高中数学测试题(简单)

合集下载

高中数学基础训练测试题

高中数学基础训练测试题

直线与方程(1)一、选择题1.设直线0ax by c ++=的倾斜角为a ,且sin cos 0a a +=, 则,a b 满足( ) A .1=+b a B .1=-b aC .0=+b aD .0=-b a2.过点(1,3)P -且垂直于直线032=+-y x 的直线方程为( ) A .012=-+y x B .052=-+y x C .052=-+y x D .072=+-y x3.已知过点(2,)A m -和(,4)B m 的直线与直线012=-+y x 平行, 则m 的值为( )A .0B .8-C .2D .104.已知0,0ab bc <<,则直线ax by c +=通过( ) A .第一、二、三象限 B .第一、二、四象限C .第一、三、四象限D .第二、三、四象限 5.直线1x =的倾斜角和斜率分别是( ) A .045,1B .0135,1-C .090,不存在 D .0180,不存在6.若方程014)()32(22=+--+-+m y m m x m m 表示一条直线,则实数m 满足( )A .0¹mB .23-¹mC .1¹mD .1¹m ,23-¹m ,0¹m二、填空题1.点(1,1)P - 到直线10x y -+=的距离是________________. 2.已知直线,32:1+=x y l 若2l 与1l 关于y 轴对称,则2l 的方程为__________; 若3l 与1l 关于x 轴对称,则3l 的方程为_________; 若4l 与1l 关于x y =对称,则4l 的方程为___________; 3. 若原点在直线l 上的射影为)1,2(-,则l 的方程为____________________。

4.点(,)P x y 在直线40x y +-=上,则22x y +的最小值是________________. 5.直线l 过原点且平分ABCD 的面积,若平行四边形的两个顶点为(1,4),(5,0)B D ,则直线l 的方程为________________。

高中数学新教材高一上学期段考数学试题(基础、好用)

高中数学新教材高一上学期段考数学试题(基础、好用)

高一上学期段考数学试题时间:120分钟 总分:150分一、单选题(每题5分,共40分)1.已知集合{}|2A x x =≤,,且A B ⊆,则a 的取值范围是( ) A .3a > B .2a > C .2a ≥ D .3a ≥2.函数()f x = )A .(],2-∞B .(][),16,-∞-⋃+∞C .()(),33,-∞+∞ D .(](),23,-∞+∞∪3.定义在R 上的函数()f x ,对任意()1212,x x R x x ∈≠有1221()()0f x f x x x ->-,则( )A .(3)(2)(1)f f f <<B .(1)(2)(3)f f f <<C .(2)(3)(1)f f f <<D .(3)(1)(2)f f f <<4.已知0x >,0y >且x+4y=1,则11x y+的最小值为( )A .9B .7C .4D .35.如果不等式1x a ->成立的充分不必要条件是1322x <<,则实数a 的取值范围是( )A .1522a -<<B .1522a -≤≤C .12a <-或52a >D .12a ≤-或52a ≥6.已知8,0()5(),0x x f x g x x -≤⎧=⎨>⎩为奇函数,则(2)g 等于( )A .1B .1-C .2-D .24-7.已知偶函数()f x 在区间[)0,+∞上单调递减,则满足()1213f x f ⎛⎫-> ⎪⎝⎭的实数x 的取值范围是( )A .1233⎛⎫ ⎪⎝⎭,B .1233⎡⎫⎪⎢⎣⎭, C .1223⎛⎫ ⎪⎝⎭, D .1223⎡⎫⎪⎢⎣⎭,8.已知函数,若,则( )A .B .C .D .二、多选题(每题5分,共20分,其中部分选对得2分,全选对得5分,有选错的得0分){}B x x a =<()538f x x ax bx =++-()310f -=()3f =26181026-9.下列各组函数是同一个函数的是( ) A .()f x x =与()g x =B .()f x x =与()g x C .()1f x x =-与()211x g x x -=+D .()0f x x =与()01g t t =10.下列四个命题中,假命题是( ) A .∀x ∀R ,x +1x≥2B .∀x ∀R ,x 2-x >5C .∀x ∀R ,|x +1|<0D .∀x ∀R ,|x +1|>011.给出下列四个命题,其中正确命题的是( )A.若a b >,c d >,则ac bd >;B.若22a x a y >,则x y >;C.若a b >,则11a b a>-; D.若110a b <<,则2ab b <.12.已知a ,b 为正实数,且26ab a b ++=,则( ) A .ab 的最大值为2 B .2a b +的最小值为4 C .a b +的最小值为3 D .1112+++a b三、填空题(每题5分,共20分)13.命题“x ∀,y R ∈,220≥+x y ”的否定是 . 14.不等式2711x x -≤-的解集是 . 15.函数在区间上单调递减,则的取值范围为 .16.设f (x )为偶函数,且在区间(-∞,0)内单调递增,f (-2)=0,则f (x )在区间(0,+∞)上单调 ,(2分)使xf (x )<0的x 的取值范围是 。

高中数学-命题测试题

高中数学-命题测试题

高中数学-命题测试题
以下是一套高中数学命题测试题,共包括多个问题,涵盖了数学的各个知识点。

请认真阅读每个问题,并按照要求进行解答。

题目一:简单方程求解(10分)
已知方程2x + 3 = 9,求x的值。

题目二:函数求导(15分)
已知函数f(x) = 2x^3 - 3x^2 + 4x - 5,求f'(x)(即f(x)的导数)。

题目三:三角函数应用(20分)
已知直角三角形中,一条直角边的长度为3,另一条直角边的长度为4。

求这个直角三角形的斜边长度和所有角的正弦值、余弦值、正切值。

题目四:集合运算(15分)
已知集合A = {2, 3, 4, 5, 6},集合B = {4, 5, 6, 7, 8},求A与B的并集、交集和差集。

题目五:平面几何(20分)
已知平行四边形ABCD中,AB = 6cm,BC = 8cm,且∠ABC = 120°。

求平行四边形ABCD的面积。

题目六:概率计算(20分)
有6个红球、4个蓝球和5个绿球放入一个不透明的袋子中,将其
中一个球摸出来后放回,再摸一次。

求两次摸出的球都是红球的概率。

题目七:复数运算(15分)
已知复数z1 = 2 + 3i,z2 = 1 - 2i,求z1和z2的和、差、乘积和商。

题目八:数列求和(20分)
已知数列an = 3n - 2,求前10项的和Sn。

以上就是本次高中数学命题测试题的所有内容。

请根据要求自行解
答每个问题,并将答案写在答题卡上。

祝你顺利完成测试!。

高中数学中的函数单调性测试题

高中数学中的函数单调性测试题

高中数学中的函数单调性测试题在高中数学的学习中,函数的单调性是一个非常重要的概念。

它不仅在数学理论中有着广泛的应用,也是解决实际问题的有力工具。

为了帮助同学们更好地掌握这一知识点,下面为大家精心准备了一套函数单调性的测试题。

一、选择题1、函数\(f(x) = x^2 2x\)在区间\(0, 2\)上的单调性是()A 单调递增B 单调递减C 先增后减D 先减后增2、下列函数中,在区间\((\infty, 0)\)上单调递增的是()A \(f(x) = x\)B \(f(x) =\frac{1}{x}\)C \(f(x) =x^2\) D \(f(x) = x^2\)3、函数\(f(x) =\ln x\)的单调递增区间是()A \((\infty, 0)\)B \((0, +\infty)\)C \((-1, 1)\)D \((1, +\infty)\)4、已知函数\(f(x) = 2x^3 6x^2 + 7\),则函数\(f(x)\)在区间\(-1, 2\)上的单调性为()A 单调递增B 单调递减C 先增后减D 先减后增5、函数\(f(x) =\frac{x + 1}{x 1}\)的单调递减区间是()A \((\infty, 1)\)和\((1, +\infty)\)B \((\infty, 1)\)C \((1, +\infty)\)D \((\infty, -1)\)和\((-1,+\infty)\)二、填空题1、函数\(f(x) = 3 2x\)的单调递减区间为________。

