高一数学创新题型探究

合集下载

【优化方案北师大版】高一数学精品课件(学习导航+题型探究+备选例题+方法感悟)必修一:1.3.2全集与补集

【优化方案北师大版】高一数学精品课件(学习导航+题型探究+备选例题+方法感悟)必修一:1.3.2全集与补集

第一章


想一想 若a∈N,但a∉N+,则a会等亍什么? 提示:a∈∁NN+,即a=0.
做一做
1.设集合U={2,3,4,5,6},∁ UA={3,5},则A= ________. 解析:由亍∁UA={x|x∈U,且x∉A}, 所以A={2,4,6}.
答案:{2,4,6}
第一章


3.补集的性质
方程x2+mx=0的两根,∴m=-3.
答案:-3
第一章


备选例题
1.设I为全集,M、N、P都是它的子集,则图 中阴影部分表示的集合是( )
A.M∩[(∁IN)∩P]
B.M∩(N∪P) C.[(∁IM)∩(∁IN)]∩P D.M∩N∪(N∩P)
第一章


解析:选A.法一:阴影部分在集合M内部,
排除C;阴影部分丌在集合N内,排除B、D.
由此可求m和n的值.
第一章


【解】
∵ U = {1,2,3,4,5} , ( ∁ UA) ∪ B =
{1,3,4,5},∴2∈A, 2分 又A:{x|x2-5x+m=0}, ∴2是关亍x的方程x2-5x+m=0的一个根, 得m=6且A={2,3}.„6分
而(∁UA)∪B={1,3,4,5}.
∴3∈B,又B={x|x2+nx+12=0}. ∴3是关亍x的方程x2+nx+12=0的一个根,
常常借助亍Venn图来求解.
第一章


这样处理起来,相对来说比较直观、形象且
解答时丌易出错. 变式训练 1.已知全集U=R,集合M={x|-1≤x≤3}, 则∁UM=( ) B.{x|-1≤x≤3} A.{x|-1<x<3}

江苏省南通市如皋中学2019_2020学年高一数学下学期6月阶段考试试题创新班含解析

江苏省南通市如皋中学2019_2020学年高一数学下学期6月阶段考试试题创新班含解析
A。 B. C. D.
【答案】B
【解析】
【分析】
求出整个抽样过程中,每个学生被抽到的概率为 ,结合样本容量为 可求得该学校学生的总数.
【详解】从高一学生中用简单随机抽样抽取样本时,学生甲被抽到的概率为 ,
所以,在整个抽样过程中,每个学生被抽到的概率为 ,
所以,从该学校中抽取一个容量为 的样本时,则该学校学生的总数为 。
【答案】
【解析】
【分析】
列举出所有的基本事件,并确定事件“取出的两个球的编号之和小于 ”所包含的基本事件,利用古典概型的概率公式可计算出所求事件的概率。
【详解】从袋中随机抽取出两个球,则所有的基本事件有: 、 、 、 、 、 ,共 种,
其中,事件“取出的两个球的编号之和小于 ”所包含的基本事件有: 、 ,共 种,
当a=0时,e2x﹣alnx a即为e2x≥0显然成立;
当a>0时,f(x)=e2x﹣alnx的导数为 =2e2x ,
由于y=2e2x 在(0,+∞)递增(增函数+增函数=增函数),
设 =0的根为m,即有a=2me2m, .
当0<x<m时, <0,f(x)单调递减;当x>m时, >0,f(x)单调递增,
因此,所求事件的概率为 .
故答案为: 。
【点睛】本题考查古典概型概率的计算,一般利用列举法列举出基本事件,考查计算能力,属于基础题.
14.如表是某厂2020年1~4月份用水量(单位:百吨)的一组数据
月份x
1
2
3
4
用水量y
2.5
3
4
4。5
由散点图可知,用水量y与月份x之间有较明显的线性相关关系,其线性回归方程是 ,预测2020年6月份该厂的用水量为_____百吨.

【优化方案北师大版】高一数学精品课件(学习导航+题型探究+备选例题+方法感悟)必修一:1.3.1交集与并集

【优化方案北师大版】高一数学精品课件(学习导航+题型探究+备选例题+方法感悟)必修一:1.3.1交集与并集

∴M∩N的子集共有22=4(个).
【答案】 B
第一章


(2)【解析】 画出数轴表示A,B
由数轴得A∩B={x|1≤x≤3且x>2} ={x|2<x≤3}. A∪B={x|1≤x≤3或x>2}={x|x≥1}.
【答案】 {x|2<x≤3} {x|x≥1}
第一章


【名师点睛】
解答有关两集合(或两个以
{x|x>a}时,则应该是a≥3而不是a>3.
4.求交集时,要注意集合中的代表元素的 意义.如{y|y=x2, x∈R}∩{(x,y)|y=x+2, x∈R}=∅才正确,而不是{(-1,1),(2,4)}
第一章


名师微博 这是得分点,别漏掉“=”哟. 【思维升华】 应用集合的交集、并集求解
参数或确定另外集合的关键是将运算结果利
用交集、并集的定义转化为元素与集合的关 系,利用两个集合的端点的数的大小关系, 构造方程,不等式(组)等求解.
第一章


变式训练
4.集合A={x|x-2>3},B={x|2x-3>3x+ a},且A∪B={x|x<4或x>5},求a的值. 解:A={x|x-2>3}={x|x>5},B={x|2x- 3>3x+a}={x|x<-3-a}.
但解答过程中需注意边界问题.
第一章


失误防范
1.用定义求两集合的交集与并集时,要注
意“或”“且”的意义,“或”是两者皆可; “且”是两者都有,在使用时切勿混淆. 2.在求两集合的交集或并集的运算中,易 漏掉对空集的讨论,应引起足够重视.如
A∩B=A,A可以为∅.

2023年新高考数学创新题型微专题14 集合,复数,逻辑语言专题(数学文化)(解析版)

2023年新高考数学创新题型微专题14 集合,复数,逻辑语言专题(数学文化)(解析版)

