24章圆复习教案
第24章圆小结与复习教案

第二十四章《圆》小结一、本章知识结构框图二、本章知识点概括(一)圆的有关概念1、圆(两种定义)、圆心、半径;2、圆的确定条件:①圆心确定圆的位置,半径确定圆的大小;②不在同一直线上的三个点确定一个圆。
3、弦、直径;4、圆弧(弧)、半圆、优弧、劣弧;5、等圆、等弧,同心圆;6、圆心角、圆周角;7、圆内接多边形、多边形的外接圆;8、割线、切线、切点、切线长;9、反证法:假设命题的结论不成立,由此经过推理得出矛盾,由矛盾断定所作假设不正确,从而得到原命题成立。
(二)圆的基本性质1、圆的对称性①圆是轴对称图形,任何一条直径所在的直线都是它的对称轴。
*②圆是中心对称图形,圆心是对称中心。
2、圆的弦、弧、直径的关系①垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。
②平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。
* [引申] 一条直线若具有:Ⅰ、经过圆心;Ⅱ、垂直于弦;Ⅲ、平分弦;Ⅳ、平分弦所对的劣弧;Ⅴ、平分弦所对的优弧,这五个性质中的任何两条,必具有其余三条性质,即“知二推三”。
(注意:具有Ⅰ和Ⅲ时,应除去弦为直径的情况)3、弧、弦、圆心角的关系①在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。
②在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦相等。
③在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的弧相等。
归纳:在同圆或等圆中,两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量也相等。
4、圆周角的性质①定理:在同圆或等圆中,同弧或等弧所对圆周角相等,都等于这条弧所对的圆心角的一半。
②在同圆或等圆中,如果两个圆周角相等,它们所对的弧一定相等。
③推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径。
(三)与圆有关的位置关系1、点与圆的位置关系设⊙O的半径为r,OP=d则:点P在圆内d<r;点P在圆上d=r;点P在圆外d>r.2、直线与圆的位置关系设⊙O的半径为r,圆心O到l的距离为d则:直线l与⊙O相交d<r 直线和圆有两个公共点;直线l与⊙O相切d=r 直线和圆只有一个公共点;直线l与⊙O相离d>r 直线和圆没有公共点。
人教版数学九年级上册第24章《圆》复习教案

回顾与思考教学目标(一)教学知识点1.了解点与圆,直线与圆以及圆和圆的位置关系.2.了解切线的概念,切线的性质及判定.3.会过圆上一点画圆的切线.(二)能力训练要求1.通过平移、旋转等方式,认识直线与圆、圆与圆的位置关系,使学生明确图形在运动变化中的特点和规律,进一步发展学生的推理能力.2.通过探索弧长、扇形的面积、圆锥的侧面积和全面积的计算公式,发展学生的探索能力.3.通过画圆的切线,训练学生的作图能力.4.通过全章内容的归纳总结,训练学生各方面的能力.(三)情感与价值观要求1.通过探索有关公式,让学生懂得数学活动充满探索与创造,感受数学的严谨性以及数学结论的确定性.2.经历观察、猜想、证明等数学活动过程,发展合情推理能力和初步的演绎推理能力,能有条理地、清晰地阐述自己的观点.教学重点1.探索并了解点与圆、直线与圆、圆与圆的位置关系.2.探索切线的性质;能判断一条直线是否为圆的切线;会过圆上一点画圆的切线.教学难点:探索各种位置关系及切线的性质.教学方法:学生自己交流总结法.教具准备投影片五张:第一张:(记作A) 第二张:(记作B) 第三张:(记作C) 第四张:(记作D) 第五张:(记作E)教学过程Ⅰ.回顾本章内容[师]上节课我们对本章的所有知识进行了回顾,并讨论了这些知识间的关系,绘制了本章知识结构图,还对一部分内容进行了回顾,本节课继续进行有关知识的巩固.Ⅱ.具体内容巩固一、确定圆的条件[师]作圆的问题实质上就是圆心和半径的问题,确定了圆心和半径,圆就随之确定.