人教版九年级上第24章圆-24.1.1-圆-集体备课
人教版九年级数学上第24章24.1圆的基本性质教案

圆基本性质1、圆的定义(1)圆的定义点集定义:圆是平面内到定点的距离等于定长的点的集合.定点称为圆心,定长称为半径.(2)弦与直径①弦:连结圆上任意两点间的线段叫做弦.②直径:经过圆心弦,称为直径.(注意:直径是最长的弦,直径是弦,但弦不一定是直径.)(3)弧、优弧、劣弧、半圆①弧:圆上任意两点问的部分叫做圆弧,简称弧,用“⌒”表示.②半圆.圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆.③优弧、劣弧:大于半圆的弧叫做优弧;小于半圆的弧叫做劣弧.2、圆的对称性圆是轴对称图形,任何一条直径所在直线都是它的对称轴.注意:圆有无数条直径,所以圆有无数条对称轴.3、垂径定理及推理定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧.推论:平分弦(不是直径)的直径垂直于这条弦并且平分弦所对的两条弧.4、圆心角圆心角:顶点在圆心的角叫做圆心角.5、圆心角、弧、弦之间的关系定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等.推论:在同圆或等圆中,如果两个圆心角、两条弧或两条弦中有一组量相等,那么它们所对的其余各组量分别相等.注意:(1)在具体运用定理或推论解决问题时可根据需要,选择有关部分,比如“等弧所对圆心角相等”,“在同圆或等圆中,相等的圆心角所对的弧相等”等.(2)不能忽略“在同圆或等圆中”这个前提条件,若没有这一条件,虽然圆心角相等,但所对的弧、弦不一定相等.(3)结合图形深刻理解圆心角、弧、弦这几个概念与“所对”一词的含义.(4)若无特殊说明,定理推论中“弧”一般指劣弧.6、圆周角(1)圆周角:顶点在圆上,两边和圆相交的角叫做圆周角.(2)圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.二、重难点知识归纳重点:垂径定理、三组量之间的关系、圆周角定理.难点:以上定理的综合应用.三、典例剖析例1、如图,AB是⊙O的直径,CD是⊙O的弦,AB、CD的延长线交于点E.已知AB=2DE,∠E=18°.求∠AOC的度数.例2、如图,AB、CD是⊙O的弦,∠A=∠C.求证:AB=CD.例3、已知圆内接△ABC中,AB=AC,圆心O到BC距离为6cm,圆的半径为10cm.求腰AB的长.例4、要测量一个钢板上小孔的直径,通常采用间接的测量方法.如果用一个直径为10mm的标准钢珠放在小孔上,测得钢珠顶端与小孔平面的距离h=8mm(如图),求此小孔的直径d.例5、已知,如图,AD=BC.求证:AB=CD.例6、已知:如图,A点是半圆上一个三等份点,B点是的中点,P是直径MN上一动点,⊙O的半径为1,则AP+BP的最小值是多少?例7、如图,半圆O的直径是AB,CF⊥AB,弦AC的垂直平分线交CF于点D,连结AD并延长AD交半圆O于点E,相等吗?请证明你的结论.例8、如图,四边形ABCD的四个顶点在⊙O上,且对角线AC⊥BD,OE⊥BC于E.求证:.例9、如图,在△ABC中,AB=AC,以AC为直径作⊙O交BC于点D,作∠BAC的外角平分线AE交⊙O于点E,连结DE.求证:DE=AB.