专题14 集合,复数,逻辑语言专题(数学文化)一、单选题1.(2022·高一课时练习)数系的扩张过程以自然数为基础,德国数学家克罗内克(Kronecker ,1823﹣1891)说“上帝创造了整数,其它一切都是人造的”设为虚数单位,复数Z 满足()202012Z i i =+,则Z 的共轭复数是( ) A .2i + B .2i − C .12i − D .12i +【答案】C【分析】利用虚数单位的幂的运算规律化简即得12Z i =+,然后利用共轭复数的概念判定. 【详解】解:()505202041,12,12i i Z i Z i ==∴=+∴=−,故选:C.2.(2022秋·浙江温州·高一乐清市知临中学校考期中)某国近日开展了大规模COVID -19核酸检测,并将数据整理如图所示,其中集合S 表示( )A .无症状感染者B .发病者C .未感染者D .轻症感染者【答案】A【分析】由S A B =I 即可判断S 的含义.【详解】解:由图可知,集合S 是集合A 与集合B 的交集, 所以集合S 表示:感染未发病者,即无症状感染者, 故选:A.3.(2021秋·湖北十堰·高一校联考期中)必修一课本有一段话:当命题“若p ,则q ”为真命题,则“由p 可以推出q ”,即一旦p 成立,q 就成立,p 是q 成立的充分条件.也可以这样说,若q 不成立,那么p 一定不成立,q 对p 成立也是很必要的.王安石在《游褒禅山记》中也说过一段话:“世之奇伟、瑰怪,非常之观,常在于险远,而人之所罕至焉,故非有志者不能至也”.从数学逻辑角度分析,“有志”是“能至”的( )A .充分条件B .必要条件C .充要条件D .既不充分也不必要条件【答案】B【分析】本题可根据充分条件与必要条件的定义得出结果.【详解】因为“非有志者不能至也”即“有志”不成立时“能至”一定不成立, 所以“能至”是“有志”的充分条件,“有志”是“能至”的必要条件, 故选:B.4.(2022秋·云南曲靖·高一校考期中)杜甫在《奉赠韦左丞丈二十二韵》中有诗句:“读书破万卷,下笔如有神.”对此诗句的理解是读书只有读透书,博览群书,这样落实到笔下,运用起来才有可能得心应手,如有神助一般,由此可得,“读书破万卷”是“下笔如有神”的( ) A .充分不必要条件 B .充要条件 C .必要不充分条件 D .既不充分也不必要条件【答案】C【分析】根据充分条件和必要条件的定义分析判断.【详解】杜甫的诗句表明书读得越多,文章未必就写得越好,但不可否认的是,一般写作较好的人,他的阅读量一定不会少,而且所涉猎的文章范畴也会比一般读书人广泛. 因此“读书破万卷”是“下笔如有神”的必要不充分条件. 故选:C5.(2020·陕西榆林·z a bi =+(a ,b ∈R )对应向量OZ (O 为坐标原点),设OZ r =,以射线Ox 为始边,OZ 为终边旋转的角为θ,则()cos sin z r i θθ=+,法国数学家棣莫弗发现了棣莫弗定理:()1111cos sin z r i θθ=+,()2222cos sin z r i θθ=+,则()()12121212cos sin z z r r i θθθθ=+++⎡⎤⎣⎦,由棣莫弗定理可以导出复数乘方公式:()()cos sin cos sin nnr i r n i n θθθθ+=+⎡⎤⎣⎦,已知)4z i =,则z =( )A .B .4C .D .16【答案】D【解析】根据复数乘方公式:()()cos sin cos sin nnr i r n i n θθθθ+=+⎡⎤⎣⎦,直接求解即可.【详解】)4441216cos sin 266z ii i ππ⎡⎤⎫⎛⎫===+⎢⎥⎪ ⎪⎪⎝⎭⎢⎥⎝⎭⎣⎦16cos 4sin 4866i ππ⎡⎤⎛⎫⎛⎫=⨯+⨯=−+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,16z .故选:D【点睛】本题考查了复数的新定义题目、同时考查了复数模的求法,解题的关键是理解棣莫弗定理,将复数化为棣莫弗定理形式,属于基础题.6.(2021春·重庆沙坪坝·高三重庆一中校考阶段练习)在代数史上,代数基本定理是数学中最重要的定理之一,它说的是:任何一元n 次复系数多项式()f x 在复数集中有n 个复数根(重根按重数计)那么()31f x x =−在复平面内使()0f x =除了1和12−这两个根外,还有一个复数根为( )A .12B .12−C .12D .12−【答案】B【分析】利用方程根的意义,把12−代入方程,经化简变形即可得解.【详解】因12−是方程()0f x =的根,即32111))22(1(2−−−=⇒==221111)())222(2(−=−−−+⇒=3111)())1222222((−−=−+−⇒=,所以12−是方程()0f x =的根.故选:B7.(2021春·安徽宣城·高一校联考期中)瑞士著名数学家欧拉发现了公式i cos isin x x x e =+(i 为虚数单位),它将指数函数的定义域扩大到复数集,建立了三角函数和指数函数的关系,它在复变函数论里占有非常重要的地位.根据欧拉公式可知,3i 4e π表示的复数在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限【答案】B【分析】根据欧拉公式代入求解即可. 【详解】解:根据欧拉公式i e cos isin x x x=+,得3πi 43π3πecosisin 44=+=+,即它在复平面内对应的点为22⎛ ⎝⎭, 故位于第二象限. 故选:B.8.(2022·全国·高三专题练习)“虚数”这个名词是17世纪著名数学家、哲学家笛卡尔()ReneDescartes 创制的,直到19世纪虚数才真正闻人数的领域,虚数不能像实数一样比较大小.已知复数z ,1z =且(1i)0z ⋅+>(其中i 是虚数单位),则复数z =( )ABC D 【答案】C【分析】根据条件,设i z a b =+,再列式求,a b ,即可得到复数. 【详解】设i z a b =+,221a b +=,①()()()()i 1i i>0a b a b a b ++=−++,得0a b +=,且0a b −> ②,由①②解得:a =b =所以22z =−. 故选:C9.(2022·全国·高三专题练习)2022年1月,中科大潘建伟团队和南科大范靖云团队发表学术报告,分别独立通过实验,验证了虚数i 在量子力学中的必要性,再次说明了虚数i 的重要性.对于方程310x +=,它的两个虚数根分别为( )A .12B .12−C D 【答案】A【分析】根据方程根的定义进行验证.【详解】首先实系数多项式方程的虚数根成对出现,它们互为共轭复数,因此排除CD ,A 选项,31110+=+==, 因此选项A 正确,则选项B 错误(因为3次方程只有3个根(包括重根)).故选:A .10.(2022·全国·高三专题练习)人们对数学研究的发展一直推动着数域的扩展,从正数到负数、从整数到分数、从有理数到实数等等.16世纪意大利数学家卡尔丹和邦贝利在解方程时,首先引进了2i 1=−,17世纪法因数学家笛卡儿把i 称为“虚数”,用i(R)a b a b +∈、表示复数,并在直角坐标系上建立了“复平面”.若复数z 满足方程2250z z ++=,则z =( ) A .12i −+ B .2i −−C .12i −±D .2i −±【答案】C【分析】设出复数z 的代数形式,再利用复数为0列出方程组求解作答. 【详解】设i(,R)z a b a b =+∈,因2250z z ++=,则2(i)2(i)50a b a b ++++=,即22(25)2(1)i 0a b a b a −++++=,而,R a b ∈,则222502(1)0a b a b a ⎧−++=⎨+=⎩,解得12a b =−⎧⎨=±⎩,所以12i z =−±. 故选:C11.(2022·高一单元测试)中国古代重要的数学著作《孙子算经》下卷有题:今有物,不知其数.三三数之,剩二;五五数之,剩三;七七数之,剩二.问:物几何?现有如下表示:已知{}32,A x x n n N *==+∈,{}53,B x x n n N *==+∈,{}72,C x x n n N *==+∈,若x A B C ∈⋂⋂,则下列选项中符合题意的整数x 为 A .8 B .127C .37D .23【答案】D【解析】将选项中的数字逐一代入集合A 、B 、C 的表达式,检验是否为A 、B 、C 的元素,即可选出正确选项.【详解】因为8711=⨯+,则8C ∉,选项A 错误;1273421=⨯+,则127A ∉,选项B 错误; 373121=⨯+,则37A ∉,选项C 错误;23372=⨯+,故23A ∈;23543=⨯+,故x B ∈;23732=⨯+,故x C ∈,则23A B C ∈⋂⋂,选项D 正确. 故选:D .12.(2022秋·浙江温州·高一校考阶段练习)在数学漫长的发展过程中,数学家发现在数学中存在着神秘的“黑洞”现象.数学黑洞:无论怎样设值,在规定的处理法则下,最终都将得到固定的一个值,再也跳不出去,就像宇宙中的黑洞一样.目前已经发现的数字黑洞有“123黑洞”、“卡普雷卡尔黑洞”、“自恋性数字黑洞”等.定义:若一个n 位正整数的所有数位上数字的n 次方和等于这个数本身,则称这个数是自恋数.已知所有一位正整数的自恋数组成集合A ,集合{}34,|B x x x =−<<∈Z ,则A B ⋂的子集个数为( ) A .3 B .4C .7D .8【答案】D【分析】根据自恋数的定义可得集合A ,再根据交集的定义求出A B ⋂,从而可得答案. 【详解】解:依题意,{}1,2,3,4,5,6,7,8,9A =,{}2,1,0,1,2,3B =−−, 故{}1,2,3A B =,故A B ⋂的子集个数为8. 故选:D .13.(2019·江西·高三校联考阶段练习)我国南北朝数学家何承天发明的“调日法”是程序化寻求精确分数来表示数值的算法,其理论依据是:设实数x 的不足近似值和过剩近似值分别为ba 和d c (,,,abcd N +∈),则b da c ++是x 的更为精确的不足近似值或过剩近似值.我们知道 2.71828e =⋯,若令2714105e <<,则第一次用“调日法”后得4115是e 的更为精确的过剩近似值,即27411015e <<,若每次都取最简分数,那么第三次用“调日法”后可得e 的近似分数为 A .10940B .6825C .197D .8732【答案】C【解析】利用“调日法”进行计算到第三次,即可得到本题答案. 【详解】第一次用“调日法”后得4115是e 的更为精确的过剩近似值,即27411015e <<;第二次用“调日法”后得6825是e 的更为精确的过剩近似值,即27681025<<e ;第三次用“调日法”后得197是e 的更为精确的不足近似值,即1968725<<e ,所以答案为197. 故选:C【点睛】本题考查“调日法”,主要考查学生的计算能力,属于基础题.14.(2022·上海·高一专题练习)古希腊科学家阿基米德在《论平面图形的平衡》一书中提出了杠杆原理,它是使用天平秤物品的理论基础,当天平平衡时,左臂长与左盘物品质量的乘积等于右臀长与右盘物品质量的乘积,某金店用一杆不准确的天平(两边臂不等长)称黄金,某顾客要购买10g 黄金,售货员先将5g 的砝码放在左盘,将黄金放于右盘使之平衡后给顾客;然后又将5g 的砝码放入右盘,将另一黄金放于左盘使之平衡后又给顾客,则顾客实际所得黄金( ) A .大于10g B .小于10gC .大于等于10gD .小于等于10g【答案】A【分析】设天平左臂长为a ,右臂长为b (不妨设a b >),先称得的黄金的实际质量为1m ,后称得的黄金的实际质量为2m .根据天平平衡,列出等式,可得12,m m 表达式,利用作差法比较12m m +与10的大小,即可得答案.【详解】解:由于天平的两臂不相等,故可设天平左臂长为a ,右臂长为b (不妨设a b >), 先称得的黄金的实际质量为1m ,后称得的黄金的实际质量为2m . 由杠杆的平衡原理:15bm a =⨯,25am b =⨯.解得15a m b =,25bm a=, 则1255b am m a b+=+. 下面比较12m m +与10的大小:(作差比较法)因为()()2125551010b a b a m m a b ab−+−=+−=, 因为a b ¹,所以()250b a ab−>,即1210m m +>. 所以这样可知称出的黄金质量大于10g . 故选:A15.(2022·图所示,我们教材中利用该图作为几何解释的是( )A .如果,a b b c >>,那么a c >B .如果0a b >>,那么22a b >C .如果,0a b c >>,那么ac bc >D .对任意实数a 和b ,有222a b ab +≥,当且仅当a b =时,等号成立 【答案】D【分析】直角三角形的两直角边长分别为,a b ,斜边长为c ,则222c a b =+,利用大正方形的面积与四个直角三角形面积和的不等关系得结论.【详解】直角三角形的两直角边长分别为,a b ,斜边长为c ,则222c a b =+,在正方形的面积为2c ,四个直角三角形的面积和为2ab ,因此有22c ab ≥,即222a b ab +≥,当且仅当a b =时,中间没有小正方形,等号成立. 故选:D .16.(2022秋·北京丰台·高一统考期末)《几何原本》卷Ⅱ的几何代数法成了后世西方数学家处理数学问题的重要依据.通过这一原理,很多代数的定理都能够通过图形实现证明,也称之为无字证明现有如图所示图形,点F 在半圆O 上,点C 在直径AB 上,且OF ⊥AB ,设AC =a ,BC =b ,可以直接通过比较线段OF 与线段CF 的长度完成的无字证明为( )A .a 2+b 2≥2ab (a >0,b >0)B .0,0)2a ba b +>>>C .2a b +≤a >0,b >0) D .2aba b≤+a >0,b >0) 【答案】C【分析】由图形可知()1122OF AB a b ==+,()12OC a b =−,在Rt △OCF 中,由勾股定理可求CF ,结合CF ≥OF 即可得出.【详解】解:由图形可知,()1122OF AB a b ==+,()()1122OC a b b a b =+−=−, 在Rt △OCF 中,由勾股定理可得,CF ∵CF ≥OF ,()12a b ≥+,故选:C.17.(2022·全国·高三专题练习)18世纪末,挪威测量学家维塞尔首次利用坐标平面上的点来表示复数,使复数及其运算具有了几何意义,例如z OZ =,也即复数z 的模的几何意义为z 对应的点Z 到原点的距离.已知复数z 满足2z =,则34i z −−的最大值为( ) A .3 B .5 C .7 D .9【答案】C【分析】由复数几何意义可得(),Z x y 的轨迹为圆224x y +=,从而将问题转化为点(),Z x y 到点()3,4的距离,则所求最大值为圆心到()3,4的距离加上半径. 【详解】2z =,z ∴对应的点(),Z x y 的轨迹为圆224x y +=;34i z −−的几何意义为点(),Z x y 到点()3,4的距离,max 34i 27z ∴−−==.故选:C.18.(2022·全国·高三专题练习)数学家欧拉发现了复指数函数和三角函数的关系,并给出以下公式i e cos isin x x x =+,(其中i 是虚数单位,e 是自然对数的底数,x ∈R ),这个公式在复变论中有非常重要的地位,被称为“数学中的天桥”,根据此公式,有下列四个结论,其中正确的是( )A .i πe 10−=B .i i 2cos e e x x x −=+C .i i 2sin e e x x x −=−D .2022i 122⎛⎫+=− ⎪ ⎪⎝⎭【答案】B【分析】根据已知条件的公式及诱导公式,结合复数运算法则逐项计算后即可求解. 【详解】对于A ,πi e πcos i πsin 1=+=−,所以i πe 1112−=−−=−,故A 不正确; 对于B ,i e cos isin x x x =+,()()i ecos isin cos isin xx x x x −=−+−=−,所以i i e e 2cos x x x −+=,故B 正确; 对于C ,i e cos isin x x x =+,()()i ecos isin cos isin xx x x x −=−+−=−,所以i i e e 2isin x x x −=−,故C 不正确;对于D ,202220222022πi 4ππ2022π2022πcos isin e cosisin 4444⎫⎛⎫⎛⎫=+==+⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭ ππcosisin i 22=−−=−,故D 不正确. 故选:B.19.(2020·天津·南开中学校考模拟预测)由无理数引发的数学危机一直延续到19世纪,直到1872年,德国数学家戴金德提出了“戴金德分割”才结束了持续2000多年的数学史上的第一次大危机.所谓戴金德分割,是指将有理数集Q 划分为两个非空的子集M 与N ,且满足M N ⋃=Q ,M N ⋂=∅,M 中的每一个元素都小于N 中的每一个元素,则称(),M N 为戴金德分割.试判断,对于任一戴金德分割(),M N ,下列选项中一定不成立的是( )A .M 没有最大元素,N 有一个最小元素B .M 没有最大元素,N 也没有最小元素C .M 有一个最大元素,N 有一个最小元素D .M 有一个最大元素,N 没有最小元素 【答案】C【分析】本题目考察对新概念的理解,举具体的实例证明成立即可,A,B,D 都能举出特定的例子,排除法则说明C 选项错误【详解】若{},0M x Q x =∈<,{},0N x Q x =∈≥;则M 没有最大元素,N 有一个最小元素0;故A 正确;若{,M x Q x =∈,{,N x Q x =∈≥;则M 没有最大元素,N 也没有最小元素;故B 正确; 若{},0M x Q x =∈≤,{},0N x Q x =∈>;M 有一个最大元素,N 没有最小元素,故D 正确; M 有一个最大元素,N 有一个最小元素不可能,故C 不正确.