我们在探索这一问题时,与作直线类比,研究了经过一个点、两个点、三个点可以作几个圆,圆心的分布和半径的大小有什么特点.下面请大家自己总结.[生]经过一个点可以作无数个圆.因为以这个点以外的任意一点为圆心,以这两点所连的线段为半径就可以作一个圆.由于圆心是任意的,因此这样的圆有无数个.经过两点也可以作无数个圆.设这两点为A、B,经过A、B两点的圆,其圆心到A、B两点的距离一定相等,所以圆心应在线段AB的垂直平分线上,在AB的垂直平分线上任意取一点为圆心,这一点到A或B的距离为半径都可以作一个经过A、B两点的圆.因此这样的圆也有无数个.经过在同一直线上的三点不能作圆.经过不在同一直线上的三点只能作一个圆.要作一个圆经过A、B、C三点,就要确定一个点作为圆心,使它到三点A、B、C的距离相等,到A、B两点距离相等的点在线段AB的垂直平分线上,到B、C两点距离相等的点应在线段B、C的垂直平分线上,那么同时满足到A、B、C三点距离相等的点应既在AB的垂直平分线上,又在BC的垂直平分线上,既两条直线的交点,因为交点只有一个,即确定了圆心.这个交点到A点的距离为半径,所以这样的圆只能作出一个.[师]经过不在同一条直线上的四个点A、B、C、D能确定一个圆吗?[生]不一定,过不在同一条直线上的三点,我们可以确定一个圆,如果另外一个点到圆心的距离等于半径,则说明四个点在同一个圆上,如果另外一个点到圆心的距离不等于半径,说明四个点不在同一个圆上.例题讲解(投影片A)矩形的四个顶点在以对角线的交点为圆心的同一个圆上吗?为什么?[师]请大家互相交流.[生]解:如图,矩形ABCD 的对角线AC 和BD 相交于点O .∵四边形ABCD 为矩形,∴OA =OC =OB =OD .∴A 、B 、C 、D 四点到定点O 的距离都等于矩形对角线的一半.∴A 、B 、C 、D 四点在以O 为圆心,OA 为半径的圆上.二、三种位置关系[师]我们在本章学习了三种位置关系,即点和圆的位置关系;直线和圆的位置关系;圆和圆的位置关系.下面我们逐一来回顾.1.点和圆的位置关系[生]点和圆的位置关系有三种,即点在圆外;点在圆上;点在圆内.判断一个点是在圆的什么部位,就是看这一点与圆心的距离和半径的大小关系,如果这个距离大于半径,说明这个点在圆外;如果这个距离等于半径,说明这个点在圆上;如果这个距离小于半径,说明这个点在圆内.[师]总结得不错,下面看具体的例子.(投影片B)1.⊙O 的半径r =5cm ,圆心O 到直线l 的 距离d =OD =3 m .在直线l 上有P 、Q 、R 三点,且有PD =4cm ,QD >4cm ,RD <4cm ,P 、Q 、R 三点对于⊙O 的位置各是怎样的?2.菱形各边的中点在同一个圆上吗?分析:要判断某些点是否在圆上,只要看这些点到圆心的距离是否等于半径.[生]1.解:如图(1),在Rt △OPD 中,∵OD =3,PD =4,∴OP =222234OD PD +-+=5=r .所以点P 在圆上.同理可知OR =22OD DR +<5,OQ =22OD DQ +>5. 所以点R 在圆内,点Q 在圆外.2.如图(2),菱形ABCD中,对角线AC和BD相交于点O,E、F、G、H分别是各边的中点.因为菱形的对角线互相垂直,所以△AOB、△BOC、△COD、△DOA都是直角三角形,又由于E、F、G、H分别是各直角三角形斜边上的中点,所以OE、OF、OG、OH分别是各直角三角形斜边上的中线,因此有OE=12AB,OF=12BC,OG=12CD,OH=12AD,而AB=BC=CD=DA.所以OE=OF=OG=OH.即各中点E、F、G、H到对角线的交点O的距离相等,所以菱形各边的中点在同一个圆上.2.直线和圆的位置关系[生]直线和圆的位置关系也有三种,即相离、相切、相交,当直线和圆有两个公共点时,此时直线与圆相交;当直线和圆有且只有一个公共点时,此时直线和圆相切;当直线和圆没有公共点时,此时直线和圆相离.[师]总结得不错,判断一条直线和圆的位置关系有哪些方法呢?[生]有两种方法,一种就是从公共点的个数来判断,上面已知讨论过了,另一种是比较圆心到直线的距离d与半径的大小.当d<r时,直线和圆相交;当d=r时,直线和圆相切;当d>r时,直线和圆相离.[师]很好,下面我们做一个练习.