课堂练习与作业:圆:1、已知,⊙O的半径为3cm,P是⊙O内一点,OP=1cm,则点P到⊙O上各点的最小距离是______cm,最大距离是_________cm.2、如图,已知OA、OB是圆的两条半径,∠OAB=45°,OA=8cm,则AB=__________.3、如图,在△ABC中,∠ACB=90°,∠A=40°,以C为圆心,CB为半径的圆交AB于点D,则∠ACD=__________.4、如图,△ABC中,∠C=90°,AC=6cm,BC=8cm,分别以A、B为圆心,AC、BC为半径画弧,交斜边于E、F,则EF的长是__________.图2图3图4图65、平面直角坐标系中有一个点M(2,3),⊙M的半径为r,若⊙M上的点不全在第一象限内,则r的取值范围是()A.r=2 B.r=3 C.r≥2 D.r≥36、如图,点C在以AB为直径的半圆上,O是圆心,连接OC,则△ABC是()A.锐角三角形B.钝角三角形 C.直角三角形D.不能确定7、如图,点A、D、G、M在半圆O上,四边形ABOC,DEOF,HMNO为矩形,设BC=a,EF=b,NH=c,则下列各式正确的是()A.a>b>c B.a=b=c C.c>a>b D.b >c>a8、如图,BD、CE分别是△ABC的两条高,试说明点E、B、C、D四点在同一个圆上,并画出这个圆.9、如图所示,某部队在灯塔A的周围进行爆破作业,A的周围3千米内的水域为危险区域.有一渔船误入与A距离2千米的B处.为了尽快驶离危险区域,该船应怎样航行?并说明理由.垂径定理:1、如图,AB是⊙O的弦,圆心O到AB的距离OD=1,AB=4,则该圆的半径是__________.2、如图,水平铺设的圆柱形排水管的截面半径是0.5m,其中水面宽为AB=0.6m,则水的最大深度为_____m.3、如图,点A,B是⊙O上两点,AB=10,点P是⊙O上的动点(P与A,B不重合),连接AP、PB,过点O分别作OE⊥AP于E,OF⊥PB于F,则EF=__________.4、如图,已知AB是⊙O的直径,弦CD⊥AB于点P,CD=10cm,AP∶PB=1∶5,那么⊙O 的半径是()5、圆的半径为13cm,两弦AB∥CD,AB=24cm,CD=10cm,则两弦AB、CD的距离是()A.7cm B.17cm C.12cm D.7cm或17cm图1图2图3图4图65、圆的半径为13cm,两弦AB∥CD,AB=24cm,CD=10cm,则两弦AB、CD的距离是()A.7cm B.17cm C.12cm D.7cm或17cm6、如图所示,AB是⊙O的一条固定直径,它把⊙O分成上、下两个半圆,自上半圆上一点C作弦CD⊥AB,∠OCD的平分线交⊙O于点P,当点C在上半圆(不包括A、B两点)移动时,点P()A.到CD的距离保持不变 B.位置不变 C.平分 D.随点C的移动而移动7、如图,CD为⊙O的直径,弦AB⊥CD于点E,CE=1,AB=10,求CD的长.8、离疫点3千米范围内为扑杀区,所有禽类全部扑杀;离疫点3至5千米范围内为免疫区,所有禽类强制免疫;同时,对扑杀区和免疫区内的村庄,道路实行全封闭管理.现有一条笔直的公路AB通过禽流感疫区,如图所示,O为疫点,在扑杀区内的公路CD长为4千米.问这条公路在免疫区内有多少千米?9、如图,⊙O中的弦AB、CD互相垂直于E,AE=5cm,BE=13cm,O到AB的距离为.求⊙O的半径及O到CD的距离.10、如图,某地有一座圆弧形的拱桥,桥下水面宽为7.2m,拱顶高出水面2.4m,现有一艘宽3m,船舱顶部为正方形并高出水面2m的货船要经过这里,此时货船能顺利通过这座拱桥吗?请说明理由.弧、弦、圆心角:1、如果⊙O的半径为R,则⊙O中60°的圆心角所对的弦长为_______,90°的圆心角所对的弦长为_____.2、如图,AB、CD是⊙O的直径,弦DE∥AB,则AC与AE的大小关系是__________.3、如图,D、E分别是⊙O的半径OA、OB上的点,CD⊥OA,CE⊥OB,CD=CE.