故选:C20.(2021春·安徽·高三校联考阶段练习)不定方程的整数解问题是数论中一个古老的分支,其内容极为丰富,西方最早研究不定方程的人是希腊数学家丢番图.请研究下面一道不定方程整数解的问题:已知()202022,x y y x Z y Z +=∈∈,则该方程的整数解有( )组.A .1B .2C .3D .4【答案】D【分析】原方程可化为20202(1)1x y +−=,所以2||1,(1)1,x y ≤−≤即11,02x y −≤≤≤≤,(),x y Z ∈再列举每种情况即可.【详解】设此方程的解为有序数对(,)x y , 因为202022,(,)x y y x y Z +=∈ 所以20202(1)1x y +−=当20201x >或2(1)1y −>时,等号是不能成立的, 所以2||1,(1)1,x y ≤−≤即11,02x y −≤≤≤≤,(),x y Z ∈ (1)当=1x −时,2(1)0y −=即1y = (2)当0x =时,2(1)1y −=即0y =或2y = (3)当1x =时,2(1)0y −=即1y =综上所述,共有四组解()()()()1,1,0,0,0,2,1,1−− 故选:D21.(2022秋·四川成都·高一成都七中校考期中)对于直角三角形的研究,中国早在商朝时期,就有商高提出了“勾三股四弦五”这样的勾股定理特例,而西方直到公元前6世纪,古希腊的毕达哥拉斯才提出并证明了勾股定理.如果一个直角三角形的斜边长等于5,则这个直角三角形周长的最大值等于( ). A.B .10 C .5+D .252【答案】C【分析】先由勾股定理得2225a b +=,再利用基本不等式易得()250a b +≤,由此得到5a b c ++≤+问题得解.【详解】不妨设该直角三角形的斜边为5c =,直角边为,a b ,则22225a b c +==,因为222ab a b ≤+,所以()222222a b ab a b ++≤+,即()250a b +≤,当且仅当a b =且2225a b +=,即a b ==因为0,0a b >>,所以a b +≤所以该直角三角形周长5a b c c ++≤=+5+. 故选:C.22.(2017·湖北·校联考一模)我国古代太极图是一种优美的对称图.如果一个函数的图像能够将圆的面积和周长分成两个相等的部分,我们称这样的函数为圆的“太极函数”.下列命题中错误..命题的个数是 1:P 对于任意一个圆其对应的太极函数不唯一;2:P 如果一个函数是两个圆的太极函数,那么这两个圆为同心圆;3:P 圆22(1)(1)4x y −+−=的一个太极函数为32()33f x x x x =−+; 4:P 圆的太极函数均是中心对称图形;5:P 奇函数都是太极函数;6:P 偶函数不可能是太极函数.A .2B .3C .4D .5【答案】B【详解】由定义可知过圆O 的任一直线都是圆O 的太极函数,故1P 正确;当两圆的圆心在同一条直线上时,那么该直线表示的函数为太极函数,故2P 错误;∵()()3323311f x x x x x =−+=−+,∴()f x 的图象关于点()1,1成中心对称,又∵圆()()22114x y −+−=关于点()1,1成中心对称,故()3233f x x x x =−+可以为圆()()22114x y −+−=的一个太极函数,故3P 正确;太极函数的图象一定过圆心,但不一定是中心对称图形,例如:故4P 函数可以为太极函数,故5P 正确;如图所示偶函数可以是太极函数,故6P 错误;则错误的命题有3个,故选B.二、多选题23.(2021春·广东梅州·高二统考期末)欧拉公式i cos isin x e x x =+(其中i 为虚数单位,x R ∈)是由瑞士著名数学家欧拉创立的,该公式将指数函数的定义域扩大到复数,建立了三角函数与指数函数的关联,在复变函数论里而占有非常重要的地位,被誉为数学中的天桥,依据欧拉公式,下列选项正确的是( )A .复数i e 对应的点位于第一象限B .i e π为纯虚数C ix 的模长等于12D .i 6e π的共轭复数为12【答案】AC【分析】根据欧拉公式计算出各复数,再根据复数的几何意义,纯虚数的概念,复数模的计算公式,共轭复数的概念即可判断各选项的真假. 【详解】对A ,i cos1isin1e =+,因为012π<<,所以cos10,sin10>>,即复数i e 对应的点()cos1,sin1位于第一象限,A 正确;对B ,i cos isin 1e πππ=+=−,i e π为实数,B 错误;对C ()i cos isin ix x x +,ix12,C 正确;对D ,πi 6ππ1cos isin i 662e =++1i 2−,D 错误. 故选:AC .24.(2022春·广东梅州·高一统考期末)欧拉公式i e cos isin x x x =+(本题中e 为自然对数的底数,i 为虚数单位)是由瑞士若名数学家欧拉创立,该公式建立了三角函数与指数函数的关系,在复变函数论中占有非常重要的地位,被誉为“数学中的天桥”,依据欧拉公式,则下列结论中正确的是( ) A .i πe 10+=B .复数2i e 在复平面内对应的点位于第二象限C .复数πi 3e 1i 2D .复数i e )(R θθ∈在复平面内对应的点的轨迹是圆 【答案】ABD【分析】由欧拉公式和特殊角的三角函数值可判断A ;由欧拉公式和三角函数在各个象限的符号可判断B ;由欧拉公式和共轭复数的概念可判断C ;由欧拉公式和复数的几何意义可判断D. 【详解】对于A ,i πcos πisin π1101e 10=++=−+++=,A 正确; 对于B ,2i e cos2isin 2=+,cos 20,sin 20<>,∴复数2i e 在复平面内对应的点位于第二象限,B 正确;对于C ,πi 3cosis ππ1e 33n i 2==+,共轭复数为12,C 错误; 对于D ,i e cos isin (R)θθθθ+∈=,在复平面内对应的点为()cos ,sin θθ, 又()()22cos 0sin 01θθ−+−=,∴在复平面内对应的点的轨迹是圆.故选:ABD.25.(2022·高一课时练习)群论是代数学的分支学科,在抽象代数中具有重要地位,且群论的研究方法也对抽象代数的其他分支有重要影响,例如一元五次及以上的方程没有根式解就可以用群论知识证明.群的概念则是群论中最基本的概念之一,其定义如下:设G 是一个非空集合,“· ”是G 上的一个代数运算,即对所有的a 、b ∈G ,有a ·b ∈G ,如果G 的运算还满足:①∀a 、b 、c ∈G ,有(a ·b )·c =a ·(b ·c );②e G ∃∈,使得a G ∀∈,有e a a e a ⋅=⋅=,③a G ∀∈,b G ∃∈,使a ·b =b ·a =e ,则称G 关于“·”构成一个群.则下列说法正确的有( )A .{1,0,1}G =−关于数的乘法构成群B .G ={x |x =1k,k ∈Z ,k ≠0}∪{x |x =m ,m ∈Z ,m ≠0}关于数的乘法构成群C .实数集关于数的加法构成群D .{|,Z}G m m n =∈关于数的加法构成群 【答案】CD【分析】根据群的定义需满足的三个条件逐一判断即可.【详解】对于A :若{1,0,1}G =−,对所有的a 、b G ∈,有{1,0,1}a b G ⋅∈−=, 满足乘法结合律,即①成立,满足②的e 为1,但当0a =时,不存在b G ∈,使得··1a b b a e ===,即③不成立, 即选项A 错误; 对于B :因为12a G =∈,且3b G =∈,但13322a b G ⋅=⨯=∉,所以选项B 错误;对于C :若R G =,对所有的a 、R b ∈,有R a b +∈, 满足加法结合律,即①成立,满足②的e 为0,R a ∀∈,R b a ∃=−∈,使0a b b a +=+=,即③成立;即选项C 正确;对于D:若{|,Z}G m m n =∈,所有的11a m =、22b m G =∈,有1212(+)a b m m n n G +=+∈,,,,a b c G ∀∈()()++=++a b c a b c 成立, 即①成立;当0a b ==时,0a =,满足的0e =,即②成立;a m G ∀=∈,b m G ∃=−∈,使0a b b a +=+=,即③成立;即选项D 正确. 故选:CD.26.(2020秋·江苏盐城·高二江苏省东台中学校考期中)《九章算术》中“勾股容方”问题:“今有勾五步,股十二步,问勾中容方几何?”魏晋时期数学家刘徽在其《九章算术注》中利用出入相补原理给出了这个问题的一般解法:如图1,用对角线将长和宽分别为b 和a 的矩形分成两个直角三角形,每个直角三角形再分成一个内接正方形(黄)和两个小直角三角形(朱、青).将三种颜色的图形进行重组,得到如图2所示的矩形,该矩形长为a b +,宽为内接正方形的边长d .由刘徽构造的图形可以得到许多重要的结论,如图3.设D 为斜边BC 的中点,作直角三角形ABC 的内接正方形对角线AE ,过点A 作AF BC ⊥于点F ,则下列推理正确的是( )①由图1和图2面积相等得abd a b=+; ②由AE AF ≥2a b+≥; ③由AD AE ≥211a b ≥+; ④由AD AF ≥可得222a b ab +≥. A .①B .②C .③D .④【答案】ABCD【解析】根据图1,图2面积相等,可求得d 的表达式,可判断A 选项正误,由题意可求得图3中,,AD AEAF的表达式,逐一分析B 、C 、D 选项,即可得答案.【详解】对于①:由图1和图2面积相等得()S ab a b d ==+⨯,所以abd a b=+,故①正确; 对于②:因为AF BC ⊥,所以12a b AF ⨯⨯,所以AF =,设图3中内接正方形边长为t ,根据三角形相似可得a t t a b−=,解得abt a b =+,所以AE ==因为AE AF ≥,所以a b ≥+2a b +≥,故②正确; 对于③:因为D 为斜边BC的中点,所以AD =因为AD AE ≥≥211a b≥+,故③正确; 对于④:因为AD AF ≥≥,整理得:222a b ab +≥,故④正确; 故选:ABCD【点睛】解题的关键是根据题意及三角形的性质,利用几何法证明基本不等式,求得,,AD AE AF 的表达式,根据图形及题意,得到,,AD AE AF 的大小关系,即可求得答案,考查分析理解,计算化简的能力. 27.(2022秋·黑龙江佳木斯·高一桦南县第一中学校考期中)《几何原本》卷Ⅱ的几何代数法(以几何方法研究代数问题)成了后世西方数学家处理问题的重要依据.通过这一原理,很多代数的公理或定理都能够通过图形实现证明,也称为无字证明.现有如图所示图形,点D 在半圆O 上,点C 在直径AB 上,且CD AB ⊥.设AC a =,CB b =,CE OD ⊥,垂足为E ,则该图形可以完成的无字证明为( )A2aba b+B.2a b +≤C.2a b+≥ D.22a b +≥【答案】AC【解析】直接利用射影定理和基本不等式的应用求出结果.【详解】解:根据图形,利用射影定理得:2CD DE OD =,由于:OD CD …,所以:0,0)2a ba b +>>. 由于2·CD AC CB ab ==,所以22CD abDE a b OD ==+所以由于CD DE …,2aba b+. 故选:AC .【点睛】关键点点睛:射影定理的应用,基本不等式的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.28.(2022秋·辽宁大连·高一大连八中校考阶段练习)古希腊时期,人们认为最美人体的头顶至肚脐的长度0.618≈,称为黄金分割比例),著名的“断臂维纳斯”便是如此..若某人满足上述两个黄金分割比例,且腿长为105cm ,头顶至脖子下端的长度为26cm ,则其身高可能是( ) A .168cm B .172cmC .176cmD .180cm【答案】BC【分析】设身高为cm x ,运用黄金分割比例,结合图形得到对应成比例的线段,计算可估计身高. 【详解】设头顶、咽喉、肚脐、足底分别为点A B C D 、、、,假设身高为cm x ,即cm =AD x ,,ACCD∴=AC∴=.AC CD x+=,且AC=,=CD x+,=x,12CD x∴==,ABBC∴=,AB∴=,AB BC CD x++=,且AB,CD=,BC x+=,)2BC x∴=,)2AB x∴===,由题意可得26105AB xCD⎧=<⎪⎪⎨⎪=>⎪⎩,xx⎧<⎪⎪∴⎨⎪>⎪⎩178.21169.89xx<⎧∴⎨>⎩,169.89178.21x∴<<,故BC正确.故选:BC29.(2021秋·全国·高一期末)早在西元前6世纪,毕达哥拉斯学派已经知道算术中项,几何中项以及调和中项,毕达哥拉斯学派哲学家阿契塔在《论音乐》中定义了上述三类中项,其中算术中项,几何中项的定义与今天大致相同.而今我们称2a b+为正数,a b,a b的几何平均数,并把这两者()0,02a ba b+≤>>叫做基本不等式.下列与基本不等式有关的命题中正确的是()A.若4ab=,则4a b+≥B.若0a>,0b>,则()112a ba b⎛⎫++⎪⎝⎭最小值为C.若(),0,a b∈+∞,21a b+=,1142a b+≥D .若实数,a b 满足0a >,0b >,4a b +=,则2211a b a b +++的最小值是83 【答案】CD【分析】通过反例可知A 错误;根据基本不等式“1”的应用可求得BC 正误;令11a m +=>,11b n +=>,将所求式子化为62mn+,利用基本不等式可知D 正确. 【详解】对于A ,若2a =−,2b =−,则44a b +=−<,A 错误;对于B ,0a >,0b >,0a b∴>,0ba >,()1122333a b a b a b b a ⎛⎫∴++=++≥++ ⎪⎝⎭2a b b a =,即a =时取等号),即()112a ba b ⎛⎫++ ⎪⎝⎭的最小值为3+B 错误;对于C ,(),0,a b ∈+∞,0a b∴>,0ba >,又21ab +=,()111122224222b a a b a b a b a b ⎛⎫∴+=++=++≥+ ⎪⎝⎭(当且仅当22b a a b =,即122b a ==时取等号),C 正确;对于D ,令11a m +=>,11b n +=>,则6m n +=,()()22221111116422211m n a bm n a b m n m n m n mn−−+=+=+++−=++=+∴≥+++26832m n =+⎛⎫ ⎪⎝⎭(当且仅当3m n ==时取等号),即2211a ab ++的最小值是83,D 正确. 故选:CD.30.(2022秋·辽宁大连·高一统考期末)十六世纪中叶,英国数学家雷科德在《砺智石》一书中首先把“=”作为等号使用,后来英国数学家哈利奥特首次使用“<”和“>”符号,不等号的引入对不等式的发展影响深远.若a ,b ,R c ∈,则下列命题正确的是( ) A .若0ab ≠且a b <,则11a b> B .若a b >,01c <<,则a b c c < C .若1a b >>,1c >,则log log a b c c < D .若1a b <<−,0c >,则cca b b a ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭【答案】BCD【分析】利用不等式性质结合可判断A ,根据指数函数的性质可判断B ,根据不等式性质结合对数函数的性质可判断C ,根据幂函数的性质可判断D.【详解】A 中,0a b <<时,则11a b<,错误;B 中,因为a b >,01c <<,所以a b c c <成立,正确;C 中,因为1a b >>,1c >,所以log log 0c c a b >>,10log log c c a b>⋅,所以11log log c c a b<,即log log a b c c <,正确; D 中,由1a b <<−,可得10a b b a >>>,又0c >,所以cca b b a ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭,正确.故选:BCD.三、填空题31.(2022·全国·高三专题练习)中国古代数学著作《九章算术》中记载了平方差公式,平方差公式是指两个数的和与这两个数差的积,等于这两个数的平方差.若复数53i,43i a b =+=+(i 为虚数单位),则22a b −=__________. 【答案】96i +【分析】先要平方差公式,再按照复数的四则运算规则计算即可.【详解】()()()()2253i 43i 53i 43i 96i a b a b a b −=+−=++++−−=+ ;故答案为:96i + .32.(2022·全国·高三专题练习)毛泽东同志在《清平乐●六盘山》中的两句诗为“不到长城非好汉,屈指行程二万”“到长城”是“好汉”的__________条件(填“充分不必要”“必要不充分”“充要”“既不充分也不必要”) 【答案】必要不充分【分析】根据充分、必要条件的知识确定正确选项. 【详解】“好汉”⇒“到长城”, “到长城”⇒“好汉”, 所以“到长城”是“好汉”的必要不充分条件. 故答案为:必要不充分33.(2022·高一课时练习)中国古代数学专著《孙子算经》中有一问题“今有三女,长女五日一归,中女四日一归,少女三日一归,问:三女几何日相会?”,则此三女前三次相会经过的天数组成的集合用列举法可表示为______,此三女相会经过的天数组成的集合用描述法可表示为______.【答案】 {}60,120,180 {}*60,N x x n n =∈【分析】根据题设集合元素为5,4,3的公倍数,进而应用列举法、描述法分别写出集合即可.。