2、函数\(f(x) = x +\frac{1}{x}\)的单调递增区间为________,单调递减区间为________。

3、若函数\(f(x) = x^2 2ax + 3\)在区间\(-1, 2\)上单调递增,则实数\(a\)的取值范围是________。

4、函数\(f(x) =\log_{05}(x^2 4x + 3)\)的单调递减区间是________。

高中数学教资科目三真题

高中数学教资科目三真题

高中数学教资科目三真题1、测试试题:(1)不等式组23x+15y≤30 的解集是()A.{(x,y)||0≤y,23x+15≤30} B.{(x,y)|| x≤12,y≤30} C.{(x,y)||0≤x,15y≤30} D.{(x,y)||0≤x, y≤-2}(2)正方形ABCD的边长为4,点E在DC上,点M为线段BD中点,AE 、BE分别与MC交于点N、P,则AN的长为()A.3 B.4 C.4.4 D.22、数学概念:(1)不定乘积:不定乘积是指由多个因子组成的乘积表达式,其中某一个因子不固定,这样的乘积表达式更多的表示个数关系,而不是固定的数量关系。

(2)定积分:定积分是利用某些规律函数的积分关系来确定被积函数的表达式,即求解定积分公式,在计算定积分是应该注意将不定积分标准化,然后应用定积分规则解题。

3、数学奥数:(1)直角三角形:解决直角三角形的问题,奥数比较多的问题都是围绕着正弦定理、余弦定理、斜率关系等几个方面进行推理。

(2)杨辉三角:杨辉三角是一种依据欧拉定义在数轴上绘制的距离及高度比值符合函数值的图形,广泛应用于奥数题的解答,主要是利用杨辉三角的等比金字塔,利用等比数列的性质来解决问题。

4、求根公式:(1)二次函数求根公式:二次函数方程有两个根的求根公式,即:x1,2=-b±√b2-4ac/2a。

对于二次函数f(x)=ax2+bx+c来说,可将方程组合为:(x-x1)(x-x2)=0,利用乘法分布定理来计算根。

(2)三次函数求根公式:三次函数求根公式由于是三次方程,有三个根,常用的求根公式为:x1,2,3 =r1,r2,r3+1/2×差分式底数*sgn (+)1/2的平方根。

由于求根过程会涉及到复数问题,当出现复数根时无法使用解析法,可以使用分部求根法,将实部作为衡量值,根据实部确定待求根。

高中数学三角函数测试试卷简单(完美版)

高中数学三角函数测试试卷简单(完美版)