则的大小关系是________.4、如图,在半径为2cm的⊙O内有长为的弦AB,则此弦所对的圆心角∠AOB为()A.60°B.90° C.120° D.150°图2图3图4图55、如图,在⊙O中,,则下列结论正确的是()A.AB>2CD B.AB=2CD C.AB<2CD D.以上都不正确6、AD是⊙O的直径,弦AB、AC交于A点,且AD平分∠BOC,则下列结论不一定成立的是()A.AB=AC B. C.AD⊥BC D.AB=BC9、如图,以⊙O的直径BC为一边作等边△ABC,AB、AC交⊙O于D、E,求证:BD=DE=EC.10、已知:如图,P为直径AB上一点,EF、CD为过点P的两条弦且∠DPB=∠EPB,求证:(1)CD=EF;(2).圆周角:1、如图,A、B、C是⊙O上三点,∠ACB=40°,则∠ABO等于__________度.2、如图,△ABC的顶点都在⊙O上,∠C=30°,AB=2cm,则⊙O的半径为__________cm.3、如图,在平面直角坐标系中,P是经过O(0,0),A(0,2),B(2,0)的圆上的一个动点(P与O、A、B不重合),则∠OAB=__________,∠OPB=__________.4、如图,△ABC内接于⊙O,∠B=∠OAC,OA=8cm,则AC=__________cm.5、如图,△ABC内接于⊙O,∠BAC=120°,AB=AC,BD为⊙O的直径,AD=6,则BC=__________.6、如图,BD是⊙O的直径,弦AC、BD相交于点E,则下列结论不成立的是()A.∠ABD=∠ACD B. C.∠BAE=∠BDC D.∠ABD=∠BDC图1图2图3图4图5图6图77、如图,⊙O的直径CD过弦EF的中点G,∠EOD=40°,则∠DCF等于()A.80°B.50° C.40°D.20°8、如图,AB为⊙O的直径,BD是⊙O的弦,延长到C,使BD=DC,连接AC交⊙O于点F,点F不与点A重合.(1)AB与AC的大小有什么关系?为什么?(2)按角的大小分类,请你判断△ABC属于哪一类三角形,并说明理由.9、如图,△ABC的三个顶点都在⊙O上,CN为⊙O的直径,CM⊥AB,交⊙O于M,点F 为的中点.求证:(1);(2)CF平分∠NCM.10、如图(1),已知△ABC是等边三角形,以BC为直径的⊙O交AB、AC于D、E.(1)求证:△DOE是等边三角形;(2)如图(2),若∠A=60°,AB≠AC,则(1)的结论是否成立?如果成立,请给出证明,如果不成立,请说明理由.。
人教版数学九年级上册《24.1.1圆》教学设计1

人教版数学九年级上册《24.1.1圆》教学设计1一. 教材分析人教版数学九年级上册第24章《圆》是初中数学的重要内容,主要让学生掌握圆的基本概念、性质及相关的运算。
本节内容在学生的认知发展过程中具有承上启下的作用,既是对以前平面几何知识的拓展,也为后续学习圆的方程、圆与圆的位置关系等知识打下基础。
二. 学情分析九年级的学生已经具备了一定的几何知识,对图形的认识和推理能力有一定的基础。
但圆的概念较为抽象,学生对其理解和掌握可能存在一定的困难。
因此,在教学过程中,需要注重引导学生从实际问题中抽象出圆的概念,并通过丰富的实例让学生体会圆的性质。
三. 教学目标1.理解圆的概念,掌握圆的性质。
2.学会用圆规和直尺画圆。
3.能够运用圆的性质解决实际问题。
四. 教学重难点1.圆的概念和性质。
2.圆的画法。
3.圆的性质在实际问题中的应用。
五. 教学方法1.情境教学法:通过实际问题引入圆的概念,让学生在情境中感受圆的特点。