【优化方案北师大版】高一数学精品课件(学习导航+题型探究+备选例题+方法感悟)必修一:1.2集合的基本关系

【优化方案北师大版】高一数学精品课件(学习导航+题型探究+备选例题+方法感悟)必修一:1.2集合的基本关系

=20m,m∈N+};
第一章


【解】
(1)8 的约数有 1,2,4,8,所以 B= B.
{1,2,4,8},从而有 A
(2)A 中的元素都是 3 的倍数, 中的元素都是 B 6 的倍数,对任意的 z∈N,6z=3×(2z).因为 z ∈N,所以 2z∈N,从而可得 6z∈A,从而有 1 B⊆A,设 6z=3,则 z= ∉N,故 3∉B,但 3 2 ∈A,所以 B A.
第一章


§2 集合的基本关系
第一章


学习导航
学习目标
重点难点 重点:子集、真子集的概念. 难点:以子集为条件求参数范围问题.
第一章


新知初探·思维启动
1.Venn图的概念 为了直观地表示集合间的关系,我们常用 封闭曲线的内部 ________________表示集合,称为Venn图. 2.子集、集合相等、真子集的概念
第一章


(3)由于4和10的最小公倍数是20,所以A= {20} , 又 B = {20,40,60 , „} , 则 A ⊆ B , 又 40∈B,40∉A,所以A B.
(4)A={0,1},对于B,当n为偶数时,x=1,
当n为奇数时,x=0,∴B={0,1},∴A=B.
第一章


【方法小结】 判断两集合的关系时,首先
由以上可得m≤3. 10分
名师微博
此步易被漏掉,这可是本题的最终结论噢.
第一章


【名师点评】
(1)此类问题通常借助数轴,
利用数轴分析法,将各个集合在数轴上表示 出来,以形定数,还要注意验证端点值,做
到准确无误,一般含“=”用实心点表示,

高一数学题型分析及解题技巧

高一数学题型分析及解题技巧

高一数学题型分析及解题技巧在高一数学学习过程中,学生们会接触到各种不同类型的数学题目。

针对这些题目,我们需要了解其特点和解题技巧,以便更好地应对。

本文将对高一数学题型进行分析,并分享一些解题技巧,帮助读者提高数学解题能力。

一、代数方程题代数方程题是高中数学中经常出现的一种题型。

通常要求利用代数运算法则,求解方程中的未知数。

解决这类题目的技巧有以下几点:1. 了解方程的基本概念:掌握方程、未知数、系数等概念的含义,明确方程的形式。

2. 熟悉各类方程的解法:例如一元一次方程、二次方程、分式方程等。

熟练掌握不同方程类型的解法,如整理和配方法、因式分解、二次根式解法等。

3. 规范解题过程:在解题过程中,应注意每一步的变换和计算是否规范准确,避免出现漏项或算错的情况。

4. 注意方程的特殊性质:在解题过程中,有时会出现方程无解、有唯一解或有无穷多解的情况。

我们需要根据方程的特殊性质来进行分类讨论。

二、几何问题几何问题也是高一数学中的重要内容之一。

解决几何问题需要结合几何定理和几何图形的性质,下面是一些解题技巧:1. 熟悉几何基本定理:例如勾股定理、相似三角形的性质、平行线的性质等。

掌握这些定理的应用场景和具体求解方法。

2. 观察几何图形特点:细致观察题目给出的几何图形,分析各线段、角度的关系。

通过观察推理,找到解题的关键。

3. 利用既定条件:题目中通常会给出一些已知条件,如等边、等角、垂直等。

利用这些条件,可以在推理的过程中简化计算或直接得出结论。

4. 构造辅助线:在解决难题时,可以适当构造一些辅助线来辅助解题。

巧妙的构造辅助线可以使问题更加简化。

三、概率与统计题在高一数学中,概率与统计题目也经常出现。

对于这类题目,我们需要了解概率和统计学的基本知识,并掌握解题方法。

1. 理解概率基本概念:熟悉事件、样本空间、概率等基本概念的含义,了解计算概率的方法。

2. 掌握统计学基本原理:了解数据的收集、整理和描述方法。

2023年新高考数学创新题型微专题04 三角函数(新定义)(解析版)

2023年新高考数学创新题型微专题04 三角函数(新定义)(解析版)

