无刻度直尺按下列要求作图,保留必要的作图痕迹(1)在图1中,以AB为边画一个正方形ABCD;(2)在图2中,以AB为边画一个面积为5的矩形(ABCD CD可以不在格点上).21.如图,在平面直角坐标系中,菱形OABC的顶点A,C在反比例函数kyx=图象上,直线AC交OB于点D,交x,y正半轴于点E,F,且OE OF==(1)求OB的长;(2)若AB=,求k的值.22.市政规划出一块矩形土地用于某项目开发,其中100AB m=,180BC m=,设计分区如图所示,E为矩形内一点,作EG AD⊥于点G,//EH BC交AB,CD于点F,H,过点H作//HI BE交BC于点Ⅰ,其中丙区域用于主建筑区,其余各区域均用于不同种类绿化(1)若点G是AD的中点,求BI的长;(2)要求绿化占地面积不小于27500m,规定乙区域面积为24500m①若将甲区域设计成正方形形状,能否达到设计绿化要求?请说明理由;②若主建筑丙区域不低于乙区域面积的32,则AF的最大值为m.(请直接写出答案)23.如图,4AB AC==,90BAC∠=︒,点D,E分别在线段AC,AB上,且AD AE=.(1)求证:BD CE=;(2)已知F,G分别是BD,CE的中点,连接FG.①若12FG BD=,求C∠的度数;②连接GD,DE,EF,当AD的长为何值时,四边形DEFG是矩形?2018-2019学年浙江省温州市乐清市八年级(下)期末数学试卷参考答案与试题解析一、选择題(本题有10个小题,每小题3分,共30分)1.下列视力表的部分图案中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,不是中心对称图形,不合题意;B、是轴对称图形,也是中心对称图形,符合题意;C、不是轴对称图形,是中心对称图形,不合题意;D、不是轴对称图形,不是中心对称图形,不合题意.故选:B.2有意义,则x应满足()A.3x B.3x>C.3x -D.3x≠【解答】解:根据题意得:30x -,解得:3x.故选:A.3.五边形的内角和是()A.180︒B.360︒C.540︒D.720︒【解答】解:五边形的内角和是:(52)180-⨯︒3180=⨯︒540=︒故选:C.4.某班18名男生参加中考体育模拟测试,1000m跑步项目成绩如下表:则该班男生成绩的中位数是()A.7B.7.5C.8D.9【解答】解:该班男生成绩的中位数是8882+=, 故选:C .5.用配方法解方程2640x x --=,下列配方正确的是( ) A .2(3)13x -=B .2(3)13x +=C .2(6)4x -=D .2(3)5x -=【解答】解:方程2640x x --=变形得:264x x -=, 配方得:26913x x -+=,即2(3)13x -=, 故选:A .6a =,则0a ”时,第一步应假设( )A a ≠B .0aC .0a <D .0a >【解答】a =,则0a ”时,第一步应假设0a <. 故选:C .7.下列命题是真命题的是( ) A .对角线互相垂直的四边形是菱形 B .对角线相等的菱形是正方形C .对角线互相垂直且相等的四边形是正方形D .对角线相等的四边形是矩形【解答】解:A 、对角线互相垂直的平行四边形是菱形,故错误,是假命题; B 、对角线相等的菱形是正方形,正确,是真命题;C 、对角线互相垂直且相等的平行四边形是正方形,故错误,是假命题;D 、对角线相等的平行四边形是矩形,故错误,是假命题,故选:B . 8.反比例函数ky x=的图象如图所示,则k 的值可能是( )A.3-B.1C.2D.4【解答】解:由图象可知:12k>⨯,故选:D.9.如图,在正方形ABCD中,E为边BC上一点,将ABE∆沿AE折叠至ABE∆处,BE与AC 交于点F,若69EFC∠=︒,则CAE∠的大小为()A.10︒B.12︒C.14︒D.15︒【解答】解:69EFC∠=︒,45ACE∠=︒,6945114BEF∴∠=+=︒,由折叠的性质可知:1572BEA BEF∠=∠=︒,905733BAE∴∠=-=︒,453312EAC∴∠=-=︒.故选:B.10.在平面直角坐标系中,反比例函数kyx=的图象上有三点(2,2)P,(4,)Q m-,(,)M a b,若0a<且PM PQ>,则b的取值范围为()A.4b<B.1b<-或40b-<< C.10b-<<D.4b<-或10b-<<【解答】解:如图:点(2,2)P在反比例函数kyx=的图象上4k∴=,点(4,)Q m-,在反比例函数kyx=的图象上1m∴=-,(4,1) Q∴--由双曲线关于y x=轴对称,因此与1(4,1)Q--对称的2(1,4)Q--,(,)M a b在反比例函数kyx=的图象上,且0a<,PM PQ>,∴点M 在第三象限1Q 左边的曲线上,或在2Q 右侧的曲线上, ∴点M 的纵坐标b 的取值范围为:10b -<<或4b <-,故选:D .二、填空题(本题有6小题,每小题3分,共18分)11.