2.直观教学法:利用圆规和直尺示范画圆,让学生直观地理解圆的性质。
3.实践操作法:让学生亲自动手画圆,加深对圆的认识。
4.问题驱动法:引导学生提出问题,并进行解答,激发学生的学习兴趣。
六. 教学准备1.教学课件:制作相关的教学课件,辅助讲解。
2.圆规和直尺:准备足够的圆规和直尺供学生实践操作。
3.练习题:准备相应的练习题,巩固所学知识。
七. 教学过程1.导入(5分钟)通过一个实际问题引入圆的概念,如“在一条固定的绳子长度为2米的情况下,如何才能画出一个最大的圆?”引导学生思考,激发学生的学习兴趣。
2.呈现(10分钟)讲解圆的概念和性质,如圆的定义、圆心、半径等。
通过课件展示,让学生直观地理解圆的特点。
3.操练(10分钟)让学生亲自动手用圆规和直尺画圆,体会圆的性质。
教师巡回指导,解答学生遇到的问题。
4.巩固(10分钟)出示一些练习题,让学生运用所学的圆的性质进行解答。
教师及时批改,给予反馈。
5.拓展(10分钟)引导学生思考圆在实际生活中的应用,如自行车轮子、圆桌等。
人教版数学九年级上册第24章圆24.1.1圆教学设计

5.拓展提高题:针对学有余力的学生,设计一些难度较大的题目,如圆与圆的位置关系、圆的切线问题等。这类题目旨在激发学生的学习兴趣,提高他们的数学思维。
作业布置要求:
1.学生需独立完成作业,确保作业质量。
(四)课堂练习
在课堂练习环节,我会设计以下几类题目:
1.基础巩固题:针对圆的基本概念和性质,设计一些选择题、填空题,让学生巩固所学知识。
2.应用提高题:设计一些与生活实际相关的题目,如计算圆形花坛的面积、圆桌的周长等,让学生学会将所学知识应用于实际问题。
3.拓展挑战题:针对学有余力的学生,设计一些难度较大的题目,如圆与圆的位置关系、圆的切线问题等。
2.创设问题情境,引导学生通过探究、讨论的方式,发现和掌握圆的相关性质。
-设计一系列由浅入深的问题,如圆中任意两点到圆心的距离是否相等,引导学生自主探索和发现圆的性质。
-组织小组合作学习,鼓励学生之间交流想法,共同解决难题。
3.将理论知识与生活实际相结合,设计实际应用题,提高学生解决问题的能力。
-通过设计如操场跑道周长、圆形花园面积等实际问题,让学生在实际情境中应用所学的圆的周长和面积知识。
5.教学评价多元化,不仅关注学生的知识掌握,也注重学习过程中的思维方法和情感态度。
-通过课堂提问、小组讨论、课后作业、小测验等多种方式,全面评估学生的学习成效。
-鼓励学生自我评价和同伴评价,培养他们的自我反思和批判性思维能力。
四、教学内容与过程
(一)导入新课
在导入新课的环节,我将利用学生对日常生活的经验,激发他们对圆的好奇心和探究欲。首先,我会向学生展示一系列包含圆的图片,如车轮、硬币、圆桌等,让学生观察并思考这些图片中的共同特征。通过这种方式,引导学生发现圆在生活中的普遍存在。接着,我会提出问题:“为什么这些图形都是圆的?圆有什么特别之处?”从而引出本节课的主题——圆。
人教版数学九年级上册24.1.1《圆》教学设计

人教版数学九年级上册24.1.1《圆》教学设计一. 教材分析人教版数学九年级上册第24.1.1节《圆》是本册教材中的重要内容,主要介绍了圆的概念、特征以及圆的直径、半径等基本概念。
本节内容为学生提供了丰富的探究活动,让学生在探究圆的性质过程中,进一步理解圆的相关概念,提高空间想象能力和抽象思维能力。
二. 学情分析九年级的学生已经具备了一定的几何知识基础,对图形的认识和理解有一定的深度。
但圆作为一个特殊的几何图形,其性质和特点与其他图形有很大的不同,学生需要通过实例和探究活动,来理解和掌握圆的相关概念。