一.单选题(共__小题)1.已知0≤x≤2π,且sinx<cosx,则x的取值范围是()A.B.C.D.2.已知a=sin(-1),b=cos(-1),c=tan(-1),则a、b、c的大小关系是()A.a<b<c B.a<c<b C .b <a<c D .c <a <b已知函数f(x)=Asin(ωx+φ)(ω>0,|φ|<)的部分图象如图,则函数f(x)的解析式为()A.f(x)=4sin(x-)B.f(x)=-4sin(x+)C.f(x)=-4sin(x-)D.f(x)=4sin(x+)4.已知函数f(x)=Atan(ωx+φ)(ω>1,|φ|<),y=f(x)的部分图象如图,则f()=()A.B.C.D.5.函数的最小值为()A.8B.10C.12D.6.α,β都是锐角,且,,则sinβ的值是()A.B.C.D.7.已知,tanα,tanβ是关于方程x2+2011x+2012=0的两根,则α+β=()A.B.C.或D.或8.已知函数f(x)=sin(ωx)在[0,10π]上恰好存在5个最大值,则ω的取值范围是()A.5B.C.D.如图所示,设点A是单位圆内的一定点,动点P从点A出发在圆上按逆时针方向旋转一周,点P所旋转过的弧的长为l,原点O到弦AP的长为d,则函数d=f(l)的图象大致是()A.B.C.D.....11.若0<x<,则2x与3sin x的大小关系()A.2x>3sin x B.2x<3sin x C.2x=3sin x D.与x的取值有关12.在△ABC中,若3cos(A-B)+5cosC=0,则tanC的最大值为()A.-B.-C.-D.-2函数y=Asin(ωx+ϕ)(A>0,ω>0)的部分图象如图所示,则f(1)+f(2)+f(3)+…+f(11)的值等于()A.B.C.D.14.已知α,β是锐角,sinα=x,cosβ=y,cos(α+β)=-,则y与x的函数关系式为()A.-+B.C.D.x(<x<1)二.填空题(共__小题)17.若sinθ,cosθ是关于x的方程5x2-x+a=0(a是常数)的两个根,θ∈(0,π),则cos2θ=______.18.已知,则的值为______.19.已知向量,,x∈[0,π],则的取值范围为______.20.在数1和2之间插入n个正数,使得这n+2个数构成递增等比数列,将这n+2个数的乘积记为A n,令a n=log2A n,n∈N*.(1)数列{a n}的通项公式为a n=______;(2)T n=tana2•tana4+tana4•tana6+…+tana2n•tana2n+2=______.21.已知α、β均为锐角,且tanβ=,则tan(α+β)=______.22.已知13sinα+5cosβ=9,13cosα+5sinβ=15,那么sin(α+β)的值为______.23.已知α,β为锐角,且tanα=,tanβ=,tanβ=,则α+2β=______.(结果要求弧度表示)圆O的半径为1,P为圆周上一点,现将如图放置的边长为1的正方形(实线所示,正方形的顶点A与点P重合)沿圆周逆时针滚动,点A第一次回到点P的位置,则点A走过的路径的长度为______.25.给出下列命题:①存在实数α,使sinαcosα=1;②存在实数α,使;③是偶函数;三.简答题(共__小题) 27.已知函数f (x )=sin 2x+sinxcosx(Ⅰ)求函数f (x )的单调递增区间; (Ⅱ)求函数f (x )在区间[0,]上的取值范围.28.已知函数,x ∈R .(1)求证f (x )的小正周期和最值; (2)求这个函数的单调递增区间. 29.已知函数f (x )=2sin 2x+2sinxcosx-1(1)求函数f (x)的最小正周期;(2)求函数f (x )的最小值及相应x 的值. 30.函数f (x )=sin2x--(1)若x 属于[,],求f (x )的最值及对应的x 值; (2)若不等式[f (x )-m]2<1在x 上恒成立,求实数m 的取值范围.一.单选题(共__小题)1.已知0≤x≤2π,且sinx<cosx ,则x 的取值范围是()A.B.C.D.答案:D解析:解:画出单位圆以及0≤x≤2π,sinx=MP,cosx=OM,因为0≤x≤2π,且sinx<cosx,从图中可知x的取值范围是故选D.2.已知a=sin(-1),b=cos(-1),c=tan(-1),则a、b、c的大小关系是()A.a<b<c B.a<c<b C.b<a<c D.c<a<b答案:D解析:MP、余弦线OM,观察他们的长度,OM>MP>AT,cos(-1)>sin(-1)>tan(-1),所以c<a<b故选D.已知函数f(x)=Asin(ωx+φ)(ω>0,|φ|<)的部分图象如图,则函数f(x)的解析式为()A.f(x)=4sin(x-)B.f(x)=-4sin(x+)C.f(x)=-4sin(x-)D.f(x)=4sin(x+)答案:B解析:解:由图象可得A=-4,==6-(-2),解得ω=,故函数的解析式可写作f(x)=-4sin(x+φ),代入点(6,0)可得0=-4sin(+φ),故+φ=kπ,k∈Z,即φ=kπ-,又|φ|<,故当k=1时,φ=,故选BA.B.C.D.答案:B解析:解:由题意可知T=,所以ω=2,函数的解析式为:f(x)=Atan(2x+φ),因为函数过(0,1),所以,1=Atanφ…①,函数过(),0=Atan(+φ)…②,解得:φ=,A=1.∴f(x)=tan(2x+).则f()=tan()=故选B.5.函数的最小值为()A.8B.10C.12D.答案:B解析:解:∵=3++2=3+cot+2.∴(y-1)+(4-y )tan +1=0,则一元二次方程(y-1)x 2+(4-y )x+1=0 在(0,1)内有解.∴△=(4-y )2-4(y-1)≥0,(y-2)(y-10)≥0,y ≥10. 故两根之和等于=1-∈[,1),两根之积等于∈(0,],所以是两个正数根,两个根均在(0,1)内,故有y ≥10,即y 的最小值为10. 6.α,β都是锐角,且,,则sin β的值是( )A .B .C .D .答案:C 解析:解:α,β都是锐角,∴α+β∈(0,π), ∵∴cos α===,∵∴sin (α+β)===∴sin β=sin[(α+β)-α]=sin (α+β)cos α-cos (α+β)sin α ==故选C . 7.已知,tan α,tan β是关于方程x 2+2011x+2012=0的两根,则α+β=( ) A .B .C .或D .或答案:B故可得tan(α+β)===1,又,,故tanα,tanβ均为负值,故,故α+β∈[-π,0),故α+β=-故选B8.已知函数f(x)=sin(ωx)在[0,10π]上恰好存在5个最大值,则ω的取值范围是()A.5B.C.D.答案:D解析:解:∵函数f(x)=sin(ωx)在[0,10π]上恰好存在5个最大值,设其周期为T,则4T≤10π<5T,又即•≤10π<•,解得≤ω<,∴ω的取值范围是[,).故选D.如图所示,设点A是单位圆内的一定点,动点P从点A出发在圆上按逆时针方向旋转一周,点P所旋转过的弧的长为l,原点O到弦AP的长为d,则函数d=f(l)的图象大致是()答案:D 解析:解:连接OP ,得∠POA==l作OB ⊥PA 于B ,则可得△POB 中,由∠POB=或(2π-l ) |cos |==d所以函数d=f (l )=|cos |=∴由此对照各个选项,得只有D 选项符合题意 故选:D10.同时具有性质:“(1)最小正周期是π;(2)图象关于直线对称;(3)在区间上是增函数”的一个函数是( )A .B .C .D .答案:C 解析:解:A 、由得,函数的周期为4π,故A 不对;把代入解得:k=1,即此方程是函数的对称轴,由-≤x≤0得,,即函数在区间上是增函数,故C正确;D、由-≤x≤0得,,即函数在区间上是减函数,故D不对.故选C.11.若0<x<,则2x与3sin x的大小关系()A.2x>3sin x B.2x<3sin x C.2x=3sin x D.与x的取值有关答案:D解析:解:设g(x)=2x-3sinx,则g′(x)=2-3cosx,当0<x<arccos时,g′(x)<0,g(x)是减函数,g(x)<g(0)=0,∴2x<3sinx;当arccos<x<时,g‘(x)>0,g(x)是增函数,但g(arccos)<0,g()>0,∴在区间[arccos,)有且仅有一点θ使g(θ)=0;当arccos≤x<θ时,g(x)<g(θ)=0,2x<3sinx;当θ<x<时,g(x)>g(θ)=0,2x>3sinx;∴当0<x<θ时,2x<3sinx;当x=θ时,2x=3sinx;当θ<x<时,2x>3sinx.