(投影片C)如图,点A的坐标是(-4,3),以点A为圆心,4为半径作圆,则⊙A与x轴、y轴、原点有怎样的位置关系?分析:因为x轴、y轴是直线,所以要判断⊙A与x轴、y轴的位置关系,即是判断直线与圆的位置关系,根据条件需用圆心A到直线的距离d与半径r比较.O是点,⊙A与原点即是求点和圆的位置关系,通过求OA与r作比较即可.[生]解:∵A点的坐标是(-4,3),∴A点到x轴、y轴的距离分别是3和4.又因为⊙A的半径为4,∴A点到x轴的距离小于半径,到y轴的距离等于半径.∴⊙A与x轴、y轴的位置关系分别为相交、相切.由勾股定理可求出OA的距离等于5,因为OA>4,所以点O在圆外.[师]上面我们讨论了直线和圆的三种位置关系,下面我们要对相切这种位置关系进行深层次的研究,即切线的性质和判定.[生]切线的性质是:圆的切线垂直于过切点的直径.切线的判定是:经过直径的一端,并且垂直于这条直径的直线是圆的切线.[师]下面我们看它们的应用.(投影片D)1.如图(1),在Rt△ABC中,∠C=90°,AC=12,BC=9,D是AB上一点,以BD为直径的⊙O切AC于点E,求AD的长.。
第24章圆-第九讲圆的垂径定理及运用(教案)

(五)总结回顾(用时5分钟)
今天的学习,我们了解了圆的垂径定理的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对这个定理的理解。我希望大家能够掌握这些知识点,并在解决几何问题时灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
最后,我认识到,教学不仅仅是传授知识,更重要的是引导学生学会思考、学会学习。在今后的教学中,我将更加关注学生的个体差异,尽量满足不同学生的学习需求,帮助他们建立自信,培养解决问题的能力。
五、教学反思
在上完这节课之后,我思考了很多。首先,关于圆的垂径定理的教学,我发现学生们对于定理的理解和掌握程度超出了我的预期。他们能够通过直观的图形和简单的例子,快速抓住定理的核心。特别是在实践活动中,学生们通过分组讨论和实验操作,将理论知识与实际应也注意到,在定理的证明部分,有一部分学生还是感到有些困惑。我意识到,几何证明对于他们来说是一个难点,需要更多的引导和练习。在接下来的教学中,我打算多花一些时间,通过逐步引导和反复练习,帮助学生克服这个难题。
-举例:在圆中,若AB为弦,O为圆心,OD垂直于AB,则OD平分AB,并且AD=BD,同时弧AC和弧BC相等。
2.教学难点
-理解并证明垂径定理:学生需要理解定理背后的几何逻辑,并能够通过作图和逻辑推理来证明定理的正确性。
-定理在实际问题中的灵活应用:学生在面对具体问题时,可能会难以找到合适的入手点,不知道如何将定理应用到解题过程中。
针对这些教学难点和重点,教师应采用以下策略:
-使用直观的动画或实物模型来展示垂径定理的证明过程,帮助学生理解。
-通过典型例题的讲解,展示定理在实际问题中的应用方法,并指导学生进行步骤分解。
第24章《圆》综合复习(教案)

第24章《圆》综合复习◆随堂检测1.如图,已知△ABC内接于⊙O,∠C=45°,AB=4,则⊙O的半径为.第1题第2题第3题2.如图,在⊙O的内接四边形ABCD中,∠BOD=90°,则∠BCD=度.3.已知⊙O的半径为8,圆心O到直线l的距离是6,则直线l与⊙O的位置关系是.4,在△ABC中,BC=4,以点A为圆心,2为半径的⊙A与BC相切于点D,交AB于点E,交AC于点F,点P是⊙A上的一点,且∠EPF=45°,则图中阴影部分的面积为.4.如图,已知⊙O是以坐标原点O为圆心,1为半径的圆,∠AOB=45°,点P在x轴上运动,若过点P且与OA平行的直线与⊙O有公共点,设P(x,0),则x的取值范围是.第4题第6题第7题5.母线长为3,底面圆的直径为2的圆锥的侧面积为.6.如图:⊙O内切于弓形ADB的最大的圆,且弧ADB的度数为120°,则⊙O的周长与弧AB的长的比是.7.如图,已知圆柱体底面圆的半径为,高为2,AB、CD分别是两底面的直径,AD、BC是母线若一只小虫从A点出发,从侧面爬行到C点,则小虫爬行的最短D路线的长度是(结果保留根式).◆典例分析例1..