陕西省安康市2015届高三第三次教学质量调研考试数学(文)试题(扫描版)

合集下载

陕西省安康市数学高三下学期理数第三次教学质量检查试卷

陕西省安康市数学高三下学期理数第三次教学质量检查试卷

陕西省安康市数学高三下学期理数第三次教学质量检查试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)如图为函数的图象,其中为常数,则下列结论正确()A .B .C .D .2. (2分)已知正项等比数列中,,,则A . 2B .C .D .3. (2分)(2020·蚌埠模拟) 已知等差数列中,前n项和满足,则的值是()A . 3B . 6C . 7D . 94. (2分)(2020·蚌埠模拟) 在统计学中,同比增长率一般是指和去年同期相比较的增长率,环比增长率一般是指和前一时期相比较的增长率.2020年2月29日人民网发布了我国2019年国民经济和社会发展统计公报图表,根据2019年居民消费价格月度涨跌幅度统计折线图,下列说法正确的是()A . 2019年我国居民每月消费价格与2018年同期相比有涨有跌B . 2019年我国居民每月消费价格中2月消费价格最高C . 2019年我国居民每月消费价格逐月递增D . 2019年我国居民每月消费价格3月份较2月份有所下降5. (2分)(2020·蚌埠模拟) 已知双曲线离心率为3,则双曲线C的渐近线方程为()A .B .C .D .6. (2分)(2020·蚌埠模拟) 已知向量,的夹角为,,,则等于()A .B .C .D .7. (2分)(2020·蚌埠模拟) 劳动教育是中国特色社会主义教育制度的重要内容,某高中计划组织学生参与各项职业体验,让学生在劳动课程中掌握一定劳动技能,理解劳动创造价值,培养劳动自立意识和主动服务他人、服务社会的情怀.学校计划下周在高一年级开设“缝纫体验课”,聘请“织补匠人”李阿姨给同学们传授织补技艺。

高一年级有6个班,李阿姨每周一到周五只有下午第2节课的时间可以给同学们上课,所以必须安排有两个班合班上课,高一年级6个班“缝纫体验课”的不同上课顺序有()A . 600种B . 3600种C . 1200种D . 1800种8. (2分)(2020·蚌埠模拟) 函数的图象是由函数的图象向右平移个单位长度后得到,则下列是函数的图象的对称轴方程的为()A .B .C .D .9. (2分)(2020·蚌埠模拟) 已知椭圆的离心率为,左,右焦点分别为,,过左焦点作直线与椭圆在第一象限交点为P,若为等腰三角形,则直线的斜率为()A .B .C .D .10. (2分)(2020·蚌埠模拟) 已知函数的图象如图所示,则函数的解析式可能是()A .B .C .D .11. (2分)(2020·蚌埠模拟) 开学后,某学校食堂为了减少师生就餐排队时间,特推出即点即取的米饭套餐和面食套餐两种,已知小明同学每天中午都会在食堂提供的米饭套餐和面食套餐中选择一种,米饭套餐的价格是每份15元,面食套餐的价格是每份10元,如果小明当天选择了某种套餐,她第二天会有的可能性换另一种类型的套餐,假如第1天小明选择了米饭套餐,第n天选择米饭套餐的概率,给出以下论述:①小明同学第二天一定选择面食套餐;② ;③ ;④前n天小明同学午餐花费的总费用数学期望为 .其中正确的是()A . ②④B . ①②③C . ③④D . ②③④12. (2分)(2020·蚌埠模拟) 已知函数,若函数在区间内存在零点,则实数a的取值范围是()A .B .C .D .二、填空题 (共4题;共4分)13. (1分) (2018高二上·泰安月考) 已知正实数满足,则的最小值为________.14. (1分)设A,B为两个非空数集,定义:A+B={a+b|a∈A,b∈B},若A={0,2,5},B={1,2,6},则A+B 子集的个数是________.15. (1分) (2020高二下·北京期中) 口袋中有个白球,3个红球,依次从口袋中任取一球,如果取到红球,那么继续取球,且取出的红球不放回;如果取到白球,就停止取球,记取球的次数为X,若,则的值为________ .16. (1分)(2020·蚌埠模拟) 如图是第七届国际数学教育大会的会徽,它的主题图案由一连串如图所示的直角三角形演化而成.