故选:D.12.在△ABC中,若3cos(A-B)+5cosC=0,则tanC的最大值为()A.-B.-C.-D.-2答案:B即3cosAcosB+3sinAsinB-5cosAcosB+5sinAsinB=0,故8sinAsinB=2cosAcosB,tanAtanB=,tanA+tanB≥2=1,∴tan(A+B)=≥=,则tanC=-tan(A+B)≤-,当且仅当tanA=tanB时,等号成立,故选:B.函数y=Asin(ωx+ϕ)(A>0,ω>0)的部分图象如图所示,则f(1)+f(2)+f(3)+…+f(11)的值等于()A.B.C.D.答案:C解析:解:由函数y=Asin(ωx+ϕ)(A>0,ω>0)的部分图象可得A=2,ϕ=0,且×=4-0,∴ω=.∴函数y=2sin(x),且函数的周期为8.由于f(1)+f(2)+f(3)+…f(8)=0,∴f(1)+f(2)+f(3)+…f(11)=f(1)+f(2)+f(3)=2sin+2sin+2sin=2+2,故选C.14.已知α,β是锐角,sinα=x,cosβ=y,cos(α+β)=-,则y与x的函数关系式为()A.-B.C.D .<x<1)答案:A解析:解:∵知α,β是锐角,sinα=x,cosβ=y,cos(α+β)=-,∴-sinα=cos(α+90°)<cos(α+β)=-⇒x>;∴cosα==;sin(α+β)==.∴cos β=cos[(α+β)-α]=cos(α+β)cosα+sin(α+β)sinα=-+x(<x<1)故选:A.二.填空题(共__小题)15.已知角α的终边与单位圆交于点P(x,y),且x+y=-,则tan(α+)=______.答案:±解析:解:由题意可得x+y=-,x2+y2=1,tanα=,求得或,∴tanα=-或tanα=-.旋转,则经过5秒后点P转过的弧长是______cm.答案:100解析:解:如图,连接OP且延长到圆点A,∵CD=6cm,OD=5cm∴OP=4cm∵A、P两点角速度相同,∴5秒后P点转过的角度为25弧度,∴P转过的弧长为25×4=100(cm).故答案为:10017.若sinθ,cosθ是关于x的方程5x2-x+a=0(a是常数)的两个根,θ∈(0,π),则cos2θ=______.答案:-解析:解:因为sinθ,cosθ是关于x的方程5x2-x+a=0的两个根,所以sinθ+cosθ=,sinθcosθ=,又因为(sinθ+cosθ)2=1+2sinθcosθ,所以,解得a=-.因为sinθ+cosθ=>0,sinθcosθ==<0,所以θ∈(,π),所以sinθ-cosθ>0,所以sinθ-cosθ=.已知,则的值为.答案:-解析:解:∵,∴=3,解得tanα=-2,∴===-故答案为:-19.已知向量,,x∈[0,π],则的取值范围为______.答案:[0,2]解析:解:∵,,∴=(cos+cos,sin-sin),∴===,∵x∈[0,π],∴2x∈[0,2π],∴-1≤cos2x≤1,即]0≤2+2cos2x≤4,∴的范围是[0,2].故答案为:[0,2].(2)T n=tana2•tana4+tana4•tana6+…+tana2n•tana2n+2=______.答案:-n解析:解:(1)设在数1和2之间插入n个正数,使得这n+2个数构成递增等比数列为{b n},则b1=1,b n+2=2=1×q n+1,即q n+1=2,q为此等比数列的公比.∴A n=1•q•q2•q3…q n+1=q1+2+3+…+(n+1)===,∴a n=log2A n=,故答案为:.(2)由(1)可得a n=log2A n=,又tan1=tan[(n+1)-1]=,∴tan(n+1)tann=,∴tana2n•tana2n+2=tan(n+1)tan(n+2)═-1,n∈N*.T n=tana2•tana4+tana4•tana6+…+tana2n•tana2n+2=( -1)+( -1)+(-1)+…+(-1)=-n,n∈N*,故答案为:-n.21.已知α、β均为锐角,且tanβ=,则tan(α+β)=______.答案:1解析:解析:∵tanβ=,故答案为:1.22.已知13sinα+5cosβ=9,13cosα+5sinβ=15,那么sin(α+β)的值为______.答案:解析:解:∵13sinα+5cosβ=9,13cosα+5sinβ=15两式平方相加得194+130sinαcosβ+130cosαsinβ=306即∴故答案为23.已知α,β为锐角,且tanα=,tanβ=,tanβ=,则α+2β=______.(结果要求弧度表示)答案:解析:解:∵tanα=,tanβ=,tanβ=,∴tan2β===,∴2β仍为锐角,∴tan(α+2β)===1.再根据α,2β为锐角,可得α+2β∈(0,π),∴α+2β=,圆O的半径为1,P为圆周上一点,现将如图放置的边长为1的正方形(实线所示,正方形的顶点A与点P重合)沿圆周逆时针滚动,点A第一次回到点P的位置,则点A走过的路径的长度为______.答案:解析:解:由图可知:∵圆O的半径r=1,正方形ABCD的边长a=1,∴以正方形的边为弦时所对的圆心角为,正方形在圆上滚动时点的顺序依次为如图所示,∴当点A首次回到点P的位置时,正方形滚动了3圈共12次,设第i次滚动,点A的路程为A i,则A1=×|AB|=,A2=×|AC|=,A3=×|DA|=,A4=0,∴点A所走过的路径的长度为3(A1+A2+A3+A4)=.故答案为:.25.给出下列命题:①存在实数α,使sinαcosα=1;其中正确命题的序号是______ 答案:③④ 解析:解:∵sinαcos α=sin2α=1∴sin2α=2,与正弦函数的值域矛盾,故①不对; ∵sin α+cos α=)≤,从而可判断②不对;∵=sin ()=cos2x ,为偶函数,故③正确;将x=代入到y=sin (2x+)得到sin (2×+)=sin=-1,故是函数的一条对称轴方程,故④正确.故答案为:③④.26.已知扇形的圆心角为,弧长为,则该扇形的面积为______.答案:解析:解:∵扇形的圆心角为,弧长为,∴扇形的半径为4, ∴扇形的面积为=.故答案为:.三.简答题(共__小题)27.已知函数f (x )=sin 2x+sinxcosx(Ⅰ)求函数f (x )的单调递增区间;令,则x ∈∴函数f (x )的单调递增区间为(Ⅱ)因为x ∈[0,], 所以,所以,因此,即f (x )的取值范围为[0,]. 解析:解:(Ⅰ)f (x )=sin 2x+sinxcosx==令,则x ∈∴函数f (x )的单调递增区间为 (Ⅱ)因为x ∈[0,], 所以, 所以,因此,即f (x )的取值范围为[0,].28.已知函数,x ∈R .(1)求证f (x )的小正周期和最值; (2)求这个函数的单调递增区间. 答案:解;(1)=cos2x+sin2x+=sin (2x+)+函数的周期T==π解析: 解;(1)=cos2x+sin2x+=sin (2x+)+函数的周期T==π∵-1≤sin (2x+)≤1∴≤sin (2x+)+≤即≤f (x )≤(2)当-+2k π≤2x+≤+2k π⇒x ∈[-+k π,+k π]为函数的单调增区间. 29.已知函数f (x )=2sin 2x+2sinxcosx-1(1)求函数f (x )的最小正周期; (2)求函数f (x )的最小值及相应x 的值. 答案: 解:(1)==,则,(2)当时,,则函数f (x )取得最小值为-2. 此时,.解析:解:(1)==,则函数f(x)取得最小值为-2.此时,.30.函数f(x)=sin2x--(1)若x属于[,],求f(x)的最值及对应的x值;(2)若不等式[f(x)-m]2<1在x上恒成立,求实数m的取值范围.答案:解:(1)f(x)=sin2x--=sin(2x-)-1,∵x属于[,],∴2x-∈[,],∴2x-=,即x=时,函数取得最小值-;2x-=,即x=时,函数取得最大值0;(2)[f(x)-m]2<1等价于m-1<f(x)<m+1,∵不等式[f(x)-m]2<1在x上恒成立,∴,∴-1<m<.解析:解:(1)f(x)=sin2x--=sin(2x-)-1,∵x属于[,],∴2x-∈[,],∴2x-=,即x=时,函数取得最小值-;2x-=,即x=时,函数取得最大值0;(2)[f(x)-m]2<1等价于m-1<f(x)<m+1,∵不等式[f(x)-m]2<1在x上恒成立,。