三. 教学目标1.知识与技能:使学生了解圆的概念,掌握圆的特征,理解圆的直径、半径等基本概念。
2.过程与方法:培养学生通过实例探究圆的性质,提高空间想象能力和抽象思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队协作能力和自主学习能力。
四. 教学重难点1.重点:圆的概念、特征,圆的直径、半径等基本概念。
2.难点:圆的性质的探究和理解。
五. 教学方法1.采用问题驱动的教学方法,引导学生通过实例和探究活动,理解和掌握圆的相关概念。
2.利用多媒体课件,直观展示圆的性质和特点,提高学生的空间想象能力。
3.分组讨论,培养学生的团队协作能力和自主学习能力。
六. 教学准备1.多媒体课件2.圆的相关实例和图片3.分组讨论的素材七. 教学过程1.导入(5分钟)利用多媒体课件,展示一些生活中的圆形物体,如硬币、地球等,引导学生关注圆形的特征,激发学生对圆的学习兴趣。
2.呈现(10分钟)介绍圆的概念和特征,讲解圆的直径、半径等基本概念,让学生初步理解圆的相关知识。
3.操练(10分钟)学生分组讨论,每组选取一个圆形物体,观察和测量其直径、半径等,总结圆的性质。
教师巡回指导,解答学生的问题。
4.巩固(10分钟)学生独立完成教材中的相关练习题,教师及时批改和反馈,巩固学生对圆的概念和性质的理解。
5.拓展(10分钟)引导学生思考:圆还有哪些其他的性质和特点?如何应用圆的性质解决实际问题?教师与学生互动,共同探讨。
圆的有关性质集体备课

中点到弦的距离)为7.23m,求赵州桥主桥拱的半径(结果保留小数点后1位)。
(分析:解决此问题的关键是根据赵州桥的实物图画出几何图形。
)例题2:在⊙O中,A⌒B=A⌒C, ∠ACB=60°.求证:∠AOB=∠BOC=∠AOC。
在圆中,除圆心角外,还有一类角,它的顶点在圆上,并且两边都与圆相交,我们把这样的角叫做圆周角。
探究3:在⊙O上任取一条弧,作出这条弧所对的圆周角和圆心角,测量它的度数,它们之间有什么关系?由此你能发现什么规律?例题3:如图所示,⊙O的直径AB为10cm,弦AC为6cm,∠ACB的平分线交⊙O于点D,求BC,AD,BD的长。
解:如下图所示,连接OD。
∵AB是直径,∴∠ACB=∠ADB=90°在Rt △ABC 中,BC =22AC AB -=22610-=8(cm ) ∵CD 平分∠ACB ,∴∠ACD=∠BCD, ∴∠AOD=∠BOD, ∴AD=BD又在Rt △ABC 中,AD 2=BD 2=AB 2,∴AD=BD=22AB=52(cm )思考:圆内接四边形的四个角有什么关系?由此可知:1.圆的对称性:圆是轴对称图形,任何一条直径所在直线都是圆的对称轴;2.垂径定理及其推论。
3.在同圆或等圆中,圆心角及其所对的弧、弦之间的关系。
4.圆周角定理及其推论。
5.圆内接四边形的一个性质:圆内接四边形的对角互补。
练习题:(1)如图,点A、B、C在⊙O上,若∠BAC=24°,则∠BOC=________。
第(1)题第(2)题(2)如图,AB为⊙O的弦,⊙O的半径为5,OC⊥AB于点D,交⊙O于点C,且CD=1,则弦AB的长是________。
(3)如图是一条直径为2米的通水管道横截面,其水面宽1.6米,则这条管道中此时最深处为________米。
第(3)题第(4)题(4)如图,AB是⊙O的直径,CD为弦,CD ⊥AB于E,则下列结论中不成立的是________。
人教数学九年级上册第二十四章24.1.1圆教学设计

三、教学重难点和教学设想
(一)教学重点