专题04 三角函数(新定义)一、单选题1.(2023秋·山东临沂·高一统考期末)我们学过度量角有角度制与弧度制,最近,有学者提出用“面度制”度量角,因为在半径不同的同心圆中,同样的圆心角所对扇形的面积与半径平方之比是常数,从而称这个常数为该角的面度数,这种用面度作为单位来度量角的单位制,叫做面度制.在面度制下,角θ的面度数为2π3,则角θ的正弦值为( ) A.2B .12C .12−D. 【答案】D【分析】根据面度数的定义,可求得角θ的弧度数,继而求得答案. 【详解】设角θ所在的扇形的半径为r ,则2212π23r r θ=, 所以4π3θ=,所以4ππsin sin sin 33θ==−=, 故选:D .2.(2023秋·江苏苏州·高一统考期末)定义:正割1sec cos αα=,余割1csc sin αα=.已知m 为正实数,且22csc tan 15m x x +≥对任意的实数,2x x k k Z ππ∈⎛⎫≠+ ⎪⎝⎭均成立,则m 的最小值为( )A .1B .4C .8D .9【答案】D【分析】利用已知条件先化简,分离参数,转化恒成立求最值问题【详解】由已知可得22222sin csc tan 15sin cos xx x xm m x +=+≥,即422sin 15sin cos xx xm ≥−. 因为()2x k k Z ππ≠+∈,所以2cos (0,1]x ∈,则422sin 15sin cos x x x −()222222(1-cos )1=151cos =17+16cos cos cos x x x x x −−−⎛⎫ ⎪⎝⎭ 21716cos 9x x≤−=,当且仅当21cos 4x =时等号成立,故9m ≥, 故选:D.3.(2022·全国·高一专题练习)密位制是度量角的一种方法,把一周角等分为6000份,每一份叫做1密位的角.在角的密位制中,单位可省去不写,采用四个数码表示角的大小,在百位数与十位数之间画一条短线,如7密位写成“0-07”,478密位写成“4-78”.若2(sin cos )2sin cos αααα−=,则角α可取的值用密位制表示错误..的是( ) A .12-50 B .2-50 C .13-50 D .32-50【答案】C【分析】根据同角三角函数的基本关系及二倍角公式求出α,再根据所给算法一一计算各选项,即可判断; 【详解】解:因为2(sin cos )2sin cos αααα−=, 即22sin 2sin cos cos 2sin cos αααααα−+=, 即4sin cos 1αα=,所以1sin 22α=,所以22,6k k Z παπ=+∈,或522,6k k Z παπ=+∈, 解得,12k k Z παπ=+∈或5,12k k Z παπ=+∈ 对于A :密位制1250−对应的角为125052600012ππ⨯=,符合题意; 对于B :密位制250−对应的角为2502600012ππ⨯=,符合题意; 对于C :密位制1350−对应的角为135092600020ππ⨯=,不符合题意; 对于D :密位制3250−对应的角为3250132600012ππ⨯=,符合题意; 故选:C4.(2022秋·山东青岛·高三山东省青岛第五十八中学校考阶段练习)计算器是如何计算sin x ,cos x ,πx ,ln x 些函数,通过计算多项式的值求出原函数的值,如357sin 3!5!7!x x x x x =−+−+,246cos 12!4!6!x x x x =−+−+,其中!12n n =⨯⨯⨯,英国数学家泰勒发现了这些公式,可以看出,右边的项用得越多,计算得出的sin x 和cos x 的值也就越精确.运用上述思想,可得到3sin 12π⎛⎫−+ ⎪⎝⎭的近似值为( )A .0.50B .0.52C .0.54D .0.56【答案】C【分析】将3sin 12π⎛⎫−+ ⎪⎝⎭化为cos1,根据新定义,取1x =代入公式246cos 12!4!6!x x x x =−+−+⋅⋅⋅中,直接计算取近似值即可.【详解】由题意可得,3sin 1cos12π⎛⎫−+= ⎪⎝⎭,故246111111cos1112!4!6!224720=−+−+=−+−+10.50.0410.0010.54=−+−+⋯≈,故选:C .5.(2022春·广东中山·高二统考期末)密位制是度量角与弧的常用制度之一,周角的16000称为1密位.用密位作为角的度量单位来度量角与弧的制度称为密位制.在密位制中,采用四个数字来记角的密位,且在百位数字与十位数字之间加一条短线,单位名称可以省去,如15密位记为“00—15”,1个平角=30—00,1个周角=60—00,已知函数()2cos f x x =−,3,22x ππ⎡⎤∈⎢⎥⎣⎦,当()f x 取到最大值时对应的x 用密位制表示为( ) A .15—00 B .35—00 C .40—00 D .45—00【答案】C【分析】利用导数研究()f x 在给定区间上的最大值,结合题设密位制定义确定()f x 取到最大时x 用密位制.【详解】由题设,()2sin f x x '=,在4[,)23x ππ∈时()0f x '>,在43(,]32x ππ∈时()0f x '<,所以()f x 在4[,)23x ππ∈上递增,在43(,]32x ππ∈上递减,即max 4()()3f x f π=,故()f x 取到最大值时对应的x 用密位制表示为40—00. 故选:C6.(2022春·云南昆明·高二校考期末)在平面直角坐标系xOy 中,P (x ,y )(xy ≠0)是角α终边上一点,P与原点O 之间距离为r ,比值rx 叫做角α的正割,记作sec α;比值r y 叫做角α的余割,记作csc α;比值x y 叫做角α的余切,记作cot α.四名同学计算同一个角β的不同三角函数值如下:甲:5sec 4β=−;乙:5csc 3β=;丙:3tan 4β=−;丁:4cot 3β=.如果只有一名同学的结果是错误的,则错误的同学是( ) A .甲 B .乙C .丙D .丁【答案】D【分析】当甲错误时,乙一定正确,从而推导出丙、丁均错误,与题意不符,故甲一定正确;再由丙丁必有一个错误,得到乙一定正确,由此利用三角函数的定义能求出结果.【详解】解:当甲:5sec 4β=−错误时,乙:5csc 3β=正确,此时53r y =,r =5k ,y =3k ,则|x |=4k ,(k >0), 4tan 3y x β∴==或4tan 3β=−,∴丙:3tan 4β=−不正确,丁:4cot 3β=不正确,故错误的同学不是甲;甲:5sec 4β=−,从而r =5k ,x =﹣4k ,|y |=3k ,(k >0),此时,乙:5csc 3β=;丙:3tan 4β=−;丁:4cot 3β=必有两个正确,一个错误,∵丙和丁应该同号,∴乙正确,丙和丁中必有一个正确,一个错误,∴y =3k >0,x =﹣4k <0,34tan ,cot 43ββ∴=−=−,故丙正确,丁错误, 综上错误的同学是丁. 故选:D .7.(2023秋·湖南邵阳·高一统考期末)设,a b R ∈,定义运算,,a a ba b b a b ≥⎧⊗=⎨<⎩,则函数()sin cos f x x x =⊗的最小值为( )A .1−B .C .12−D .0【答案】B【分析】由定义先得出sin sin cos ()cos cos sin x x xf x x x x ≥⎧=⎨>⎩,然后分sin cos x x ≥,cos sin x x >两种情况分别求出()f x 的最小值,从而得出答案.【详解】由题意可得sin sin cos ()sin cos cos cos sin x x xf x x x x x x ≥⎧=⊗=⎨>⎩当sin cos x x ≥时,即sin cos 04x x x π⎛⎫−=−≥ ⎪⎝⎭则22,4k x k k Z ππππ≤−≤+∈,即522,44k x k k Z ππππ+≤≤+∈此时当52,4x k k Z ππ=+∈时,sin x 有最小值为当cos sin x x >时,即sin cos 04x x x π⎛⎫−=−< ⎪⎝⎭则222,4k x k k Z πππππ+<−<+∈,即5922,44k x k k Z ππππ+<<+∈此时,cos x >所以()f x 的最小值为故选:B8.(2023秋·浙江杭州·高一浙江大学附属中学校考期末)正割()secant 及余割()cos ecant 这两个概念是由伊朗数学家阿布尔⋅威发首先引入的.定义正割1sec cos αα=,余割1csc sin αα=.已知m 为正实数,且22csc tan 15m x x ⋅+≥对任意的实数π,2k x x k ⎛⎫≠∈ ⎪⎝⎭Z 均成立,则m 的最小值为( )A .1B .4C .8D .9【答案】D【分析】由参变量分离法可得出2211716cos cos m x x ⎛⎫≥−+ ⎪⎝⎭,利用基本不等式可求得m 的取值范围,即可得解.【详解】由已知可得22222sin csc tan 15sin cos m x m x x x x ⋅+=+≥,可得422sin 15sin cos x m x x≥−, 因为()Z 2x k k ππ≠+∈,则(]2cos 0,1x ∈,因为()()2242222221cos sin 115sin 151cos 1716cos cos cos cos x x x x x xxx −⎛⎫−=−−=−+ ⎪⎝⎭179≤−=, 当且仅当21cos 4x =时,等号成立,故9m ≥. 故选:D.9.(2022春·江西景德镇·高二景德镇一中校考期中)对集合{}12,,,k a a a ⋯和常数m ,把()()()222122sin sin sin k a m a m a m kσ−+−++−=定义为集合{}12,,,k a a a ⋯相对于m 的“正弦方差",则集合,,626πππ⎧⎫−⎨⎬⎩⎭相对于m 的“正弦方差”为( )A .32B C .12D .与m 有关的值【答案】C【分析】先确定集合,,626πππ⎧⎫−⎨⎬⎩⎭相对于m 的“正弦方差”的表达式,再利用半角公式,两角和与差的余弦公式化简可得结果.【详解】由题知,集合,,626πππ⎧⎫−⎨⎬⎩⎭相对于m 的“正弦方差”为2222sin sin sin 6263m m m πππσ⎛⎫⎛⎫⎛⎫−−+−++− ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=()1cos 21cos 21cos 21333222m m m πππ⎛⎫⎛⎫⎛⎫−−−−− ⎪ ⎪ ⎪−−⎝⎭⎝⎭ ⎪=++ ⎪ ⎪⎝⎭ ()13cos 2cos 2cos 2633m m m πππ⎡⎤⎛⎫⎛⎫⎛⎫=−++−+−⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎣⎦把()()1cos 2cos 2232m m m π⎛⎫+= ⎪⎝⎭,()()cos 2cos 2m m π−=−, ()()1cos 2cos 2232m m m π⎛⎫−= ⎪⎝⎭,代入上式整理得,212σ=.故选:C.10.(2022秋·山东·高三山东聊城一中校联考阶段练习)现有如下信息:(1)黄金分割比(简称:黄金比)是指把一条线段分割为两部分,较短部分与较长部分的长度之比等于较(2)黄金三角形被誉为最美三角形,是较短边与较长边之比为黄金比的等腰三角形. (3)有一个内角为36o 的等腰三角形为黄金三角形, 由上述信息可求得126sin =( ) AB12CD【答案】D【分析】如图作三角形,先求出5cos364=126sin 的值. 【详解】如图,等腰三角形ABC ,36ABC ∠=,,AB BC a AC b ===,取AC 中点,D 连接BD .b a =, 由题意可得1511512sin 22224bABC b a a ∠−−====,所以22cos 12sin 12ABC ABC ∠∠=−=−= 所以5cos364=所以5126364sin cos ︒==. 故选:D. 11.(2021秋·四川巴中·高一校联考期末)定义运算a bad bc c d=−,如果()()105,(0,0)2sin 2f x x πωϕωϕ=><<+的图像的一条对称轴为,4x πϕ=满足等式2cos 3tan ϕϕ=,则ω取最小值时,函数()f x 的最小正周期为( ) A .2πB .πC .3π2D .2π【答案】C【分析】根据2cos 3tan ϕϕ=,利用切化弦和同角三角函数关系转化成sin ϕ的二次方程,可求出ϕ的值,结合对称轴可求出ω,最后利用周期公式进行求解即可. 【详解】105()10sin()102sin()f x x x ωϕωϕ==+−+,因为2cos 3tan ϕϕ=,所以sin 2cos 3cos ϕϕϕ=,即22cos 3sin ϕϕ=,22(1sin )3sin ϕϕ−=, 所以(sin 2)(2sin 1)0ϕϕ+−=,解得1sin 2ϕ=或2−(舍去), 而02πϕ<<,所以6πϕ=,即()10sin()106f x x πω=+−,而()y f x =的图象的一条对称轴为4x π=,所以10sin 1046ππω⎛⎫⨯+=± ⎪⎝⎭,即462k πππωπ⨯+=+,Z k ∈,解得443k ω=+,Z k ∈,所以正数ω取最小值为43,此时函数()f x 的最小正周期为23423ππ=.故选:C .12.(2020·全国·高三校联考阶段练习)对于集合{}12,,,n x x x ⋅⋅⋅,定义:()()()22210200cos cos cos n x x x x x x n−+−+⋅⋅⋅+−Ω=为集合{}12,,,n x x x ⋅⋅⋅相对于0x 的“余弦方差”,则集合32,,,105105ππππ⎧⎫−−⎨⎬⎩⎭相对于0x 的“余弦方差”为( ) A .14B .12CD【答案】B【解析】根据所给“余弦方差”定义公式,代入集合中的各元素,即可得Ω的表达式,结合余弦降幂公式及诱导公式化简,即可求解.【详解】由题意可知,集合32,,,105105ππππ⎧⎫−−⎨⎬⎩⎭相对于0x 的“余弦方差”代入公式可得2222000032cos cos cos cos 1051054x x x x ππππ⎛⎫⎛⎫⎛⎫⎛⎫−−+−−+−+− ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭Ω=0000321cos 21cos 21cos 21cos 210510522224x x x x ππππ⎛⎫⎛⎫⎛⎫⎛⎫+−−+−−+−+− ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭+++=0000321cos 21cos 21cos 21cos 21051058x x x x ππππ⎛⎫⎛⎫⎛⎫⎛⎫+++++++−++− ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭=00002344cos 2cos 2cos 2cos 255558x x x x ππππ⎛⎫⎛⎫⎛⎫⎛⎫+++++−+− ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭=因为0000423cos 2cos 20,cos 2cos 205555x x x x ππππ⎛⎫⎛⎫⎛⎫⎛⎫++−=++−= ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭所以原式4182Ω==, 故选:B.