高中生数学测试题及答案

高中生数学测试题及答案

高中生数学测试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是无理数?A. 3.14159B. √2C. 0.33333D. 2/3答案:B2. 函数f(x)=x^2的图像关于哪条直线对称?A. x=0B. x=1C. y=xD. y=-x答案:A3. 集合{1,2,3}和{2,3,4}的交集是什么?A. {1}B. {2,3}C. {3,4}D. {1,2,3,4}答案:B4. 已知等差数列的前三项为2, 5, 8,求第四项。

A. 11B. 10C. 9D. 12答案:A5. 圆的面积公式是什么?A. A=πr^2B. A=2πrC. A=πd^2D. A=πd/2答案:A6. 函数y=3x+2的斜率是多少?A. 3B. 2C. 1/3D. 1/2答案:A7. 一个数的立方根是它本身,这个数可以是:A. 0B. 1C. -1D. 以上都是答案:D8. 一个三角形的三个内角之和是多少度?A. 90度B. 180度C. 360度D. 270度答案:B9. 等腰三角形的两个底角相等,这个说法是正确的吗?A. 正确B. 错误答案:A10. 一个数的绝对值是它本身,这个数可以是:A. 正数B. 负数C. 0D. 以上都是答案:D二、填空题(每题4分,共20分)1. 一个数的相反数是-5,那么这个数是______。

答案:52. 一个数的平方是25,那么这个数可以是______。

答案:±53. 一个数的绝对值是5,那么这个数可以是______。

答案:±54. 一个等差数列的前三项是3, 6, 9,那么这个数列的公差是______。

答案:35. 一个圆的半径是5,那么它的周长是______。

答案:2π×5 = 10π三、解答题(每题10分,共50分)1. 解方程:2x - 3 = 7。

答案:x = 52. 已知一个三角形的两边长分别为3和4,第三边长是5,求这个三角形的面积。

高中数学集合测试题(附答案和解析)