1.圆的基本概念和性质,如半径、直径、圆周率等。
2.圆的方程,包括标准方程和一般方程的求解和应用。
3.圆的周长和面积的计算方法,以及在实际问题中的应用。
4.圆与直线、圆与圆之间的位置关系,以及这些关系在几何问题中的应用。
(二)教学难点
1.圆的方程的求解,特别是含有多个未知数的方程组的求解。
2.圆与直线、圆与圆位置关系的判断,以及这些关系在复杂几何图形中的应用。
3.在实际问题中,如何将问题抽象为几何模型,并运用圆的相关知识进行解决。
教学设想:
1.对于教学重点的突破,我设想采用以下策略:
-利用直观教具和几何画板,让学生通过观察和操作,直观感受圆的性质。
1.基础知识掌握情况:了解学生对圆的基本概念、性质、周长和面积公式的掌握程度,以便进行有针对性的教学。
2.思维能力:关注学生的逻辑思维和空间想象力,引导他们运用圆的性质和位置关系解决几何问题。
3.学习方法:培养学生主动探究、合作交流的学习习惯,提高学生分析问题和解决问题的能力。
4.情感态度:关注学生的学习兴趣和积极性,激发他们对数学学科的热情,培养严谨、求实的科学态度。
-定期进行课堂小结,帮助学生巩固所学知识,形成系统化的知识网络。
4.教学评价方面,我将:
-采用多元化的评价方式,包括课堂问答、小组讨论、作业、小测验等,全面评估学生的学习效果。
-注重过程性评价,关注学生在学习过程中的态度、方法、合作精神等非智力因素。
-及时给予反馈,指导学生进行自我反思和调整学习策略,促进学生的持续发展。
人教版九年级数学上册《二十四章 圆 24.1 圆》优质课教案_20

24.1圆的有关性质24.1.1 圆(教学设计)教学目标:一、知识与技能目标:经历圆的概念的形成过程,理解圆、弧、弦等与圆有关的概念,了解等圆、等弧的概念。
二、过程与方法目标:(一)经历探索圆的形成过程和发现有关结论的过程,发展学生的数学思考能力。
(二)利用圆的概念解决简单问题,形成几何直观,增强应用意识。
三、情感态度与价值观目标:体会圆在生产生活中的广泛应用,感受数学的价值,体会图形的匀称美,培养审美意识,通过数学文化,培养学生的民族自豪感。
教学重点:经历形成圆的概念的过程,理解圆及其有关概念。
教学难点:理解圆的概念的形成过程和圆的集合性定义。
教学过程:一、情境创设:感知圆的世界:圆是生活中常见的图形,许多物体给人以圆的形象.二、探索新知:活动1:观察下列图形,从中找出共同特点。
活动2:观察下列画圆的过程,你能由此说出圆如何画出来的吗?归纳:(一)圆的旋转定义:在一个平面内,线段OA绕它的一个固定端点O旋转一周,另一个端点A所形成的图形叫做圆。
固定端点O叫做圆心,线段OA叫做半径。
以点O为圆心的圆,记作“⊙O”,读作“圆O”.注意:圆是指圆周,而不是圆面(二)圆的集合性定义:圆心为O,半径为r的圆,可以看成所有到定点O,距离等于定长r的点的集合。
注:①圆上各点到定点(圆心O)的距离都等于定长(半径r);②到定点的距离都等于定长的点都在同一个圆上。
巩固练习1.如何在操场上画一个半径是5m的圆?说出你的理由2. 你见过树木的年轮吗?从树木的年轮,可以很清楚的看出树木生长的年龄,如果一棵20年树龄的红杉树的树干直径是23cm,这棵红杉树的半径每年增加多少?活动3:1、以1厘米为半径能画几个圆?这些圆的位置和大小有什么特点?大小相同(半径相同),位置不同(圆心不同),这样的两个圆叫做等圆。
2、以点O为圆心能画几个圆?这些圆的位置和大小有什么特点?圆心相同,但圆的大小不同(半径不同),这样的两个圆叫做同心圆。
人教版九年级数学上册24.1.1《圆》教学设计