当2x =-的值为 3 .【解答】解:把2x =-,得3==.故答案是:3.12.甲,乙,丙三位同学近5次快速阅读模拟比赛成绩平均分均为86分,且甲,乙,丙的方差是2100S =甲,2110S =乙,290S =丙,则发挥最稳定的同学是 丙 . 【解答】解:2100S =甲,2110S =乙,290S =丙, ∴222S S S <<乙丙甲, ∴发挥最稳定的同学是丙,故答案为:丙.13.若关于x 的方程240x x m ++=有实数根,则m 的值可以是 4 .(写出一个即可) 【解答】解:根据题意得△2440m =-, 解得4m , 所以m 可取4. 故答案为4.14.如图,在矩形ABCD 中,E ,F 分别是边AD 和CD 的中点,3EF =,则BD 的长为 6 .【解答】解:如图,连接AC,四边形ABCD是矩形∴=AC BDE,F分别是边AD和CD的中点,3EF=,AC EF∴==26∴=BD6故答案为:615.如图,在平行四边形ABCD中,5∠的平分线AE交CD于点E,AD=,BADAB=,3连结BE,若BAD BEC∠=∠,则平行四边形ABCD的面积为【解答】解:过点B作BF CD⊥于F,如图所示:AE是BAD∠的平分线,∴∠=∠,DAE BAE四边形ABCD是平行四边形,==,BAD BCEAB CD,∠=∠,//∴==,35AB CDAD BC∴∠=∠,BAE DEA∴∠=∠,DAE DEA∴==,3AD DE2CE CD DE ∴=-=,BAD BEC ∠=∠,BCE BEC ∴∠=∠,112CF EF CE ∴===,BF ===,∴平行四边形ABCD 的面积225BF CD ===,故答案为:16.如图,正方形ABCD 面积为1,延长DA 至点G ,使得AG AD =,以DG 为边在正方形另一侧作菱形DGFE ,其中45EFG ∠=︒,依次延长AB ,BC ,CD 类似以上操作再作三个形状大小都相同的菱形,形成风车状图形,依次连结点F ,H ,M ,N ,则四边形FHMN的面积为 13+【解答】解:如图,延长CD 交FN 于点P ,过N 作NK CD ⊥于K ,延长FE 交CD 于Q ,交NS 于R ,ABCD 是正方形,90CDG GDK ∴∠=∠=︒,1ABCD S =正方形,1AD CD AG DQ ∴====2DG CT ∴==DEFG 是菱形,2DE EF DG ∴===同理,2CT TN ==45EFG ∠=︒,45EDG SCT NTK ∴∠=∠=∠=︒//FE DG ,//CT SN ,DG CT ⊥90FQP FRN DQE NKT ∴∠=∠=∠=∠=︒DQ EQ TK NK ∴====,2FQ FE EQ =+=+90NKT KQR FRN ∠=∠=∠=︒∴四边形NKQR 是矩形QR NK ∴==2FR FQ QR ∴=+=+11NR KQ DK DQ ==-==22222(2113FN FR NR ∴=+=++=+,延长NS 交ML 于Z ,易证()NMZ FNR SAS ∆≅∆FN MN ∴=,NFR MNZ ∠=∠90NFR FNR ∠+∠=︒90NNZ FNR ∴∠+∠=︒即90FNM ∠=︒同理90NFH FHM ∠=∠=︒∴四边形FHMN 是正方形213FHMN S FN ∴==+,故答案为:13+三、解答题(本题共有7小题,共52分)17.(1- (2)解方程:270x x -=【解答】解:(1)原式=+=-=;(2)(7)0x x-=,x=或70x-=,所以10x=,27x=.18.某校举办的八年级学生数学素养大赛共设3个项目:七巧板拼图,趣题巧解,数学应用,每个项目得分都按一定百分比折算后计入总分,总分高的获胜,下表为小米和小麦两位同学的得分情况(单位:分):(1)若七巧板拼图,趣题巧解,数学应用三项得分分别按40%,20%,40%折算计入总分,最终谁能获胜?(2)若七巧板拼图按20%折算,小麦不可能(填“可能”或“不可能”)获胜.【解答】解:(1)由题意得,小米总分为:8040%9020%8840%85.2⨯+⨯+⨯=,小麦总分为:9040%8620%8540%87.2⨯+⨯+⨯=,85.287.2<,∴小麦获胜;(2)设趣味巧解占%a和数学应用占%b,则小米:80乘以20%90+乘以%88a+乘以%160.90.88b a b=++小麦:90乘以20%86+乘以%85a+乘以%180.860.85b a b=++80a b+=,160.90.88(180.860.85)160.90.88180.860.850.040.0320.010.40a b a b a b a b a b a∴++-++=++---=+-=+>,∴小麦不可能获胜,故答案为:不可能.19.如图,在平行四边形ABCD 中,AC 是它的一条对角线,BE AC ⊥于点E ,DF AC ⊥于点F ,求证:四边形BEDF 是平行四边形.