高中数学集合测试题(附答案和解析)

高中数学集合测试题(附答案和解析)一、单选题1.已知集合{}1,2,3,4A =,2{|log ,}B y y x x x A ==-∈,则A B =( ) A .{}1,2B .{}1,3C .{}1,2,3D .{}1,3,42.已知集合{A xy =∣,{}0,1,2,3B =,则A B =( ) A .{3} B .{2,3} C .{1,2,3} D .{0,1,2,3}3.已知集合{}1,2,3A =,{}21,B y y x x A ==-∈,则A B =( ) A .{}1,2 B .{}1,2,3 C .{}1,3D .{}1,2,3,54.已知集合{}2|8120A x x x =-+<,{|14}B x Z x =∈<<,则A B =( )A .{1,2}B .{}2,4C .{3}D .∅5.已知集合{}N 15A x x =∈≤≤,{}05B x x =<<,则A B =( ) A .{}2,3,4B .{}1,2,3,4C .{}15x x ≤≤D .{}15x x ≤<6.已知R 为实数集,集合{}{}2340,ln(1)A x x x B x y x =--≤==-,则R A B ⋃=( )A .{}14x x <≤B .{}11x x -≤≤C .{}1x x ≥-D .{}4x x ≤7.已知集合{}{}2230,1A x x x B x x =--<=≤,则R()A B ⋂=( )A .(,1][1,)∞∞--⋃+B .(,1](1,)-∞-⋃+∞C .(]1,1-D .[1,1)- 8.已知集合{}{}|2,|(1)0A x x B x x x =>=->,则A B ⋃=( ) A .(-∞,0) B .()(),01,-∞⋃+∞ C .()(),02,-∞⋃+∞D .(2,+∞)9.设集合(){}ln 2A x y x ==-,{}13B x x =≤≤,则A B ⋃=( ) A .(]2,3 B .[)1,+∞ C .()2,+∞D .(],3-∞10.已知集合{|12}A x x =-<≤,{}2,1,0,2,4B =--,则()R A B ⋂=( ) A .∅B .{}1,2-C .{}2,4-D .{}2,1,4--11.已知函数()2log f x x =,()2g x a x =-,若存在[]12,1,2x x ∈,使得()()12f x g x =,则实数a 的取值范围是( ) A .()(),25,-∞⋃+∞ B .(][),25,-∞⋃+∞ C .()2,5D .[]2,512.已知集合(){},M x y y x ==,(){}22,|1N x y xy =+=,M N A ⋂=,则A 中元素个数为( )个. A .1B .2C .3D .4 13.设全集{}0,1,2,3,4U =,集合{}1,2,4A =,{}2,3B =,则()U A B ⋂=( ) A .{}2B .{}2,3C .{}0,3D .{}314.集合N A x x ⎧⎫=∈⎨⎬⎭⎩31,()}{N log B x x =∈+≤211,S A ⊆,S B ⋂≠∅,则集合S 的个数为( ) A .0B .2C .4D .815.设集合{}260A x x x =--≤,{}20B x x a =+≤,且{}21A B x x ⋂=-≤≤,则=a ( ) A .4-B .2-C .2D .4二、填空题16.如图,四个棱长为1的正方体排成一个正四棱柱,AB 是一条侧棱,()1,2,,8i P i =是上底面上其余的八个点,()1,2,,8i i x AB AP i =⋅=则用集合列举法表示i x 组成的集合______.17.如图,用集合符号表述下列点、直线与平面之间的关系.(1)点C 与平面β:___________; (2)点A 与平面α:___________;(3)直线AB 与平面α:___________; (4)直线CD 与平面α:___________.18.若集合{}{}1,2,3,4,|23A B x x ==≤≤﹐则A B =_________. 19.已知集合{}1,2,3,4,A =,{}1,4,7,10,B =,下有命题:①{} 2,3,5,6,8,9,AB =;②若f 表示对二个数乘以3减去2的运算,则对应:f A B →表示一个函数; ③A 、B 两个集合元素个数相等; ④n A ∀∈,22n n ≥. 其中真命题序号是______.20.已知{}3A x a x a =≤≤+,{}15b x x =-<<,A B =∅,则实数a 的取值范围是______ 21.集合(){},A x y y a x ==,(){},B x y y x a ==+,C AB =,且集合C 为单元素集合,则实数a 的取值范围是________.22.已知[]x 表示不超过x 的最大整数.例如[2.1]2=,[ 1.3]2-=-,[0]0=,若{[]}A y y x x ==-∣,{0}∣=≤≤B y y m ,yA 是yB ∈的充分不必要条件,则m 的取值范围是______.23.已知集合{1,2,3}A =,则满足A B A ⋃=的非空集合B 有_________个.24.已知集合{}1,0,1A =-,{}220B x x x =-=,则A B ⋃=______.25.写出集合{1,1}-的所有子集______.三、解答题26.(1)已知全集{}|510,Z U x x x =-≤≤∈,集合M ={|07,Z x x x ≤≤∈},N ={|24,Z x x x -<∈≤},求()U N M (分别用描述法和列举法表示结果);(2)已知全集{}0,1,2,3,4,5,6,7,8,9,10U A B =⋃=,若集合{}2,4,6,8UA B =,求集合B ;(3)已知集合2{|210,R,R}P x ax ax a x =++=∈∈,当集合P 只有一个元素时,求实数a 的值,并求出这个元素.27.函数()()sin 22sin cos 1a x f x a x x +=+-.(1)若1a =,,02x π⎡⎫∈-⎪⎢⎣⎭,求函数()f x 的值域;(2)当,02x ⎡⎤∈-⎢⎥⎣⎦π,且()f x 有意义时,①若(){}0y y f x ∈=,求正数a 的取值范围; ②当12a <<时,求()f x 的最小值N .28.已知集合2111x A x x +⎧⎫=<⎨⎬-⎩⎭,{(1)(2)0}B x x x m =-+<. (1)当1m =时,求A B ;(2)已知“x A ∈”是“x B ∈”的必要条件,求实数m 的取值范围.29.已知集合{|lg(3)A x y x ==-,2{|9200}B x x x =-+≤,{|121}C x a x a =+≤<-.若()C A B ⊆,求实数a 的取值范围.30.已知U =R ,{}2=160A x x -<,{}2=3180B x x x -++>,求A B ,A B .【参考答案】一、单选题 1.A 【解析】 【分析】根据对数的运算求出集合B ,再根据交集的定义可求出结果. 【详解】当1x =时,21log 11y =-=, 当2x =时,22log 21y =-=, 当3x =时,23log 3y =-, 当4x =时,24log 42y =-=, 所以2{1,2,log 3}B =, 所以A B ={1,2}. 故选:A 2.C 【解析】 【分析】先由y =A ,再根据集合交集的原则即可求解.【详解】对于集合A ,10x -≥,即1≥x ,则{}1A x x =≥, 所以{}1,2,3A B =, 故选:C 3.C 【解析】 【分析】根据题意求出集合B ,在和集合A 取交集即可. 【详解】因为集合{}1,2,3A =,{}21,B y y x x A ==-∈, 所以{}1,3,5B =,所以{}1,3A B =, 故选:C. 4.C 【解析】 【分析】解出不等式28120x x -+<,然后可得答案. 【详解】因为{}{}2|8120|26A x x x x x =-+<=<<,{}{}142,3B x Z x =∈<<=所以{}3⋂=A B , 故选:C 5.B 【解析】 【分析】由集合的交运算求A B 即可. 【详解】由题设,集合{}1,2,3,4,5A =,{}05B x x =<<, 所以{}1,2,3,4A B ⋂=. 故选:B 6.D 【解析】 【分析】首先解一元二次不等式求出集合A ,再根据对数型函数的定义域求出集合B ,最后根据补集、并集的定义计算可得; 【详解】解:由2340x x --≤,即410x x ,解得14x -≤≤,即{}{}234014A x x x x x =--≤=-≤≤,又(){}{}ln 11B x y x x x ==-=,所以{}|1R B x x =≤,所以{}4R A B x x ⋃=≤; 故选:D 7.B 【解析】 【分析】解一元二次不等式求集合A 、解绝对值不等式求集合B ,再应用集合的交补运算求R()A B .【详解】由题设,{|13},{|11}A x x B x x =-<<=-≤≤, 所以1{|1}A B x x =-<≤,则R(){|1A B x x ⋂=≤-或1}x >.故选:B 8.B 【解析】 【分析】首先解一元二次不等式求出集合B ,再根据并集的定义计算可得; 【详解】解:由(1)0x x ->,解得1x >或0x <,所以{}|(1)0{|1B x x x x x =->=>或0}x <,又{}|2A x x =>,所以()(),01,A B ⋃=-∞⋃+∞;故选:B 9.B 【解析】 【分析】根据对数型函数的性质,结合集合并集的定义进行求解即可. 【详解】因为(2,)A =+∞,{}13B x x =≤≤, 所以A B ⋃=[)1,+∞, 故选:B 10.D 【解析】 【分析】 利用补集定义求出A R,利用交集定义能求出()A B R .【详解】解:集合{|12}A x x =-<≤,{}2,1,0,2,4B =--, 则R{|1A x x =≤-或2}x >,(){}R 2,1,4A B ∴⋂=--. 故选:D 11.D【分析】根据条件求出两个函数在[1,2]上的值域,结合若存在[]12,1,2x x ∈,使得12()()f x g x =,等价为两个集合有公共元素,然后根据集合关系进行求解即可. 