如图,△ABC中,∠A=60°,以BC为直径作⊙O分别交AB、AC于D、E,(1)求证:AB=2AE;(2)若AE=2,CE=1,求BC.例2.如图,⊙O是△ABC的外接圆,AD是△ABC的高,AE是⊙O的直径,求证:∠BAE=∠CAD.第2题第1题例3.如图,在⊙O中,∠BAC=60°,∠DAC=30°,AB=2,AD=6,(1)求∠DCB.(2)求CD的长.例4..如图,在⊙O中,C为的中点,连接AC并延长至D,使CD=CA,连接DB并延长DB交⊙O于E,连AE.(1)求证:AE是⊙O的直径;(2)求证:AE=DE.例5..如图,AB为⊙O的直径,C为半圆的中点,D为上一点,延长AD至E,使AE=BD,连CE,求的值.◆ 拓展提高1..如图,△ABC 内接于⊙O ,且AB >AC .∠BAC 的外角平分线交⊙O 于E ,EF ⊥AB ,垂足为F .(1)求证:EB=EC ; (2)分别求式子、的值;(3)若EF=AC=3,AB=5,求△AEF 的面积.例5图3. 如图,AB 为⊙O 的直径,C 为⊙O 上一点,AD 和过C 点的切线互相垂直,垂足为D ,AD 交⊙O 于点E .(1)求证:AC 平分∠DAB ;(2)若∠B=60°,CD=2,求AE 的长.4.如图,半圆的半径为2cm ,点C 、D 三等分半圆,求阴影部分的面积.5.如图,AB是⊙O的直径,PB与⊙O相切于点B,弦AC∥OP,PC交BA的延长线于点D,求证:PD是⊙O的切线.6.如图,已知⊙O1和⊙O2相交于点A、B,过点A作直线分别交⊙O1、⊙O2于点C、D,过点B作直线分别交⊙O1、⊙O2于点E、F,求证:CE∥DF.7..如图,在Rt△ABC中,∠B=90°,∠A的平分线交BC于D,E为AB上一点,DE=DC,以D为圆心,以DB的长为半径画圆.求证:(1)AC是⊙D的切线;(2)AB+EB=AC.8.如图,在Rt△ABC中,∠C=90°,BE平分∠ABC交AC于点E,点D在AB上,DE⊥EB.(1)求证:AC是△BDE的外接圆的切线.(2)若AD=,AE=,求EC的长.◆体验中考1.如图,△ABC内接于⊙O,AC是⊙的直径,∠ACB=50°,点D是⊙O上一点,则∠D=()4.如图,AB是半圆的直径,D是的中点,∠B=40°,则∠A等于()6.如图,⊙O的半径为1,AB是⊙O的一条弦,且AB=,则弦AB所对圆周角的度数为8.如图,AB是⊙O的直径,C、D是⊙O上一点,∠CDB=20°,过点C作⊙O的切线交AB 的延长线于点E,则∠E等于()第8题第7题第11题C D.11.如图,已知AB是⊙O的直径,AD切⊙O于点A,=.则下列结论中不一定正确的第24章《圆》综合复习◆随堂检测1.如图,已知△ABC内接于⊙O,∠C=45°,AB=4,则⊙O的半径为.OA=2BCD=135度.A=的位置关系是相交.4,在△ABC中,BC=4,以点A为圆心,2为半径的⊙A与BC相切于点D,交AB于点E,交AC于点F,点P是⊙A上的一点,且∠EPF=45°,则图中阴影部分的面积为4﹣π.=若过点P且与OA平行的直线与⊙O有公共点,设P(x,0),则x的取值范围是﹣≤x≤且x≠0.OP'=,,≤≤≤且=AB的长的比是.PC=CD=的周长是的长是π的长的比是:,即.7.如图,已知圆柱体底面圆的半径为,高为2,AB、CD分别是两底面的直径,AD、BC是母线若一只小虫从A点出发,从侧面爬行到C点,则小虫爬行的最短D路线的长度是2(结果保留根式).×π×.例1..如图,△ABC中,∠A=60°,以BC为直径作⊙O分别交AB、AC于D、E,(1)求证:AB=2AE;(2)若AE=2,CE=1,求BC.BE==2=例2.如图,⊙O是△ABC的外接圆,AD是△ABC的高,AE是⊙O的直径,求证:∠BAE=∠CAD.例3.如图,在⊙O中,∠BAC=60°,∠DAC=30°,AB=2,AD=6,(1)求∠DCB.(2)求CD的长.=2BD=.例4..如图,在⊙O中,C为的中点,连接AC并延长至D,使CD=CA,连接DB并延长DB交⊙O于E,连AE.(1)求证:AE是⊙O的直径;(2)求证:AE=DE.例5..如图,AB为⊙O的直径,C为半圆的中点,D为上一点,延长AD至E,使AE=BD,连CE,求的值.=1..如图,△ABC内接于⊙O,且AB>AC.