【解答】证明:四边形ABCD 是平行四边形,AB DC ∴=,且//AB DC ,BAE DCF ∴∠=∠.又BE AC ⊥,DF AC ⊥,90AEB CFD ∴∠=∠=︒.在ABE ∆与CDF ∆中,AEB CFD BAE CDF AB CD ∠=∠⎧⎪∠=∠⎨⎪=⎩,()ABE CDF AAS ∴∆≅∆,BE DF ∴=;BE AC ⊥,DF AC ⊥,//BE DF ∴,∴四边形BEDF 是平行四边形.20.如图,在66⨯的方格纸中,每一个小正方形的边长均为1,点A ,B 在格点上,用无刻度直尺按下列要求作图,保留必要的作图痕迹(1)在图1中,以AB 为边画一个正方形ABCD ;(2)在图2中,以AB 为边画一个面积为5的矩形(ABCD CD 可以不在格点上).【解答】解:(1)如图1中,正方形ABCD 即为所求.(2)如图2中,矩形ABCD即为所求.21.如图,在平面直角坐标系中,菱形OABC的顶点A,C在反比例函数kyx=图象上,直线AC交OB于点D,交x,y正半轴于点E,F,且OE OF==(1)求OB的长;(2)若AB=,求k的值.【解答】解:(1)OE OF==6EF∴==,45OEF OFE∠=∠=︒,菱形OABC,OA AB BC CO∴===,OB AC⊥,DC DA=,DO DB=,DOE∴∆为等腰直角三角形,132DO DE EF∴===,26OB DO∴==;答:OB的长为6.(2)过点A作AN OE⊥,垂足为N,则ANE∆是等腰直角三角形,AN NE∴=设AN x=,则NE x=,ON x=-,在Rt AON∆中,由勾股定理得:222)x x -+=,解得:1x =2x =当1x =A ,C ,当2x =C ,A ,因此:4k ==答:k 的值为:4.22.市政规划出一块矩形土地用于某项目开发,其中100AB m =,180BC m =,设计分区如图所示,E 为矩形内一点,作EG AD ⊥于点G ,//EH BC 交AB ,CD 于点F ,H ,过点H 作//HI BE 交BC 于点Ⅰ,其中丙区域用于主建筑区,其余各区域均用于不同种类绿化(1)若点G 是AD 的中点,求BI 的长;(2)要求绿化占地面积不小于27500m ,规定乙区域面积为24500m①若将甲区域设计成正方形形状,能否达到设计绿化要求?请说明理由; ②若主建筑丙区域不低于乙区域面积的32,则AF 的最大值为 40 m .(请直接写出答案)【解答】解:(1)四边形ABCD 是矩形,180AD BC m ∴==,//AB CD ,//AD BC ,EG AD ⊥,//EH BC ,//HI BE ,∴四边形AFEG 和四边形DGEH 是矩形,四边形BIHE 是平行四边形, AG EF ∴=,DG EH =,EH BI =,点G 是AD 的中点,1902DG AD m ∴==, 90BI EH DG m ∴===;(2)①设正方形AFEG 的边长为xm , 由题意得:212(100)450075002x x x +⨯⨯⨯-+, 解得:30x ,当30x =时,450015030EH ==, 则18015030EF =-=,符合要求;∴若将甲区域设计成正方形形状,能达到设计绿化要求; ②设AF xm =,则4500EH m x =, 由题意得:45003(100)45002x x -⨯, 解得:40x ,即40AF m ,即AF 的最大值为40m ,故答案为:40.23.如图,4AB AC ==,90BAC ∠=︒,点D ,E 分别在线段AC ,AB 上,且AD AE =.(1)求证:BD CE =;(2)已知F ,G 分别是BD ,CE 的中点,连接FG . ①若12FG BD =,求C ∠的度数; ②连接GD ,DE ,EF ,当AD 的长为何值时,四边形DEFG 是矩形?【解答】解:(1)证明:在ABD ∆与ACE ∆中, AB AC =,A A ∠=∠,AD AE =,()ABD ACE SAS ∴∆≅∆,BD CE ∴=;(2)①连接AF 、AG ,如图:AF 、AG 分别是Rt ABD ∆、Rt ACE ∆的斜边中线, 12AF BD BF ∴==,12AG CE GC ==, 又BD CE =,12FG BD =, AFG ∴∆是等边三角形,易证ABF ACG ∆≅∆()SSS ,BAF B C CAG ∴∠=∠=∠=∠,(9060)215C ∴∠=︒-︒÷=︒,答:C ∠的度数为15︒.②连接BC ,连接EF 、DG 并延长分别交BC 与点M 、N ,如图: ABC ∆、AED ∆都是等腰直角三角形,//DE BC ∴, F ,G 分别是BD ,CE 的中点,∴易证DEF BMF ∆≅,DEG NCG ∆≅ ()ASA BM DE NC ∴==,若四边形DEFG 是矩形,则DE MN =, ∴13DE BC =, ABC AED ∆∆∽, ∴13AD DE AC BC ==, 4AC =,43AD ∴=. 答:当AD 的长为43时,四边形DEFG 是矩形.。