【详解】当12x ≤≤时,22log 1()log 2f x ≤≤,即0()1f x ≤≤,则()f x 的值域为[0,1], 当12x ≤≤时,4()2a g x a -≤≤-,则()g x 的值域为[4,2]a a --, 因为存在[]12,1,2x x ∈,使得12()()f x g x =, 则[4,2][0,1]a a --≠∅ 若[4,2][0,1]a a --=∅, 则14a <-或02a >-, 得5a >或2a <,则当[4,2][0,1]a a --≠∅时,25a ≤≤, 即实数a 的取值范围是[2,5],A ,B ,C 错,D 对. 故选:D . 12.B 【解析】 【分析】联立方程,解方程组,考察方程组的解的组数,即为集合A 的元素个数; 【详解】联立方程得221y x x y =⎧⎨+=⎩,解得x y ⎧=⎪⎪⎨⎪=⎪⎩x y ⎧=⎪⎪⎨⎪=⎪⎩所以集合M 与N 的交集A 中的元素个数为2个; 故选:B. 13.D 【解析】 【分析】利用补集和交集的定义可求得结果. 【详解】 由已知可得{}0,3UA =,因此,(){}U 3AB ⋂=,故选:D. 14.C 【解析】 【分析】根据分式不等式和对数不等式求出集合A 和B ,利用交集的定义 和集合的包含关系即可求解.由x31,得03x <≤, 所以}{N,,A x x ⎧⎫=∈=⎨⎬⎭⎩31123. 由()log x +≤211,得11x -<≤. 所以()}{}{N log ,B x x =∈+≤=21101.由S A ⊆,S B ⋂≠∅,知S 中必含有元素1,可以有元素2,3.所以S 只有{}1,{}12,,{}13,,{}123,,,即集合S 的个数共4个. 故选:C. 15.B 【解析】 【分析】先求出集合,A B ,再根据交集的结果求出a 即可. 【详解】由已知可得{}23A x x =-≤≤,2a B x x ⎧⎫=≤-⎨⎬⎩⎭又∵{}21A B x x ⋂=-≤≤,∴12a-=, ∴2a =-. 故选:B .二、填空题 16.{}1【解析】 【分析】由空间向量的加法得:i i AP AB BP =+,根据向量的垂直和数量积得221AB AB ==,0i AB BP ⋅=计算即可.【详解】由题意得,()2i i i i x AB AP AB AB BP AB AB BP =⋅=⋅+=+⋅又AB ⊥平面286BP P P ,i AB BP ∴⊥,则0i AB BP ⋅=,所以221i i x AB AB BP AB =+⋅==, 则()1,2,,81i i x AB AP i =⋅==,故答案为:{}117. C β∉ A α AB B α⋂= CD α⊂【分析】根据元素与集合,集合与集合之间的关系,由图可写出答案 【详解】(1)C 为元素,平面β为集合,所以,由图可得C β∉.(2)A 为元素,平面α为集合,所以,由图可得A α.(3)直线AB 为集合,平面α为集合,所以,由图可得AB B α⋂=. (4)直线CD 为集合,平面α为集合,所以,CD α⊂.故答案为:①C β∉;②A α;③AB B α⋂=;④CD α⊂; 18.{2,3}##{3,2} 【解析】 【分析】 由交集的运算求解 【详解】{}{}1,2,3,4,|23A B x x ==≤≤,则{2,3}A B =故答案为:{2,3} 19.①②③ 【解析】 【分析】①由补集定义直接判断;②按照函数定义进行判断;③元素一一对应即可判断;④3n =时,不成立. 【详解】因为{}{}**,32,A n n N B n n k k N =∈==-∈,故②正确,又{ 31AB n n k ==-或}*3,n k k N =∈,故①正确;A 、B 两个集合元素一一对应,元素个数相等,故③正确;当3n =时,3223<,故④错误. 故答案为:①②③. 20.4a ≤-或5a ≥ 【解析】 【分析】由3a a <+可得A ≠∅,根据题意可得到端点的大小关系,得到不等式,从而可得答案. 【详解】由题意 3a a <+,则A ≠∅要使得A B =∅,则31a +≤-或5a ≥ 解得4a ≤-或5a ≥ 故答案为:4a ≤-或5a ≥21.[1,1]-【解析】 【分析】由题意可得集合A ,B 表示的曲线有一个交点,可得a x x a =+有一个根,当0a =时,符合题意,当0a ≠时,1x x a =+,分别作出y x =与1xy a=+的图象,根图象求解即可 【详解】因为C A B =,且集合C 为单元素集合, 所以集合A ,B 表示的曲线有一个交点, 所以a x x a =+有一个根 当0a =时,符合题意, 当0a ≠时,1x x a =+,分别作出y x =与1xy a=+的图象, 由图象可知11a ≥或11a≤-时,两函数图象只有一个交点, 解得01a <≤或10a -≤<, 综上,实数a 的取值范围是[1,1]-, 故答案为:[1,1]-22.[)1,+∞【解析】 【分析】由题可得{[]}[0,1)A yy x x ==-=∣,然后利用充分不必要条件的定义及集合的包含关系即求. 【详解】∵[]x 表示不超过x 的最大整数,∴[]x x ≤,[]01x x ≤-<,即{[]}[0,1)A yy x x ==-=∣, 又y A 是y B ∈的充分不必要条件,{0}∣=≤≤B y y m ,∴A B ,故m 1≥,即m 的取值范围是[)1,+∞. 故答案为:[)1,+∞.23.7 【解析】 【分析】由A B A ⋃=可得B A ⊆,所以求出集合B 的所有非空子集即可 【详解】因为A B A ⋃=,所以B A ⊆, 因为{1,2,3}A =,所以非空集合{}1B =,{}2,{}3,{}1,2,{}1,3,{}2,3,{}1,2,3, 所以非空集合B 有7个, 故答案为:724.{1,0,1,2}-【解析】 【分析】根据给定条件求出集合B ,再利用并集的定义直接计算作答. 【详解】解方程220x x -=得:0x =或2x =,则{}0,2B =,而{}1,0,1A =-, 所以{1,0,1,2}A B =-. 故答案为:{1,0,1,2}- 25.∅,{}1-,{1},{1,1}- 【解析】 【分析】利用子集的定义写出所有子集即可. 【详解】由子集的定义,得集合{1,1}-的所有子集有:∅,{}1-,{1},{1,1}-.故答案为:∅,{}1-,{1},{1,1}-.三、解答题26.(1){}|47,Z x x x ≤≤∈,{}4,5,6,7;(2){}0,1,3,5,7,9,10;(3)1a =,元素为1-. 【解析】 【分析】(1)根据补集和交集的定义直接计算作答. (2)利用补集的定义直接计算作答. (3)利用元素与集合的关系推理计算作答. 【详解】(1)由{}|510,Z U x x x =-≤≤∈,N ={|24,Z x x x -<∈≤}, 得:{|52U N x x =-≤<-或410,Z}x x ≤≤∈,而{|07,Z}M x x x =≤≤∈, 所以{}()|47,Z U N M x x x =≤≤∈{}4,5,6,7=.(2)由{}0,1,2,3,4,5,6,7,8,9,10U A B =⋃=,{}2,4,6,8UA B =,得{2,4,6,8}UB =,所以{}()0,1,3,5,7,9,10U U B B ==. (3)当0a =时,P =∅,不符合题意,当0a ≠时,因集合P 只有一个元素,则方程2210ax ax ++=有等根,2440a a ∆=-=, 此时1a =,集合P 中的元素为1-, 所以1a =,这个元素是1-.27.(1)(,2-∞-(2)①2a ≥;②)21N a=【解析】 【分析】(1)当1a =时,求得()sin 22sin cos 1x f x x x +=+-,令[)sin cos 1,1t x x =+∈-,令[)12,0m t =-∈-,()()22h m f x m m==++,利用双勾函数的单调性可得出函数()h m 在[)2,0-上的值域,即可得解;(2)①分析可知210a a --≤≤,可得出2a ≥,分1a =、1a ≠两种情况讨论,化简函数()221at ap t at +-=-的函数解析式或求出函数()f x 的最小值,综合可得出正实数a 的取值范围;②令[]11,1n at a a =-∈---,则1n t a +=,可得出()()21122a a p t n n a n ϕ⎡⎤+-=++=⎢⎥⎣⎦,分析可得出101a a --<<-<法可求得N . (1)解:当1a =时,()sin 22sin cos 1x f x x x +=+-,因为,02x π⎡⎫∈-⎪⎢⎣⎭,则,444x πππ⎡⎫+∈-⎪⎢⎣⎭,令[)sin cos 1,14t x x x π⎛⎫=+=+∈- ⎪⎝⎭,则212sin cos 1sin 2t x x x =+=+,可得2sin 21x t =-, 设()()211t g t f x t +==-,其中11t -≤<,令1m t =-,则()22111221m t m t m m+++==++-,令()22h m m m=++,其中20m -≤<,下面证明函数()h m 在2,⎡-⎣上单调递增,在()上单调递减,任取1m 、[)22,0m ∈-且12m m <,则()()1212122222h m h m m m m m ⎛⎫⎛⎫-=++-++ ⎪ ⎪⎝⎭⎝⎭()()()()12121212121222m m m m m m m m m m m m ---=--=,当122m m -≤<<122m m >,此时()()12h m h m <,当120m m <<,则1202m m <<,此时()()12h m h m >, 所以,函数()h m在2,⎡-⎣上单调递增,在()上单调递减,则()(max 2h m h ==-因此,函数()f x 在,02π⎡⎫-⎪⎢⎣⎭上的值域为(,2-∞-. (2)解:因为,02x ⎡⎤∈-⎢⎥⎣⎦π,则,444x πππ⎡⎤+∈-⎢⎥⎣⎦,令[]sin cos 1,14t x x x π⎛⎫=+=+∈- ⎪⎝⎭,设()()222211a a t at a a f x p t at at -⎛⎫+ ⎪+-⎝⎭===--, ①若(){}0y y f x ∈=,必有210aa--≤≤,因为0a >,则2a ≥,当1a =时,即当1a =()110p t t t a =+==,可得1t =,合乎题意;当1a≠2a ≥且1a ≠()min 0p t =,合乎题意. 