设其中的第一个直角是等腰三角形,且,则,,现将沿翻折成,则当四面体体积最大时,它的表面有________个直角三角形;当时,四面体外接球的体积为________.三、解答题 (共7题;共75分)17. (10分) (2020高二下·柳州模拟) 以直角坐标系原点为极点,轴正方向为极轴,已知曲线的方程为,的方程为,是一条经过原点且斜率大于0的直线.(1)求与的极坐标方程;(2)若与的一个公共点(异于点),与的一个公共点为,求的取值范围.18. (15分)(2017·鞍山模拟) 某公司计划明年用不超过6千万元的资金投资于本地养鱼场和远洋捕捞队.经过本地养鱼场年利润率的调研,得到如图所示年利润率的频率分布直方图.对远洋捕捞队的调研结果是:年利润率为60%的可能性为0.6,不赔不赚的可能性为0.2,亏损30%的可能性为0.2.假设该公司投资本地养鱼场的资金为x(x≥0)千万元,投资远洋捕捞队的资金为y(y≥0)千万元.(1)利用调研数据估计明年远洋捕捞队的利润ξ的分布列和数学期望Eξ.(2)为确保本地的鲜鱼供应,市政府要求该公司对本地养鱼场的投资不得低于远洋捕捞队的一半.适用调研数据,给出公司分配投资金额的建议,使得明年两个项目的利润之和最大.19. (10分)(2020·蚌埠模拟) 如图四棱柱中,,,,M为的中点.(1)证明:平面;(2)若四边形是菱形,且面面,,求二面角的余弦值.20. (10分)(2020·蚌埠模拟) 已知抛物线的焦点为F,直线与抛物线C交于A,B两点,若,则 .(1)求抛物线C的方程;(2)分别过点A,B作抛物线C的切线、,若,分别交x轴于点M,N,求四边形面积的最小值.21. (10分)(2020·蚌埠模拟) 已知函数 .(1)分析函数的单调性;(2)证明:, .22. (10分)(2020·蚌埠模拟) 在平面直角坐标系中,直线l的参数方程为(其中t为参数,).在以原点O为极点,x轴的非负半轴为极轴所建立的极坐标系中,曲线C的极坐标方程为 .设直线l与曲线C相交于A,B两点.(1)求曲线C和直线l的直角坐标方程;(2)已知点,求的最大值.23. (10分)(2020·蚌埠模拟) 已知函数, .(1)若不等式对恒成立,求实数m的取值范围;(2)若(1)中实数m的最大值为t,且(a,b,c均为正实数).证明: .参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题 (共7题;共75分)17-1、17-2、18-1、18-2、19-1、19-2、20-1、20-2、21-1、21-2、22-1、22-2、23-1、23-2、。

陕西省安康市2023届高三三模文科数学试题及参考答案

陕西省安康市2023届高三三模文科数学试题及参考答案

陕西省安康市2023届高三三模(第三次质量联考)文科数学试题及参考答案一.选择题1.已知集合(){}2,x y y x A ==,(){}x y y x B ==,,则=B A ()A.{}1,0 B.(){}0,0 C.(){}1,1 D.()(){}1,10,0,2.若复数()R b a bi a z ∈+=,满足i z +2为纯虚数,则=ab ()A.2- B.21-C.21 D.23.已知等差数列{}n a 的前n 项和为n S ,443=+a a ,则=6S ()A.6B.12C.18D.244.已知向量()1,2=a,()x b ,1= ,若b a -2与b 共线,则=b ()A.25 B.45 C.5 D.55.党的二十大报告提出全面推进乡村振兴.为振兴乡村经济,某市一知名电商平台决定为乡村的特色产品开设直播带货专场.该特色产品的热卖黄金时段为2023年3月1日至5月31日,为了解直播的效果和关注度,该电商平台统计了已直播的2023年3月1日至3月5日时段的相关数据,这5天的第x 天到该电商平台专营店购物人数y (单位:万人)的数据如下表:依据表中的统计数据,经计算得y 与x 的线性回归方程为a x y+=4.6ˆ.请预测从2023年3月1日起的第58天到该专营店购物的人数(单位:万人)为()A.440B.441C.442D.4436.若双曲线()01222>=-k ky x 的渐近线与圆()1222=-+y x 相切,则=k ()A.2B.3C.1D.337.