【点睛】本题考查了新定义应用,降幂公式及诱导公式化简三角函数式的应用,属于中档题.13.(2020秋·江西宜春·高三奉新县第一中学校考阶段练习)已知函数()2tan()(0)f x x ωω=>的图象与直线2y =的相邻交点间的距离为π,若定义{},max ,,a a b a b b a b⎧=⎨<⎩…,则函数()max{()h x f x =,()cos }f x x 在区间3,22ππ⎛⎫⎪⎝⎭内的图象是 A . B .C .D .【答案】A【分析】由题知()2tan()(0)f x x ωω=>,利用T πω=求出ω,再根据题给定义,化简求出()h x 的解析式,结合正弦函数和正切函数图象判断,即可得出答案.【详解】根据题意,()2tan()(0)f x x ωω=>的图象与直线2y =的相邻交点间的距离为π, 所以()2tan()(0)f x x ωω=> 的周期为π, 则1T ππωπ===, 所以{}2sin ,,2()max 2tan ,2sin 32tan ,,2x x h x x x x x ππππ⎧⎛⎤∈ ⎪⎥⎪⎝⎦==⎨⎛⎫⎪∈ ⎪⎪⎝⎭⎩,由正弦函数和正切函数图象可知A 正确. 故选:A.【点睛】本题考查三角函数中正切函数的周期和图象,以及正弦函数的图象,解题关键是对新定义的理解. 14.(2022春·陕西延安·高一校考阶段练习)对于函数()f x ,在使()f x M ≥成立的所有常数M 中,我们把M的最大值称为函数()f x 的“下确界”.若函数()3cos 213f x x π⎛⎫=−+ ⎪⎝⎭,,6x m π⎡⎫∈−⎪⎢⎣⎭的“下确界”为12−,则m 的取值范围是( ) A .,62ππ⎛⎤− ⎥⎝⎦B .,62ππ⎛⎫− ⎪⎝⎭C .5,66ππ⎛⎤− ⎥⎝⎦D .5,66ππ⎛⎫− ⎪⎝⎭【答案】A【分析】由下确界定义,()3cos 213f x x π⎛⎫=−+ ⎪⎝⎭,,6x m π⎡⎫∈−⎪⎢⎣⎭的最小值是12−,由余弦函数性质可得.【详解】由题意()3cos 213f x x π⎛⎫=−+ ⎪⎝⎭,,6x m π⎡⎫∈−⎪⎢⎣⎭的最小值是12−,又21()3cos()13cos163332f ππππ−=−−+=+=−, 由13cos(2)132x π−+≥−,得1cos(2)32x π−≥−,22222333k x k πππππ−≤−≤+,,62k x k k Z ππππ−≤≤+∈,0k =时,62x ππ−≤≤,所以62m ππ−<≤.故选:A .【点睛】本题考查新定义,由新定义明确本题中的下确界就是函数的最小值.可通过解不等式确定参数的范围.15.(2020·全国·高一假期作业)如果函数()f x 在区间D 上是凸函数,那么对于区间D 内的任意1x ,2x ,…,n x ,都有()()()1212n n f x f x f x x x x f nn ++++++⎛⎫≤ ⎪⎝⎭,若sin y x =在区间()0,π上是凸函数,那么在ABC ∆中,sin sin sin A B C ++的最大值是( )A .32B .3CD 【答案】D【分析】利用“凸函数”的定义得到恒成立的不等式,利用三角形的内角和为π,即可求出最大值. 【详解】因为sin y x =在区间[0,]π上是“凸函数”,所以sin sin sin sin sin 333A B C A B C π++++=…得sin sin sin A B C ++…即:sin sin sin A B C ++的最大值是2故选:D.【点睛】本题考查理解题中的新定义,并利用新定义求最值,还运用三角形的内角和.二、多选题16.(2022·全国·高一专题练习)定义:()()()22210200cos cos cos n nθθθθθθμ−+−++−=为集合{}12,,,n A θθθ=相对常数0θ的“余弦方差”.若0,2πθ⎡⎤∈⎢⎥⎣⎦,则集合,03A π⎧⎫=⎨⎬⎩⎭相对θ的“余弦方差”的取值可能为( ) A .38B .12C .34D .45【答案】ABC【分析】根据所给定义及三角恒等变换公式将函数化简,再根据0θ的取值范围,求出026θπ+的取值范围,再根据正弦函数的性质计算可得.【详解】解:依题意()2200cos cos 0πθθμ⎛⎫−+− ⎪ 22000cos cos sin cos 332sin ππθθθ=+⎛⎫+ ⎪⎝⎭220001cos cos 22θθθ⎛⎫+ ⎝⎪⎭=2220000013cos sin sin cos 4242θθθθθ++=200013cos sin 2242θθθ+= 001cos 221442θθ+=00111cos 224222θθ⎛⎫=+ ⎪⎝⎭+⎪ 011sin 2462πθ⎛⎫=+ ⎪⎝⎭+, 因为00,2πθ⎡⎤∈⎢⎥⎣⎦,所以02,7666πππθ⎡⎤+∈⎢⎥⎣⎦,所以01s 22n 1i 6,πθ⎛⎫⎡⎤+∈ ⎪⎢⎥⎣−⎝⎭⎦,所以33,84μ⎡⎤∈⎢⎥⎣⎦;故选:ABC17.(2021秋·全国·高三校联考期中)数学中一般用{}min ,a b 表示a ,b 中的较小值,{}max ,a b 表示a ,b 中的较大值;关于函数:(){}min sin ,sin f x x x x x =;(){}max sin ,sin g x x x x x =,有如下四个命题,其中是真命题的是( ) A .()f x 与()g x 的最小正周期均为π B .()f x 与()g x 的图象均关于直线32x π=对称 C .()f x 的最大值是()g x 的最小值 D .()f x 与()g x 的图象关于原点中心对称 【答案】BD【分析】先求出()f x ,()g x ,结合函数()f x 与()g x 的图象即可求解【详解】设()sin 2sin(),()sin 2sin(),33h x x x x t x x x x ππ==+==−则{}32sin(),22,322()min (),()2sin(),22,322x k x k f x h x t x x k x k ππππππππππ⎧++≤≤+⎪⎪==⎨⎪−−+<<+⎪⎩,{}32sin(),22,322()max (),()2sin(),22,322x k x k g x h x t x x k x k ππππππππππ⎧−+≤≤+⎪⎪==⎨⎪+−+<<+⎪⎩函数()f x 与()g x 的大致图象如下所示:对A ,由图知,()f x 与()g x 的最小正周期均为2π;故A 错误; 对B ,由图知,32x π=为函数()f x 与()g x 的对称轴,故B 正确. 对C ,12f π⎛⎫= ⎪⎝⎭,由图知∶函数()f x 的值域为[]2,1−,函数()g x 的值域为[]1,2−,故C 错误;对D ,由图知,()f x 与()g x 的图象关于原点中心对称,故D 正确; 故选:BD.18.(2022·江苏·高一专题练习)已知角θ和ϕ都是任意角,若满足2,2k k Z πθϕπ+=+∈,则称θ与ϕ“广义互余”.若()1sin 4πα+=−,则下列角β中,可能与角α“广义互余”的有( )A .sin β=B .()1cos 4πβ+=C .tan β=D .tan β=【答案】AC【分析】由题可得1sin 4α=,根据诱导公式化简计算判断每个选项即可. 【详解】若α与β广义互余,则2()2k k Z παβπ+=+∈,即2()2k k Z πβπα=+−∈.又由()1sin 4πα+=−,可得1sin 4α=.对于A ,若α与β广义互余,则sin sin(2)cos 24k πβπαα=+−===±,由sin β=可得α与β可能广义互余,故A 正确;对于B ,若α与β广义互余,则1cos cos(2)sin 24k πβπαα=+−==,由()1cos 4πβ+=可得 1cos 4β=−,故B 错误;对于C ,综上可得sin β=1cos 4β=,所以sin tan cos βββ==C 正确,D 错误. 故选:AC .19.(2022春·辽宁沈阳·高一沈阳市第一二〇中学校考阶段练习)在数学史上,为了三角计算的简便并且更加追求计算的精确性,曾经出现过下列两种三角函数:定义1cos θ−为角θ的正矢,记作sin ver θ,定义1sin θ−为角θ的余矢,记作sin cover θ,则下列命题正确的是( ) A .161sin32ver π= B .sin sin 2ver cover πθθ⎛⎫−= ⎪⎝⎭C .若sin 12sin 1cover x ver x −=−,则()21sin sin 5cover x ver x −=D .函数()sin 2020sin 202036f x ver x cover x ππ⎛⎫⎛⎫=−++ ⎪ ⎪⎝⎭⎝⎭的最大值为2【答案】BC【分析】利用诱导公式化简可得A 错误,B 正确;化简已知等式得到tan x ,将所求式子化简为正余弦齐次式,由此可配凑出tan x 求得结果,知C 正确;利用诱导公式化简整理得到()22sin 20206f x x π⎛⎫=−+ ⎪⎝⎭,由此可知最大值为4,知D 错误.【详解】对于A ,16163sin 1cos 1cos 51cos 33332ver πππππ⎛⎫=−=−+=+= ⎪⎝⎭,A 错误; 对于B ,sin 1cos 1sin sin 22ver cover ππθθθθ⎛⎫⎛⎫−=−−=−= ⎪ ⎪⎝⎭⎝⎭,B 正确;对于C ,sin 11sin 1tan 2sin 11cos 1cover x x x ver x x −−−===−−−, ()()22222sin cos sin sin 1sin 1cos 12sin cos 1sin cos x xcover x ver x x x x x x x∴−=−−+=−=−+22tan 411tan 15x x =−=−+15=,C 正确; 对于D ,()1cos 20201sin 202036f x x x ππ⎛⎫⎛⎫=−−+−+= ⎪ ⎪⎝⎭⎝⎭2cos 2020sin 2020266x x πππ⎡⎤⎛⎫⎛⎫−−++−+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦22sin 20206x π⎛⎫=−+ ⎪⎝⎭,∴当sin 202016x π⎛⎫+=− ⎪⎝⎭时,()max 224f x =+=,D 错误.故选:BC.【点睛】关键点点睛:本题考查了三角函数的新定义的问题,解题关键是能够充分理解已知所给的定义,结合三角函数的诱导公式、正余弦齐次式的求解等知识来判断各个选项.20.(2022秋·河南濮阳·高一濮阳一高校考期末)在数学史上,为了三角计算的简便并且更加追求计算的精确性,曾经出现过下列两种三角函数:•定义1cos θ−为角θ的正矢,记作sin ver θ,•定义1sin θ−为角θ的余矢,记作sin cover θ,则下列命题中正确的是( ) A .函数sin y ver x =在3,22ππ⎡⎤⎢⎥⎣⎦上是减函数B .函数sin sin ver xy cover x=的最小正周期为πC .sin(sin 2ver )cover πθθ−=D .sin(sin sin sin sin ver )ver cover cover ver αβαβαβ+=⋅+⋅ 【答案】AC【分析】由余弦函数的单调性可判断A 选项;验证得()()y x y x π≠+,可判断B 选项;由定义的诱导公式可判断C 选项;取4παβ==,代入验证可判断D 选项.【详解】因为sin 1cos y ver x x ==−,而cos y x =在3,22ππ⎡⎤⎢⎥⎣⎦上是增函数,所以函数sin 1cos y ver x x ==−在3,22ππ⎡⎤⎢⎥⎣⎦上是减函数,故A 正确; 函数versin 1cos 1cos ();()coversin 1sin 1sin π−+==+=−+x x xy x y x x x x,所以()()y x y x π≠+,所以B 错误;sin 1cos 1sin sin 22ver cover ππθθθθ⎛⎫⎛⎫−=−−=−= ⎪ ⎪⎝⎭⎝⎭,故C 正确;取4παβ==,sin(1cos12ver )παβ+=−=,sin sin sin sin ver cover cover ver αβαβ⋅+⋅1cos 1sin 1sin 1cos 34444+ππππ⎛⎫⎛⎫⎛⎫⎛⎫=−⋅−−⋅−=− ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭所以sin(sin sin sin sin ver )ver cover cover ver αβαβαβ+≠⋅+⋅, 故D 错误, 故选:AC.【点睛】本题考查函数的新定义,三角函数的诱导公式,同角三角函数间的关系,余弦函数的性质,属于中档题.三、填空题21.(2023·高一课时练习)我们规定把2221cos ()cos cos ()3y B A B B A ⎡⎤=+++−⎣⎦叫做B 对A 的余弦方差,那么对任意实数B ,B 对π3的余弦方差是______.【答案】12##0.5【分析】根据余弦方差的定义求得正确答案. 【详解】依题意,B 对π3的余弦方差是:2221ππcos ()cos cos ()333y B B B ⎡⎤=+++−⎢⎥⎣⎦2π2π1cos(2)1cos(2)11cos 2333222B B B ⎡⎤+++−⎢⎥+=++⎢⎥⎢⎥⎣⎦ 12π2π3cos(2)cos 2cos(2)633B B B ⎡⎤=++++−⎢⎥⎣⎦12π2π2π2π3cos 2cos sin 2sin cos 2cos 2cos sin 2sin 63333B B B B B ⎛⎫=+−+++ ⎪⎝⎭ 11113cos 2cos 2cos 26222B B B ⎛⎫=−+−= ⎪⎝⎭. 故答案为:1222.(2022·全国·高一专题练习)已知()(),f x g x 都是定义在R 上的函数,若存在实数,m n ,使得()()()h x mf x ng x =+,则称()h x 是()f x ,()g x 在R 上生成的函数.若()()22cossin ,sin 22=−=x xf xg x x ,以下四个函数中:①π6y x ⎛⎫=− ⎪⎝⎭;②ππcos 2424x x y ⎛⎫⎛⎫=++ ⎪ ⎪⎝⎭⎝⎭;③2π2cos 124xy ⎛⎫=−− ⎪⎝⎭; ④22sin 2=y x .所有是()(),f x g x 在R 上生成的函数的序号为________. 【答案】①②③.【详解】()()22cossin cos ,sin 22x xf x xg x x =−==.