人教版九年级数学上册24.1.1《圆》教学设计一. 教材分析人教版九年级数学上册24.1.1《圆》是学生在学习了直线、射线、平面图形等知识的基础上,进一步学习圆的相关概念、性质和运算。
本节课的内容包括圆的定义、圆心和半径、圆的直径、弧、弦等概念,以及圆的周长和面积的计算。
这些知识是学生今后学习圆的进一步应用和解决实际问题的重要基础。
二. 学情分析九年级的学生已经具备了一定的空间想象能力和逻辑思维能力,对于平面图形的性质和运算有一定的了解。
但是,对于圆的相关概念和性质,学生可能还比较陌生,需要通过实例和操作来加深理解。
此外,学生可能对于圆的周长和面积的计算公式记忆不牢,需要在课堂上进行强化训练。
三. 教学目标1.知识与技能:理解圆的定义,掌握圆心和半径、圆的直径、弧、弦等概念,学会计算圆的周长和面积。
2.过程与方法:通过观察、操作、讨论等方法,培养学生的空间想象能力和逻辑思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识和解决问题的能力。
四. 教学重难点1.重点:圆的定义,圆心和半径、圆的直径、弧、弦等概念,圆的周长和面积的计算。
2.难点:圆的周长和面积的计算公式的记忆和应用。
五. 教学方法1.情境教学法:通过实物和图形的观察,引导学生发现圆的性质和特点。
2.问题驱动法:通过提问和讨论,激发学生的思考,引导学生自主探究。
3.合作学习法:分组进行讨论和实践,培养学生的团队合作意识和解决问题的能力。
六. 教学准备1.教具:圆规、直尺、圆形的实物和图片。
2.课件:圆的相关概念和性质的图片,圆的周长和面积的计算公式的动画演示。
七. 教学过程1.导入(5分钟)教师通过展示圆形的实物和图片,引导学生观察和描述圆的特点,从而引出圆的定义。
2.呈现(10分钟)教师通过课件展示圆心和半径、圆的直径、弧、弦等概念的图片,引导学生理解和记忆这些概念。
3.操练(10分钟)教师提出问题,引导学生用圆规和直尺进行实际的操作,如画圆、测量圆的直径和半径等,巩固对圆的概念的理解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
备课时间:主备人:审核人:九数学组
课题:24.1.1 圆
【学习目标】
明确圆的两种定义、弦、弧等概念,澄清“圆是圆周而非圆面”、“等弧不是长度相等的弧”等模糊概念。
.
【学习重、难点】“圆是圆周而非圆面”、“等弧不是长度相等的弧”等模糊概念
【预习案】
一、自主探究
1、举例说出生活中的圆。
2、你是怎样画圆的?你能讲出形成圆的方法有多少种吗?
二、自学指导
自学课本P78---P79页思考下列问题:
1.分别用不同的方法作圆,标明圆心、半径,体会圆的形成过程。
2.圆的两个定义各是什么?
3.弄清圆的有关概念?怎样用数学符号表示?
【练习案】
一、自学检测
1、车轮为什么做成圆形的?
2、为什么说“直径是圆中最长的弦”?试说说你的理由.
3、什么是弦、直径、弧、半圆、等圆、等弧、优弧、弧劣?
4、什么是圆?
二、当堂检测
1.P81页练习 1.
2.
2.判断正误:
1)弦是直径()
2)半圆是弧;()
3)过圆心的线段是直径;()
4)过圆心的直线是直径;()
5)半圆是最长的弧;()
6)直径是最长的弦;()
7)圆心相同,半径相等的两个圆是同心圆; ()
8)半径相等的两个圆是等圆;()
9)等弧就是拉直以后长度相等的弧。
()
归纳小结:
把车轮做成圆形,车轮上各点到车轮中心
(圆心)的距离都等于车轮的半径,当车轮
在平面上滚动时,车轮中心与平面的距离保
持不变,因此,当车辆在平坦的路上行驶【课后反思】。