在ABC ∆中,“B A tan tan >”是“B A sin sin >”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件8.已知方程()()0272722=+-+-nx x mx x 的四个根组成以1为首项的等比数列,则=-n m ()A.8B.12C.16D.209.羽毛球运动是一项全民喜爱的体育运动,标准的羽毛球由16根羽毛固定在球托上,测得每根羽毛在球托之外的长为6cm,球托之外由羽毛围成的部分可看成一个圆台的侧面,测得顶端所围成圆的直径是6cm,底部所围成的圆的直径是2cm,据此可估算得球托之外羽毛所在曲面的展开图的圆心角为()A.3πB.2π C.32π D.π10.设()x f 时定义域R 的偶函数,且()()x f x f -=+2,2121=⎪⎭⎫⎝⎛f ,则=⎪⎭⎫ ⎝⎛22023f ()A.21-B.21 C.23-D.2311.已知椭圆C :()012222>>=+b a b y a x 的左、右焦点分别为21,F F ,P 为椭圆C 上一点,︒=∠6021PF F ,点2F 到直线1PF 的距离为a 33,则椭圆C 的离心率为()A.33B.22 C.36 D.32212.若01.11121=-==+ce a b,则()A.cb a >> B.ca b >> C.b a c >> D.ab c >>二、填空题13.已知y x ,满足约束条件⎪⎩⎪⎨⎧≤+-≤->7220y x y x x ,则y x z -=的最大值是.14.已知函数()()⎩⎨⎧>-≤=0,10,4x x f x x f x ,则()=3log 2f .15.已知函数()()0cos >=ωωx x f 的图象关于点⎪⎭⎫ ⎝⎛02,π对称,且在区间⎥⎦⎤⎢⎣⎡80π,单调,则ω的一个取值是.16.已知矩形ABCD 的周长为36,把它沿图中的虚线折成正六棱柱,当这个正六棱柱的体积最大时,它的外接球的表面积为.三、解答题17.新高考取消文理分科,采用选科模式,这赋予了学生充分的自由选择权.新高考地区某校为了解本校高一年级将来高考选考历史的情况,随机选取了100名高一学生,将他们某次历史测试成绩(满分100分)按照[0,20),[20,4.),[40,60),[60,80)[80,100]分成5组,制成如图所示的频率分布直方图.(1)求图中a 的值并估计这100名学生本次历史测试成绩的中位数;(2)据调查,本次历史测试成绩不低于60分的学生,高考将选考历史科目:成绩低于60分的学生,高考将不选考历史科目.按分层抽样的方法从测试成绩在[0,20),[80,100]的学生中选取5人,再从这5人中任意选取2人,求这2人中至少有1人高考选考历史科目的概率.18.已知ABC ∆的内角C B A ,,的对边分别为c b a ,,,且c a <,416cos 3sin =⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-A A ππ.(1)求A ;(2)若3=b ,B Cc A a sin 34sin sin =+,求ABC ∆的面积.19.如图,四棱锥ABCD P -中,⊥PD 平面ABCD ,四边形ABCD 是正方形,G F E ,,分别是棱P A AD BC ,,的中点.(1)证明:PE ∥平面BFG ;(2)若2=AB ,求点C 到平面BFG 的距离.20.已知函数()x a x x f ln 2-=.(1)讨论函数()x f 的单调性;(2)若()2212a a x f -≥,求a 的取值范围.21.已知()21,M 抛为物线C :px y 22=上一点.(1)求抛物线C 的标准方程;(2)过点()1,0T 的直线l 与抛物线C 交于B A ,两点,且直线MA 与MB 的倾斜角互补,求TB TA ⋅的值.22.在平面直角坐标系xOy 中,已知直线l 的参数方程为()⎩⎨⎧=-=ty t x 222(t 为参数).以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为()4sin 3122=+θρ.