综上所述,2a ≥;②令[]11,1n at a a =-∈---,则1n t a+=, 则()()22121122n a a a a a a p t n n n a n ϕ⎡⎤+-⎛⎫+⎢⎥ ⎪⎝⎭⎡⎤+-⎢⎥⎣⎦==++=⎢⎥⎣⎦, 令()()20qs x x q x=++>,下面证明函数()s x在(上单调递减,在)+∞上为增函数,任取1x、(2x ∈且12x x <,则120x x -<,120x x q <<, 所以,()()()()()()121212121212121212220q x x x x x x q q qs x s x x x x x x x x x x x ---⎛⎫⎛⎫-=++-++=--=> ⎪ ⎪⎝⎭⎝⎭,所以,()()12s x s x >,故函数()s x在(上单调递减, 同理可证函数()s x在)+∞上为增函数,在(,-∞上为增函数,在()上为减函数,因为12a <<,则()()2212121,2a a a +-=--+∈,且()()22121220a a a a a +---=->10a >->, 又()22212120a a a a +----=-<,1a ∴--<,101a a ∴--<<-由双勾函数的单调性可知,函数()n ϕ在1,a ⎡--⎣上为增函数,在()上为减函数,在(]0,1a -上为减函数, 当[)1,0x a ∈--时,()((max 120n aϕϕ==-<, ()2101a a ϕ-=>-,()((22111a a a ϕϕ⎡⎤---=+⎢⎥⎣⎦- (())())()21142214210111a a a a a a a a a a +------=≥=>---,由双勾函数性质可得()()min 21f x a ϕ=-=,综上所述())min 21f x N a==.【点睛】关键点点睛:在求解本题第二问第2小问中,要通过不断地换元,将问题转化为双勾函数的最值,结合比较法可得出结果. 28.(1){21}x x -<<; (2)[2,4]∈-m . 【解析】 【分析】(1)当1m =时,解分式不等式化简集合A ,解一元二次不等式化简集合B ,再利用并集的定义计算作答.(2)由给定条件可得B A ⊆,再借助集合包含关系列式计算作答. (1) 由2111x x +<-,得201x x +<-,解得21x -<<,则{21}A x x =-<<, 当1m =时,()()1{1210}12B x x x x x ⎧⎫=-+<=-<<⎨⎬⎩⎭,所以{21}A B x x ⋃=-<<. (2)因为“x A ∈”是“x B ∈”的必要条件,则B A ⊆, 当12m ->,即2m <-时,{1}2mB x x =<<-,B A ⊄,不符合题意,当12m-=,即2m =-时,B =∅,符合题意, 当12m -<,即2m >-时,12m B x x ⎧⎫=-<<⎨⎬⎩⎭,则212m -≤-<,解得24m -<≤,综上得:24m -≤≤,所以实数m 的取值范围[2,4]∈-m .29.(,3]-∞【解析】 【分析】求函数定义域得93,2A ⎛⎤= ⎥⎝⎦,解不等式得[4,5]B =,进而得(3,5]A B =,再结合题意,分C =∅和C ≠∅两种情况求解即可.【详解】解:由30920x x ->⎧⎨-≥⎩,解得932x <≤,所以93,2A ⎛⎤= ⎥⎝⎦,因为()()2920450x x x x -+=--≤,解得45x ≤≤,所以[4,5]B =所以(3,5]A B = 因为()C A B ⊆,所以,当C =∅时,121a a +≥-,解得2a ≤C ≠∅时,可得12113215a a a a +<-⎧⎪+>⎨⎪-≤⎩,解得:23a <≤综上可得:实数a 的取值范围是(,3]-∞ 30.{}=34A B x x ⋂-<<,{}=46A B x x ⋃-<< 【解析】 【分析】先化简集合A 、B ,再去求A B 、A B 即可解决. 【详解】{}{}2=16044A x x x x -<=-<<{}{}2=318036B x xx x x -++>=-<<则{}{}{}=443634A B x x x x x x ⋂-<<⋂-<<=-<<{}{}{}=443646A B x x x x x x ⋃-<<⋃-<<=-<<。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数 学 试 题 卷
一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.
(1)已知集合{|(2)(3)0}A x x x =+-<,{1,0,1,2,3}B =-,则A B =
(A ){0,1} (B ){0,1,2}
(C ){1,0,1}- (D ){1,0,1,2}-
(2)设a =(2,)k k +,b =(3,1),若a ⊥b ,则实数k 的值等于
(A )-32 (B )-53 (C )53 (D )32
(3)设等差数列{a n }的前n 项和为S n ,若a 5+a 14=10,则S 18等于
(A )20 (B )60 (C )90 (D )100
(4)圆与圆的位置关系为
(A )内切 (B )相交 (C )外切 (D )相离
(5)已知变量x ,y 满足约束条件⎪⎩
⎪⎨⎧≤-≥+≤112y x y x y ,则z =3x +y 的最大值为
(A )12 (B )11 (C )3 (D )-1
(6)已知等比数列{a n }中,a 1=1,q =2,则T n =1a 1a 2+1a 2a 3
+…+1a n a n +1的结果可化为
(A )1-14n (B )1-12n (C )23(1-14n ) (D )23(1-12n )
(7)“m =1”是“直线20mx y +-=与直线10x my m ++-=平行”的
(A )充分不必要条件
(B )必要不充分条件 (C )充要条件 (D )既不充分也不必要条件
(8)阅读右面的程序框图,运行相应的程序,
输出S 的值为
(A )15
(B )105
(C )245
(D )945 第II 卷
二、填空题:本大题共4小题,每小题5分
(13)某学校高一、高二、高三年级的学生人数之比为334::,现用分层抽样的方法
从该校高中三个年级的学生中抽取容量为50的样本,则应从高一年级抽取 名学生.
(14)在ABC ∆中,角所对边长分别为,若73,,cos 6a B A π==
= 则b =___________.
(15)已知点P ,Q 为圆C :x 2+y 2=25上的任意两点,且|PQ |<6,若PQ 中点
组成的区域为M ,在圆C 内任取一点,则该点落在区域M 上的概率为
__________ .
(16)点C 是线段..AB 上任意一点,O 是直线AB 外一点,OC xOA yOB =+,
不等式22(1)(2)(2)(1)x y y x k x y +++>++对满足条件的x ,y 恒成立,
则实数k 的取值范围_______.
三、解答题:解答应写出文字说明,证明过程或演算步骤.
已知的面积是3,角所对边长分别为,4cos 5A =
. (Ⅰ)求AB AC ;
(Ⅱ)若2b =,求的值.
,,A B C ,,a b c ABC ∆,,A B C ,,a b c a
已知圆:,直线l 过定点.
(Ⅰ)若l 与圆相切,求直线l 的方程;
(Ⅱ)若l 与圆相交于、两点,且22PQ =,求直线l 的方程.
某校从高一年级学生中随机抽取40名学生,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段:[40,50),[50,60),…,[90,100]后得到如图所示的频率分布直方图.
(Ⅰ)若该校高一年级共有学生640名,试估计
该校高一年级期中考试数学成绩不低于60分的人数;
(Ⅱ)若从数学成绩在[40,50)与[90,100]两个分数
段内的学生中随机选取2名学生,求这2名学生的数学
成绩之差的绝对值不大于10的概率.
已知数列{a n }满足111,n n a a a n -=-=(其中2n n N ≥∈且).
(Ⅰ)求数列{a n }的通项公式;
(Ⅱ)设24n n n
a b n =
⨯,其前n 项和是T n ,求证:T n <79 .
C 4)4()3(22=-+-y x (1,0)A C C P Q
已知动点(,)P x y 满足方程1(0)xy x =>.求动点P 到直线:20l x y +=距
离的最小值;
已知函数2
()ax b f x x +=
为奇函数,且(1)1f =.求实数a 与b 的值;
1—5 DACBB 6—10 CCBDD 15,2,925,1()4
-∞, 解答题:(17)解:由4cos 5A =,得3sin 5
A =. 又,1sin 32
bc A =∴10bc =(Ⅰ)cos 8AB AC bc A == (Ⅱ)2,5b c =∴=,=13
∴a =.解:(Ⅰ)当斜率不存在时,方程x=1满足条件;
当L 1斜率存在时,设其方程是y=k(x -1),则
214k 32=+--k k ,解得43=k , 所以所求方程是x =1和3x -4y -3=0;
(Ⅱ)由题意,直线斜率存在且不为0,设其方程是y =k (x -1),则圆心到直线的距离d=14
k 22+-k
,224d d -=∴k =1或k =7,
所以所求直线方程是10x y --=或770x y --=.
解:(Ⅰ)根据频率分布直方图,成绩不低于60分的频率为
1-10×(0.005+0.01)=0.85.由于该校高一年级共有学生640名,利用样本估计总体的思想,可估计该校高一年级期中考试数学成绩不低于60分的人数约为640×0.85=544.
解:121321()()()n n n a a a a a a a a -=+-+-+
+- (1)
1232n n
n +=++++
=
解:
(Ⅰ)2|5x
d +=
=≥当且仅当x =小值
5. 解:因为()f x 为奇函数,
22ax b ax b x x -++=-, 得0b =,又(1)1f =,得1a =
1sin 302bc A =2222cos a b c bc A =+-。

相关文档
最新文档