∠BAC的外角平分线交⊙O于E,EF⊥AB,垂足为F.(1)求证:EB=EC;(2)分别求式子、的值;(3)若EF=AC=3,AB=5,求△AEF的面积.==×1==,即==AD交⊙O于点E.(1)求证:AC平分∠DAB;(2)若∠B=60°,CD=2,求AE的长.,∠AC=2CD=4AC=4==8AE=OA=,==6CD=2=4.如图,半圆的半径为2cm,点C、D三等分半圆,求阴影部分的面积.BOD=×=求证:PD是⊙O的切线.1212过点B作直线分别交⊙O1、⊙O2于点E、F,求证:CE∥DF.以D为圆心,以DB的长为半径画圆.求证:(1)AC是⊙D的切线;(2)AB+EB=AC.(1)求证:AC是△BDE的外接圆的切线.(2)若AD=,AE=,求EC的长.R+2)R=2,EC=BE=×R=××=31.如图,△ABC内接于⊙O,AC是⊙的直径,∠ACB=50°,点D是⊙O上一点,则∠D=()等于()4.如图,AB是半圆的直径,D是的中点,∠B=40°,则∠A等于()的中点,∠∠6.如图,⊙O的半径为1,AB是⊙O的一条弦,且AB=,则弦AB所对圆周角的度数为()∠8.如图,AB是⊙O的直径,C、D是⊙O上一点,∠CDB=20°,过点C作⊙O的切线交AB 的延长线于点E,则∠E等于()都对C D.11.如图,已知AB是⊙O的直径,AD切⊙O于点A,=.则下列结论中不一定正确的是()=,是所对的圆周角,只有当=。
《第24章复习教案》

第二十四章圆【教学目标】1.复习垂径定理,切线长定理及其相关推论.2.通过观察—猜想—验证的过程,运用定理解决相关的线段、角的计算.3.进一步感受圆的魅力.【教学重难点】灵活运用定理构造适当的辅助线解决相关计算问题【教学方法】合作探究【教学工具】班班通多媒体教学设备【教学过程】一.简单回顾两个基本定理(垂径定理和切线长定理)教师先投影出标题和图片,请学生叙述定理以及数学语言;然后教师再投影出定理和数学语言加深印象。
二.典型例题讲评例1.如下图,本题是根据半径和弦长来计算圆心到弦的距离问题,然后通过几何画板软件演示动态点引起的线段的长度的变化,学生观察,根据点的运动感受圆心到弦上的点之间的距离的取值范围.然后计算出OP的最大值和最小值.变式1.通过简单的变式来帮助学生进一步感受垂径定理在解决与圆内有关线段长问题的应用,并总结出在解决圆的相关问题的时候,我们经常会构造一些辅助线,而圆的半径则是其中一条重要的辅助线。
变式2.题目中只有弦长,以及两条弦之间的关系,要计算圆的半径,在计算的时候需要圆心到弦的距离,所以需要构造辅助线解决圆心到弦的距离.教师先投影出变式1第(1)小问,学生观察图中两条弦AB,CD并猜想之间的数量关系,然后通过定理演绎推理来验证我们所猜想的结论.然后投影出第(2)小问,把条件和结论互换,是否任然成立?学生可以根据刚才的经验很快找到相应的方法来解决第(2)小问.变式2中问题比变式1困难,只知道弦长相等,以及弦的长度,要计算半径的话必须要找到圆心到弦的距离,教师先安排学生思考,然后同学之间讨论自己的想法,相互取长补短.经过简单的讨论后教师请同学来阐述想法.然后再一起解答问题.例2. 如下图,本题是运用切线长定理解决与圆有关的线段长和角的问题,同样教师利用几何画板制作相关动态图来帮助学生感受在点或线动的过程中发现图形中线段和角的关系.通过观察—猜想—验证的过程,运用定理解决相关的线段、角的计算.解决完前面的几个小问题教师设计了一个拓展问题,帮助学生进一步巩固两个定理的运用,提高学生思维能力,培养学生综合运用知识的能力.第(5)(6)小题中点C在圆上,学生可能会忘记考虑点C的两种不同位置而导致丢解的情况,在第(5)小题中可以根据EF的长度判断出点C只能在AB的右侧,但是在第(6)小题中点C就可能在AB的左侧.三.小结通过本节课的复习,你对有关圆的计算问题有哪些新的认识?有哪些收获?四.作业数学指导单元测试中勾选的练习五.教学反思通过本节课的运用几何画板的动画演示功能很好的帮助学生理解几何图形的动态变化过程,建立动态变化问题想象基础,拓展学生的动态思维能力。
人教版初中数学九年级下册第24章圆第一课时圆的有关性质复习教案

(2)若直线l:y=kx +b经过圆心P和点D,求直线l的解析式.