(1)求直线l 的普通方程与曲线C 的直角坐标方程;(2)若射线βθ=(其中()πβ,0∈,且21tan -=β,0≥ρ)与曲线C 在x 轴上方交于点M ,与直线l 交于点N ,求MN .23.已知函数()322-++=x x x f .(1)求不等式()5≤x f 的解集;(2)若R x ∈∀,()x f a a ≤-32,求a 的取值范围.参考答案一.选择题1.D 解析:由题意得⎩⎨⎧==xy x y 2,解得⎩⎨⎧==00y x 或⎩⎨⎧==11y x ,故=B A ()(){}1,10,0,.2.A解析:()()()()()52222222ia b b a i i i bi a i bi a i z -++=-+-+=++=+为纯虚数,∴⎩⎨⎧≠-=+0202a b b a ,∴2-=a b.3.B解析:()()12262643616=+=+=a a a a S .4.A 解析:由题意得()xb a -=-2,32 ,∴x x -=23,解得21=x ,∴25411=+=b .5.C解析:由题意,3554321=++++=x ,90510098938475=++++=y ,将()90,3代入a x y+=4.6ˆ,可得a +⨯=34.690,解得8.70=a ,线性回归直线方程为8.704.6ˆ+=x y,将58=x 代入上式,4428.70584.6ˆ=+⨯=y.6.B解析:双曲线的渐近线方程为kx y ±=,即0=-±y kx .∵双曲线的渐近线与圆相切,∴1122=+k ,解得3=k .7.D解析:当6π=A ,32π=B 时,B A tan tan >,但B A sin sin <,故“B A tan tan >”不是“B A sin sin >”的充要条件,当32π=A ,6π=B 时,B A sin sin >,但B A tan tan <,故“B A tan tan >”不是“B A sin sin >”的必要条件;∴“B A tan tan >”是“B A sin sin >”的既不充分又不必要条件8.C解析:设方程()()0272722=+-+-nx x mx x 的四个根由小到大依次为4321,,,a a a a 不妨设0272=+-mx x 的一个根为1,则另一根为27,∴28271=+=m .由等比数列的性质可知3241a a a a =,∴27141==a a ,,∴等比数列4321,,,a a a a 的公比为3314==a a q ,∴931331232=⨯==⨯=a a ,,由韦达定理得1293=+=n ,∴161228=-=-n m .9.C解析:将圆台补成圆锥,则羽毛所在曲面的面积为大、小圆锥的侧面积之差,设小圆锥母线长为x ,则大圆锥母线长为6+x ,由相似得316=+x x ,解得3=x .∴可估算得球托之外羽毛所在的曲面的展开图的圆心角为32312ππ=⋅.10.B 解析:由已知可得()()x f x f =+2,∴()x f 的周期为2,∴21212110122202322023=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-=⎪⎭⎫⎝⎛-=⎪⎭⎫⎝⎛f f f f .11.A解析:如图,由题意得a M F 332=,︒=∠6021PF F ,∴a PF a PM 32312==,,由椭圆定义可得a PF MF PM PF PF 22121=++=+,∴a MF =1.在21F MF Rt ∆中,由勾股定理得222433c a a =⎪⎪⎭⎫ ⎝⎛+,可得33==a c e .12.A 解析:由01.11121=-==+c e a b得01.11101.1ln 2101.12-==-=c b a ,,,比较a 和b ,构造函数()x x x f ln 212--=,当1>x ,()01>-='x x x f ,()x f 在()∞+,1上单调递增,故()()0101.1=>f f ,即b a >.同理比较b 和c ,构造函数()⎪⎭⎫ ⎝⎛--=x x x g 11ln ,当1>x ,()012>-='xx x g ,∴()x g 在()∞+,1上单调递增,∴()()0101.1=>g g ,即c b >.综上:c b a >>.