①:πππcos sin sin )666y x x x x x ⎛⎫=−=+= ⎪⎝⎭,因此有m n ==()(),f x g x 在R 上生成的函数;②:πππcos )24242x x y x x ⎛⎫⎛⎫=++=+= ⎪ ⎪⎝⎭⎝⎭,因此有0m n ==,本函数是()(),f x g x 在R 上生成的函数; ③:2ππ2cos 1cos()sin 242xy x x ⎛⎫=−−=−= ⎪⎝⎭,因此有0,1m n ==,本函数是()(),f x g x 在R 上生成的函数; ④:2222sin 28sin cos y x x x ==,显然不存在实数,m n ,使得228sin cos cos sin x x m x n x =+成立,因此本函数不是()(),f x g x 在R 上生成的函数, 故答案为:①②③23.(2021春·江苏淮安·高一校联考阶段练习)形如a bc d 的式子叫做行列式,其运算法则为a b ad bc c d=−,则行列式sin15cos15︒︒的值是___________. 【答案】12−【分析】根据新定义计算即可.【详解】由题意sin151sin 45sin15cos 45cos15cos 602cos15︒=︒︒=︒︒−︒︒=−︒=−︒. 故答案为12−.24.(2023·高一课时练习)若两个函数的图象经过若干次平移后能够重合,则称这两个函数为“同形”函数.给出下列四个函数:①()1sin cos f x x x =+;②()2f x x =()3sin f x x =;④())4sin cos f x x x =+.其中“同形”函数有__________.(选填序号)【答案】①②【分析】利用三角恒等变换转化函数解析式,对比各函数的最小正周期及振幅即可得解.【详解】由题意,()1sin cos 4f x x x x π⎛⎫=+=+ ⎪⎝⎭,())4sin cos 2sin 4f x x x x π⎛⎫=+=+ ⎪⎝⎭,四个函数的最小正周期均相同,但振幅相同的只有①,②, 所以“同形”函数有①②. 故答案为:①②.25.(2023·高一课时练习)在直角坐标系中,横、纵坐标均为整数的点叫格点.若函数()y f x =的图像恰好经过k 个格点,则称函数()y f x =为k 阶格点函数.在[],x ππ∈−上,下列函数中,为一阶格点函数的是___________.(选填序号)①sin y x =;②e 1x y =−;③ln y x =;④2y x = 【答案】①②③【分析】根据题目定义以及各函数的图象与性质即可判断.【详解】当[],x ππ∈−时,函数sin y x =,e 1x y =−的图象只经过一个格点()0,0,符合题意; 函数ln y x =的图象只经过一个格点()1,0,符合题意;函数2y x =的图象经过七个格点,()()()()()()()3,9,2,4,1,1,0,0,1,1,2,4,3,9−−−,不符合题意.故答案为:①②③.26.(2022春·河南商丘·高一商丘市第一高级中学校考开学考试)在平面直角坐标系xoy 中,已知任意角θ以坐标原点o 为顶点,x 轴的非负半轴为始边,若终边经过点00(,)p x y ,且(0)op r r =>,定义:00y x sos rθ+=,称“sos θ”为“正余弦函数”,对于“正余弦函数y sosx =”,有同学得到以下性质:①该函数的值域为⎡⎣; ②该函数的图象关于原点对称;③该函数的图象关于直线34x π=对称; ④该函数为周期函数,且最小正周期为2π;⑤该函数的递增区间为32,244k k k z ππππ⎡⎤−+∈⎢⎥⎣⎦.其中正确的是__________.(填上所有正确性质的序号) 【答案】①④⑤.【详解】分析:根据“正余弦函数”的定义得到函数)4y sosx x π==+,然后根据三角函数的图象与性质分别进行判断即可得到结论.详解:①中,由三角函数的定义可知00cos ,sin x r x y r x ==,所以00sin cos )[4y x y sosx x x x r π+===+=+∈,所以是正确的;②中,)4y sosx x π==+,所以()0)104f π=+=≠,所以函数关于原点对称是错误的;③中,当34x π=时,33()sin()0444f ππππ+==≠34x π=对称是错误的;④中,)4y sosx x π==+,所以函数为周期函数,且最小正周期为2π,所以是正确的;⑤中,因为)4y sosx x π==+,令22242k x k πππππ−≤+≤+,得322,44k x k k Z ππππ−≤≤+∈,即函数的单调递增区间为3[2,2],44k k k Z ππππ−+∈,所以是正确的,综上所述,正确命题的序号为①④⑤.点睛:本题主要考查了函数的新定义的应用,以及三角函数的图象与性质的应用,其中解答中根据函数的新定义求出函数y sosx =的表达式是解答的关键,同时要求熟练掌握三角函数的图象与性质是解答额基础,着重考查了分析问题和解答问题的能力,属于中档试题.27.(2015秋·广东揭阳·高一统考期中)定义一种运算,令,且,则函数的最大值是_______________【答案】54【详解】试题分析::∵,∴0≤sinx≤1∴()22255cos sin sin sin 1sin 144y x x x x x =+=−++=−−+≤ 由题意可得,()22215cos sin ,sin cos cos 224f x x x f x x x x π⎛⎫⎛⎫=+−=−=−++ ⎪ ⎪⎝⎭⎝⎭函数的最大值54考点:三角函数的最值四、解答题28.(2023春·云南文山·高一校考阶段练习)人脸识别技术在各行各业的应用改变着人类的生活,所谓人脸人脸识别中为了检测样本之间的相似度主要应用距离的测试,常用测量距离的方式有曼哈顿距离和余弦距离.若二维空间有两个点()11,A x y ,()22,B x y ,则曼哈顿距离为:()1212,d A B x x y y =−+−,余弦相似度为:()cos ,A B =()1cos ,A B −(1)若()1,2A −,34,55B ⎛⎫⎪⎝⎭,求A ,B 之间的曼哈顿距离(),d A B 和余弦距离;(2)已知()sin ,cos M αα,()sin ,cos N ββ,()sin ,cos Q ββ−,若()1cos ,5M N =,()2cos ,5M Q =,求tan tan αβ的值【答案】(1)145,15−(2)3−【分析】(1)根据公式直接计算即可.(2)根据公式得到1sin sin cos cos 5αβαβ+=,2sin sin cos cos 5αβαβ−=,计算得到答案.【详解】(1)()3414,12555d A B =−−+−=,()34cos ,55A B ==,故余弦距离等于()1cos ,15A B −=−; (2)()cos ,M N =1sin sin cos cos 5αβαβ=+=;()cos ,M Q =2sin sin cos cos 5αβαβ=−=故3sin sin 10αβ=,1cos cos 10αβ=−,则sin sin tan tan 3cos cos αβαβαβ==−. 29.(2023·高一课时练习)知道在直角三角形中,一个锐角的大小与两条边长的比值相互唯一确定,因此边长与角的大小之间可以相互转化.与之类似,可以在等腰三角形中建立边角之间的联系,我们定义:等腰三角形中底边与腰的比叫做顶角的正对()sad .如图,在ABC 中,AB AC =.顶角A 的正对记作sad A ,这时sad BCA AB==底边腰.容易知道一个角的大小与这个角的正对值也是相互唯一确定的.根据上述对角的正对定义,解下列问题: (1)sad60的值为( )A .12 B .1 C D .2 (2)对于0180A <∠<,A ∠的正对值sad A 的取值范围是______. (3)已知3sin 5α=,其中α为锐角,试求sad α的值. 【答案】(1)B(2)()0,2(3)sad α=【分析】(1)在等腰ABC 中,取60A ∠=,AB AC =,利用正对的定义可得出sad60sad A =的值; (2)在等腰ABC 中,AB AC =,取BC 的中点D ,连接AD ,则AD BC ⊥,推导出sad 2sin 2AA =,结合正弦函数的基本性质可求得sad A 的取值范围;(3)利用同角三角函数的基本关系求出cos α,利用二倍角公式可求得sin 2α,由此可得出sad 2sin2αα=的值.【详解】(1)解:在等腰ABC 中,60A ∠=,AB AC =,则ABC 为等边三角形, 所以,sad60sad 1BCA AB===, 故选:B.(2)解:在等腰ABC 中,AB AC =,取BC 的中点D ,连接AD ,则AD BC ⊥,则2sad 2cos 2cos 902sin 22BC BD A A A B AB AB ⎛⎫====−= ⎪⎝⎭, 因为0180A <∠<,则0902A <<,故()sad 2sin 0,22AA =∈. 故答案为:()0,2.(3)解:π02α<<,则π024α<<,所以,24cos 12sin 52αα===−,所以,sin2α=sad 2sin 2αα==. 30.(2020秋·全国·高三校联考阶段练习)若函数()()sin cos ,f x a x b x a b =+∈R ,平面内一点坐标(),M a b ,我们称M 为函数()f x 的“相伴特征点”,()f x 为(),M a b 的“相伴函数”.(1)已知()1sin sin cos 2222x x x f x ⎛⎫=+− ⎪⎝⎭,求函数()f x 的“相伴特征点”;(2)记122M ⎛' ⎝⎭的“相伴函数”为()g x ,将()g x 图象上所有点的纵坐标伸长到原来的2倍(横坐标不变),再将所得图象上所有点横坐标缩短为原来的13(纵坐标不变),再将所得的图象上所有点向右平移4π个单位长度,得到函数()h x ,作出()h x 在529,3636ππ⎡⎤⎢⎥⎣⎦上的图象.【答案】(1)11,22⎛⎫− ⎪⎝⎭;(2)作图见解析.【分析】(1)利用二倍角的降幂公式化简得出()11sin cos 22f x x x =−,由此可得出函数()y f x =的“相伴特征点”的坐标;(2)由题中定义可得出()sin 3g x x π⎛⎫=+ ⎪⎝⎭,利用三角函数图象变换得出()52sin 312h x x π⎛⎫=− ⎪⎝⎭,然后通过列表、描点、连线,可得出函数)y h x =在区间529,3636ππ⎡⎤⎢⎥⎣⎦上的图象. 【详解】(1)()211cos sin 111sinsin cos sin cos 222222222x x x x x f x x x −=+−=+−=−Q , 故函数()y f x =的“相伴特征点”为11,22⎛⎫− ⎪⎝⎭;(2)由题意可得()1sin sin 23g x x x x π⎛⎫==+ ⎪⎝⎭, 将函数()y g x =图象上所有点的纵坐标伸长到原来的2倍(横坐标不变),得到函数2sin 3y x π⎛⎫=+ ⎪⎝⎭的图象,再将所得图象上所有点横坐标缩短为原来的13(纵坐标不变),可得到函数2sin 33y x π⎛⎫=+ ⎪⎝⎭的图象,再将所得的图象上所有点向右平移4π个单位长度,可得到函数()52sin 32sin 34312h x x x πππ⎡⎤⎛⎫⎛⎫=−+=− ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦的图象,当529,3636x ππ⎡⎤∈⎢⎥⎣⎦时,503212x ππ≤−≤,列表如下:故函数()y h x =在529,3636ππ⎡⎤⎢⎥⎣⎦上的图象如下图所示.【点睛】本题考查三角函数的新定义、利用三角函数图象变换求解析式,同时也考查了五点作图法,考查分析问题和解决问题的能力,属于中等题. 五、双空题31.(2022秋·内蒙古包头·高一统考期末)对任意闭区间I ,I M 表示函数sin 6y x π⎛⎫=+ ⎪⎝⎭在区间I 上的最大值,则0,2M π⎡⎤⎢⎥⎣⎦=______,若[0,][,2]2t t t M M =,则t 的值为______.【答案】 1;23π或π 【分析】由题可得2,663x πππ⎡⎤+∈⎢⎥⎣⎦,故0,2M π⎡⎤⎢⎥⎣⎦=1;对t 分类讨论,利用正弦函数的性质得出符合条件的t 即可.【详解】当0,2x π⎡⎤∈⎢⎥⎣⎦时,2,663x πππ⎡⎤+∈⎢⎥⎣⎦,∴当62x ππ+=时,max 1y =,∴0,2M π⎡⎤⎢⎥⎣⎦=1;当62t ππ+<,即3t π<时,[0,]sin 6t M t π⎛⎫=+ ⎪⎝⎭,[,2][0,]sin 6t t t M t M π⎛⎫+= ⎪>⎝⎭, 这与[0,][,2]2t t t M M =矛盾, 当62t ππ+≥且5262t ππ+<,即736t ππ≤<时,[0,]1t M =,[,2]sin 6t t M t π=⎛⎫+ ⎪⎝⎭或[,2]sin 26t t M t π=⎛⎫+ ⎪⎝⎭,由[0,][,2]2t t t M M =可得,1sin 62t π⎛⎫+= ⎪⎝⎭或1sin 262t π⎛⎫+= ⎪⎝⎭,所以23t π=或t π=, 当5262t ππ+≥,即76t π≥时,[0,]1t M =,[,2]1t t M =,这与[0,][,2]2t t t M M =矛盾; 综上所述,t 的值为23π或π. 故答案为:1;23π或π.32.(2019秋·北京海淀·高三人大附中校考阶段练习)已知集合M 是满足下列性质的函数()f x 的全体,存在非零常数T ,对任意x ∈R ,有()()f x T Tf x +=成立.(1)给出下列两个函数:()1f x x =,()()2201f x a a =<<,其中属于集合M 的函数是__________.(2)若函数()sin f x kx M =∈,则实数k 的取值集合为__________. 【答案】 2()f x {|,}k k m m Z π=∈ 【分析】(1)根据集合M 的性质判断.(2)根据集合M 的性质求解,由sin ()sin k x T T kx +=恒成立成立,只有1T =±,【详解】(1)若1()f x M ∈,则存在非零点常数T ,使得11()()f x T Tf x +=,则x T Tx +=,(1)0T x T −+=对x R ∈恒成立,这是不可能的,1()f x M ∉;若2()f x M ∈,则存在非零点常数T ,使得22()()f x T Tf x +=,则22a Ta =,对x R ∈恒成立,1T =,2()f x M ∈; (2)函数()sin f x kx M =∈,则存在非零点常数T ,使得()()f x T T f x +=,即sin ()sin k x T T kx +=,0k =时,()0f x M =∈,0k ≠时,由x R ∈知kx R ∈,()k x T k R +∈,sin [1,1]kx ∈−,sin ()[1,1]k x T +∈−,因此要使sin ()sin k x T T kx+=成立,只有1T =±,若1T =,则sin()sin kx k kx +=,2,T m m Z π=∈,若1T =−,则sin()sin kx k kx −=−,即sin()sin kx k kx π−+=,2k m ππ−+=,(21),k m m Z π=−−∈, 综上实数k 的取值范围是{|,}k k m m Z π=∈. 故答案为:2(),f x {|,}k k m m Z π=∈.【点睛】本题考查新定义问题,此类问题的特点是解决问题只能以新定义规则为依据,由新定义规则把问题转化,转化为熟悉的问题进行解决.。