第1、2题学生课下独立完成,延续课堂.
第3题课下交流讨论有选择性完成.
以生为本,正视学生学习能力、认知水平等个体差异,让不同的学生都能学有所得,学有所成,体验学习带来的成功与快乐.
三、【板书设计】
易错点总结:
(3)如果∠AOB=∠COD,那么________,______.
(4)如果AB=CD,OE⊥AB于E,OF⊥CD于F,OE与OF相等吗?为什么?
第2题图第3题图
通过回顾练习,生总结归纳所用知识点、方法及规律,然后组内交流,补充完善对问题的认识和方法.
综
合
运
用
【自主探究】
例(1)如图,AB是⊙O直径,C是⊙O上一点,OD是半径,且OD//AC。求证:CD=BD
师:首先这个四边形已经是一个什么四边形?——矩形.
那再证一个什么条件,矩形就能成为正方形了?
由弧AD=弧BD,你能得到哪些结论?由弧你想到了什么?
生1:连接OD,
D是弧AB中点
DF=CF
矩形CFDG是正方形
生2:连接AD,BD
弧AD=弧BD AD=BD
矩形CFDG是正方形
师:在圆中,我们不要忽视弧的作用,它是弦与角转化的桥梁.
教师展示问题,学生有针对性独立思考解答,
完成后师生间展评.
完
善
整
合
1.1.知识结构图
2.本这节课你收获了什么?
师生梳理本课的知识点及及注意问——归结本节课所复习的内容,梳理知识,构建思维导图,凸显数学思想方法.
对内容的升华理解认识
作
业
一、必做题:
人教版九年级上册数学教案:第24章圆单元复习

第24章圆一、复习目标1、了解圆的有关概念,探索并理解垂径定理,探索并认识圆心角、弧、•弦之间的相等关系的定理,探索并理解圆周角和圆心角的关系定理.2、探索并理解点和圆、直线与圆以及圆与圆的位置关系:了解切线的概念,•探索切线与过切点的直径之间的关系,能判定一条直线是否为圆的切线,会过圆上一点画圆的切线.3、进一步认识和理解正多边形和圆的关系和正多边的有关计算.4、熟练掌握弧长和扇形面积公式及其它们的应用;•理解圆锥的侧面展开图并熟练掌握圆锥的侧面积和全面积的计算.二、课时安排2三、复习重难点1.理解点和圆、直线与圆以及圆与圆的位置关系:了解切线的概念,•探索切线与过切点的直径之间的关系,能判定一条直线是否为圆的切线,会过圆上一点画圆的切线.2.掌握弧长和扇形面积公式及其它们的应用;•理解圆锥的侧面展开图并熟练掌握圆锥的侧面积和全面积的计算.四、教学过程(一)知识梳理1、圆的有关概念:2、圆的对称性:(1)圆是轴对称图形,其对称轴是任意一条过圆心的直线。
(2)圆是中心对称图形,对称中心为圆心。
3、垂径定理及其推论:定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。
推论:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧。
(2)弦的垂直垂直平分线经过圆心,并且平分弦所对的两条弧。
(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧。
(4)圆的两条平行弦所夹的弧相等。
4、圆心角、弧、弦、弦心距之间的关系:在同圆或等圆中,如果两个圆心角、两条弧、两条弦、两条弦的弦心距中有一组量相等,那么它们所对的其余各组量都分别相等。
5、圆周角:(1)定义:顶点在圆上,并且两边都和圆相交的角叫圆周角。
(2)定理:一条弧所对的圆周角等于它所对的圆心角的一半。
(3)推论:①圆周角的度数等于它所对弧的度数的一半。
②同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧相等。
③直径所对的圆周角是直角;90的圆周角所对的弦是直径。