2023版新教材高中数学热点题型探究一第一章集合与常用逻辑用语新人教A版必修第一册 (1)

2023版新教材高中数学热点题型探究一第一章集合与常用逻辑用语新人教A版必修第一册 (1)

热点题型探究(一)题型一 集合中元素个数与集合子集个数的问题1.[2022·广东深圳外国语学校高一期末]集合A={x∈N|1≤x<4}的真子集的个数是( )A.16 B.8C.7 D.42.已知集合A满足{1}⊆A⊊{1,2,3,4},这样的集合A有( )A.5个 B.6个C.7个 D.8个3.[2022·海南高一期末]已知集合A={0,1,2,3,4,5},集合B={1,3,5,7,9},则Venn图中阴影部分表示的集合中元素的个数为________.题型二 集合的运算与集合新定义问题1.设集合A={x|-2<x<4},B={2,3,4,5},则A∩B=( )A.{2} B.{2,3}C.{3,4} D.{2,3,4}2.设集合U={1,2,3,4,5,6},A={1,3,6},B={2,3,4},则A∩(∁U B)=( )A.{3} B.{1,6}C.{5,6} D.{1,3}3.[2022·湖北孝昌高一期中]给定集合A,B,定义:A*B={x|x∈A或x∈B,且x∉A∩B},又已知A={0,1,2},B={1,2,3,4},用列举法写出A*B=________.题型三 充要条件、量词与求参数值(范围)问题1.若命题“∀x∈[-2,1],x2-a≤0”为真命题,则实数a的取值范围是( )A.[0,+∞) B.[4,+∞)C.[1,+∞) D.[-2,+∞)2.已知条件p:-1<x<3,条件q:x>a,若p是q的充分不必要条件,则a的取值范围为( )A.{a|a>3} B.{a|a≥3}C.{a|a<-1} D.{a|a≤-1}3.已知命题“∃x∈R,x2+x+a≤0”为假命题,则a的取值范围是________.热点题型探究(一)题型一1.答案:C解析:∵A={x∈N|1≤x<4}={1,2,3},∴A={x∈N|1≤x<4}的真子集为:∅,{1},{2},{3},{1,2},{1,3},{2,3}共7个.2.答案:C解析:由题得集合A={1},{1,2},{1,3},{1,4},{1,2,3},{1,2,4},{1,3,4}.3.答案:3A(A∩B).解析:由Venn图及集合的运算可知,阴影部分表示的集合为∁又A={0,1,2,3,4,5},B={1,3,5,7,9},A(A∩B)={0,2,4}∴A∩B={1,3,5},∴∁即Venn图中阴影部分表示的集合中元素的个数为3.题型二1.答案:B解析:由题设有A∩B={2,3}.2.答案:BU B)={1,6}.解析:由题设可得∁U B={1,5,6},故A∩(∁3.答案:{0,3,4}解析:因为A∪B={0,1,2,3,4},A∩B={1,2},∴A*B={0,3,4}.题型三1.答案:B解析:因为命题“∀x∈,x2-a≤0”为真命题,则对∀x∈[-2,1],a≥(x2)max恒成立,又当x=-2时,(x2)max=4,所以实数a的取值范围是[4,+∞).2.答案:D解析:由条件p:-1<x<3,规定集合P={x|-1<x<3}.由条件q:x>a,规定集合Q={x|x>a}.要使p是q的充分不必要条件,只需P⊊Q,所以a≤-1.3.答案:解析:因为命题“∃x∈R,x2+x+a≤0”为假命题,所以它的否定:“∀x∈R,x2+x+a>0”是真命题,所以Δ=1-4a<0,解得a>,所以a的取值范围是.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一数学创新题型探究贵州 洪其强一、建构数列型数列作为特殊的函数,在高考数学中占有相当重要的位置,主要涉及增长率、银行信贷等.解答这一类问题,要充分应用观察、归纳、猜想的手段,建立起等差、等比、或递推数列的模型来解题.例1 (2003年朝阳区高三统一练习(二))2002年底某县的绿化面积占全县总面积的40%,从2003年开始,计划每年将非绿化面积的8%绿化,由于修路和盖房等用地,原有绿化面积的2%被非绿化.(Ⅰ)设该县的总面积为1,2002年底绿化面积为1041=a ,经过n 年后绿化的面积 为,1+n a 试用n a 表示1+n a ;(Ⅱ)求数列}{n a 的第1+n 项1+n a ;解析:(Ⅰ)设现有非绿化面积为1b ,经过n 年后非绿化面积为.1+n b 于是.1,111=+=+n n b a b a 依题意:1+n a 是由两部分组成,一部分是原有的绿化面积n a 减去被非绿化部分n a 1002后剩余的面积n a 10098,另一部分是新绿化的面积.1008n b 于 是1+n a =n a 10098+.1008n b =n a 10098+.252109)1(1008+=-n n a a (Ⅱ)1+n a =,252109+n a 1+n a -54=-).54(109-n a , 数列}54{-n a 是公比为,109首项5254104541-=-=-a 的等比数列. n n a )109)(52(541-+=∴+二、信息迁移型信息迁移题指的是不便于直接运用所学数学知识解决问题,而需要从所给材料中获取信息,并用于新问题解决的一类问题.这一类问题,往往出现在一个较新的背景之下,题型新颖,形式多样,融综合性、应用性、开放性、创新性于一体.信息迁移型题可分为定义信息型、图表信息型、 图形图像信息型等. 1.定义信息型例2 (2001上海22)对任意函数f (x ), x ∈D ,可按图示构造一个数列发生器,其工作原理如下:①输入数据x 0∈D ,经数列发生器输出x 1=f (x 0); ②若x 1∉D ,则数列发生器结束工作;若x 1∈D ,则将x 1反馈回输入端,再输出x 2=f (x 1),并依此规律继续下去.现定义124)(+-=x x x f (1)若输入x 0=6549,则由数列发生器产生数列{x n },请写出{x n }的所有项; (2)若要数列发生器产生一个无穷的常数列,试求输入的初始数据x 0的值;(3)若输入x 0时,产生的无穷数列{x n },满足对任意正整数n 均有x n <x n +1;求x 0的取值范围.解析:(1)∵f (x )的定义域D =(–∞,–1)∪(–1,+∞)∴数列{x n }只有三项,1,51,1911321-===x x x (2)∵x x x x f =+-=124)(,即x 2–3x +2=0 ∴x =1或x =2,即x 0=1或2时 n n n n x x x x =+-=+1241 ,故当x 0=1时,x n =1,当x 0=2时,x n =2(n ∈N *)(3)解不等式124+-<x x x ,得x <–1或1<x <2 要使x 1<x 2,则x 2<–1或1<x 1<2 对于函数164124)(+-=+-=x x x x f ,若x 1<–1,则x 2=f (x 1)>4,x 3=f (x 2)<x 2; 若1<x 1<2时,x 2=f (x 1)>x 1且1<x 2<2,依次类推可得数列{x n }的所有项均满足x n +1>x n(n ∈N *)综上所述,x 1∈(1,2),由x 1=f (x 0),得x 0∈(1,2). 2.图形、图像信息型例3 某蔬菜基地种植西红柿,由历年市场行情得知,从2月1日起的300天内,西红柿市场售价与上市时间的关系如下图1所示的一条件线表示;西红柿的种植成本与上市时间的关系用如下图2所示的抛物线段表示.(1)写出如图1所示市场售价与时间的函数关系式P=f(t);写出如下图2所示种植成本与时间的函数关系式Q=g(t).(2)认定市场售价减去种植成本为纯收益,问何时上市的西红柿纯收益最大?(注:市场售价和种植成本的单位:元/102kg ,时间单位:天)图1图2解析:(1)f(t)=⎩⎨⎧≤<-≤≤-.300200,3002,2000,300t t t t ;g(t)=2001(t-150)2+100,0≤t ≤300.(2)设t 时刻的纯收益为h(t),则由题意得h(t)=f(t)-g(t),即h(t)=⎪⎪⎩⎪⎪⎨⎧≤<-+-≤≤++-.300200,21025272001,2000,217521200122t t t t t t当0≤t ≤200时,配方整理得h(t)=-2001(t-50)2+100,所以,当t=50时,h(t)取得区间[0,200]上的最大值100;当200<t ≤300时,配方整理得h(t)=- 2001(t-350)2+100所以,当t=300时,h(t)取得区间(200,300]上的最大值87.5综上,由100>87.5可知,h(t)在区间[0,300]上可以取得最大值100,此时t=50,即从2月1日开始的第50天时,上市的西红柿纯收益最大.三、函 数 与 数列的综合型函 数 与 数列综 合 题 在 高 考 中 常 考 常 新 , 是 既 考 知 识 又 考 能 力 的 好 题型 , 在 高 考 备 考 中 有 较 高 的 训 练 价 值同时这类问题在高考中频频出现,是历年高考试题中不容忽视的一个考点。

例4 已知函数f (x )=aa a xx +(a>0,a≠1).(1) 证明函数f (x )的图象关于点P (21,21)对称. (2) 令a n =)1()(n f n f a -,对一切自然数n ,猜想使a n >n2成立的最小自然数a 。

解析: (1)关于函数的图象关于定点P 对称, 可采用解几中的坐标证法. 设M (x ,y )是f (x )图象上任一点,则M 关于P (21,21)的对称点为M ’(1-x,1-y),yx f aa aaa ay a a a a a a a aa a xxxxxx x -=-∴+=+-=-+=⋅+=+--1)1(1111∴M′(1-x ,1-y )亦在f (x )的图象上, 故函数f (x )的图象关于点P (21,21)对称. (2)将f (n )、f (1-n )的表达式代入a n 的表达式,化简可得a n =an猜a =3, 即3n>n2.四、环境保护型例5 有一个受到污染的湖泊,其湖水的容积为V 立方米,每天流出湖泊的水量都是r 立方米,现假设下雨和蒸发正好平衡,且污染物质与湖水能很好地混合,用g (t )表示某一时刻t 每立方米湖水所含污染物质的克数,我们称为在时刻t 时的湖水污染质量分数,已知目前污染源以每天p 克的污染物质污染湖水,湖水污染质量分数满足关系式g (t )=rp +[g (0)- rp ]·e t v r-(p ≥0),其中,g (0)是湖水污染的初始质量分数.(1)当湖水污染质量分数为常数时,求湖水污染的初始质量分数;(2)求证:当g (0)<rp时,湖泊的污染程度将越来越严重; (3)如果政府加大治污力度,使得湖泊的所有污染停止,那么需要经过多少天才能使湖水的污染水平下降到开始时污染水平的5%?解析 (1)∵g (t )为常数, 有g (0)-r p =0, ∴g (0)= rp.(2) 我们易证得0<t 1<t 2, 则g (t 1)-g (t 2)=[g (0)- r p ]e 1t v r --[g (0)- r p ]e 21t v r-=[g (0)- rp ][e 1t vr --e 21t v r-]=[g (0)-rp ])(2112)(t t vrt vr t vr ee e+-,∵g (0)·rp <0,t 1<t 2,e 21t v r >e 1t v r,∴g (t 1)<g (t 2).故湖水污染质量分数随时间变化而增加,污染越来越严重.(3)污染停止即P =0,g (t )=g (0)·et vr -,设经过t 天能使湖水污染下降到初始污染水平5%即g (t )=5% g(0) ∴201=e t v r-,∴t =rvln20,故需要rvln20天才能使湖水的污染水平下降到开始时污染水平的5%.五、估测计算型例6 为促进个人住房商品化的进程,我国1999年元月公布了个人住房公积金贷款利率和商业性贷款利率如下:张先生家要购买一套商品房,计划贷款25万元,其中公积金贷款10万元,分十二年还清;商业贷款15万元,分十五年还清.每种贷款分别按月等额还款,问: (1)张先生家每月应还款多少元?(2)在第十二年底汪先生家还清了公积金贷款,如果他想把余下的商业贷款也一次性还清;那么他家在这个月的还款总数是多少?(参考数据:1.004455144=1.8966,1.005025144=2.0581,1.005025180=2.4651) 解析 设月利率为r ,每月还款数为a 元,总贷款数为A 元,还款期限为n 月 第1月末欠款数 A (1+r )-a第2月末欠款数 [A (1+r )-a ](1+r )-a = A (1+r )2-a (1+r )-a第3月末欠款数 [A (1+r )2-a (1+r )-a ](1+r )-a =A (1+r )3-a (1+r )2-a (1+r )-a ……第n 月末欠款数 0)1()1()1()1(21=-+--+-+-+--a r a r a r a r A n n n得:1)1()1(-+⨯+=n n r rr A a对于12年期的10万元贷款,n =144,r =4.455‰∴37.9421004455.1004455.0004455.1100000144144=-⨯⨯=a对于15年期的15万元贷款,n =180,r =5.025‰∴22.12681005025.1005025.0005025.1150000180180=-⨯⨯=a 由此可知,汪先生家前12年每月还款942.37+1268.22=2210.59元,后3年每月还款1268.22元.(2)至12年末,汪先生家按计划还款以后还欠商业贷款a r a r a r a r A X -+--+-+-+=)1()1()1()1(142143144其中A =150000,a =1268.22,r =5.025‰ ∴X =41669.53 再加上当月的计划还款数2210.59元,当月共还款43880.12元.六、类比归纳型给出一个数学情景或一个数学命题,要求我们发散思维去联想、类比、推广、转化,找出类似的命题,或者根据一些特殊的数据,特殊的情况去归纳出一般的规律。

相关文档
最新文档