人教版九年级上册数学教案:第24章《圆的复习》优秀教学案例

(四)反思与评价
1.自我反思:引导学生对自己的学习过程进行反思,总结学习方法和学习经验,提高学生的我管理能力。
2.同伴评价:组织学生互相评价,给予同伴肯定和鼓励,培养学生的评价能力和良好的人际关系。
3.探究情境:组织学生进行小组讨论,探讨圆的性质和公式,引导学生主动参与学习,培养学生的发现问题、分析和解决问题的能力。
(二)问题导向
1.设计问题链:围绕圆的知识,设计一系列由浅入深的问题,引导学生层层递进地思考,如“圆是什么形状?”“圆有哪些性质?”“圆的周长和面积如何计算?”等。
2.问题导向教学:在教学过程中,以问题为导向,引导学生自主学习、合作交流,使学生在解决问题的过程中,掌握圆的相关知识。
三、教学策略
(一)情景创设
1.生活情境:以日常生活中常见的圆形物品为例,如硬币、圆桌、车轮等,创设情境,引导学生关注圆的形状和特征,激发学生的学习兴趣。
2.问题情境:设计一些与圆相关的问题,如“圆形草坪的面积是多少?”“自行车轮子的周长是多少?”等,让学生在解决问题的过程中,自然地引入圆的相关知识。
2.问题导向的教学策略:本案例中,教师以问题为导向,设计了一系列由浅入深的问题,引导学生层层递进地思考。这种问题导向的教学策略,不仅有助于激发学生的思维,培养学生的批判性思维和问题解决能力,还能够帮助学生建立起知识之间的联系,形成系统化的知识结构。
3.小组合作的学习方式:通过组织学生进行小组讨论和合作交流,本案例充分调动了学生的学习主动性,培养了学生的合作能力和团队意识。在小组合作的过程中,学生不仅能够互相学习、互相帮助,还能够提高自己的表达能力和沟通技巧,培养良好的人际关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(二)讲授新课
例1:如图,P 是⊙O 外一点,P AB 、PCD 分别与⊙O 相交于A 、
B 、
C 、D.
(1)PO 平分∠BPD ;(2)AB =CD ;(3)OE ⊥CD ,OF ⊥AB ;
(4)OE =OF .
从中选出两个作为条件,另两个作为结论组成一个真命题,并加以证明,与同伴交流.
A
B
P
O E F C D
例2:(1)如图,圆心角都是90°的扇形OAB 与扇形OCD 叠放在一起,•OA=3,OC=1,分别连结AC 、BC ,则圆中阴影部分的面积为( )
A .1
2π B .π C .2π D .4π (2)如图,在Rt △ABC 中,∠C=90°,AC=1,BC=2.以边BC 所在直线为轴,把△ABC 旋转一周,得到的几何体的侧面积是 ( )
A .π
B .2π
C . 5π
D .25π
例3、下列命题中,正确的是( )
①顶点在圆周上的角是圆周角;②圆周角的度数等于圆心角度数的一半;③的圆周角所对的弦是直径;④不在同一条直线上的三个点确定一个圆;⑤同弧所对的圆周角相等
A .①②③
B .③④⑤
C .①②⑤
D .②④⑤
90
例4、右图是一个“众志成城,奉献爱心”的图标,图标中两圆的位置关系是
A.外离B.相交
C.外切D.内切
例5、如图,⊙A、⊙B、⊙C、两两不相交,且半径都是0.5cm,则图中三个扇形(即阴影部分的面积)之和为。
(三)巩固练习
教材131页,复习巩固1-3题
(四)归纳小结
本堂课你对本章内容有一个全面的了解与掌握吗?你有哪些困惑与疑问?说说看.
【教学说明】教师先选派几名学生就上述问题进行回答,教师再予以补充和点评.
(五)作业安排
教材131---133页复习题24第4、5、9题。
选做第12、13题
板书设计:
第二十四章圆小结与复习。