二、填空题13.1解析:作出可行域,易得目标函数y x z -=在点()3,4A 处取得最大值1.14.169解析:()()⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=-=43log 123log 23log 13log 3log 22222f f f f f 1692443log 243log 22===.15.1或3或5或7(写出其中一个即可)解析:由已知可得02cos =⎪⎭⎫ ⎝⎛⋅πω,∴Z k k ∈+=⋅,22πππω,∴Z k k ∈+=,21ω.∵()x f 在区间⎥⎦⎤⎢⎣⎡80π,单调,∴⎥⎦⎤⎢⎣⎡∈ωπω8,0x ,∴结合x y cos =的图象可得πωπ≤8,∴80≤<ω,∴=ω1或3或5或7.16.π52解析:设正六棱柱的底面边长为x ,高为y ,则186=+y x ,30<<x ,正六棱柱的体积()()3366183363618336343632=⎥⎦⎤⎢⎣⎡-++≤-⋅⋅⋅=⋅=x x x x x x x y x V ,当且仅当x x 6183-=,即2=x 时,等号成立,此时6=y .正六棱柱的外接球的球心在其上下底面中心的连线的中点,其半径为133222=+,∴外接球的表面积为ππ52134=⨯.三、解答题17.解:(1)()1200125.0015.001.0005.0=⨯++++a ,解得0075.0=a .设中位数为x ,∵学生成绩在[0,40)的频率为()5.03.001.0005.020<=+⨯,在[0,60)的频率为()5.06.0015.001.0005.020>=++⨯∴中位数满足等式()5.040015.02001.020005.0=-⨯+⨯+⨯x ,解得3160=x .故这100名学生本次历史测试成绩的中位数为3160.(2)成绩在[0,20)的频数为1010020005.0=⨯⨯,成绩在[80,100]的频数为151********.0=⨯⨯,按分层抽样的方法选取5人,则成绩在[0,20)的学生被抽取252510=⨯人,设为b a ,,在[80,100]的学生被抽取352515=⨯人,设为e d c ,,,从这5人中任意选取2人,基本事件有a b,a c,a d,a e,b c,b d,b e,c d,c e,d e,共10种,都不选考历史科目的有a b,1种,故这2人中至少有1人高考选历史科目的概率为1091011=-=P .18.解:(1)⎪⎭⎫⎝⎛+=⎪⎭⎫ ⎝⎛+⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛+⎪⎭⎫⎝⎛-A A A A A 6cos 6cos 32cos 6cos 3sin 2ππππππ412123cos =+⎪⎭⎫⎝⎛+=A π,∴2123cos -=⎪⎭⎫ ⎝⎛+A π,∵π<<A 0,∴37233πππ<+<A ,∴3223ππ=+A 或3423ππ=+A ,解得6π=A 或2π=A ,∵c a <,∴2π<A ,∴6π=A .(2)由(1)知6π=A ,B C c A a sin 34sin sin =+,由正弦定理得123422==+b c a 由余弦定理得A bc c b a cos 2222⋅-+=,即233231222⋅-+=-c c c ,整理得09322=--c c ,由0>c 得3=c ,∴433213321sin 21=⨯⨯⨯==∆A bc S ABC .19.解:(1)连接DE ,∵ABCD 是正方形,F E ,分别是AD BC ,的中点,∴BE DF BE DF ∥,=,∴四边形BEDF 是平行四边形,∴BF DE ∥,∵G 是P A 中点,∴PD FG ∥.∵⊄DE PD ,平面BFG ,⊂BF FG ,平面BFG ,∴PD ∥平面BFG ,DE ∥平面BFG,∵D DE PD = ,∴平面PDE ∥平面BFG ,∵⊂PE 平面PDE ,∴PE ∥平面BFG .(2)∵⊥PD 平面ABCD ,PD FG ∥,∴⊥FG 平面ABCD ,过C 在平面ABCD 内,作BF CM ⊥,垂足为M ,则CM FG ⊥,∵F BF FG = ,∴⊥CM 平面BFG .∴CM 长是点C 到平面BFG 的距离,∵BCF ∆中,5==CF FB ,∴由等面积可得554522=⨯=CM .∴点C 到平面BFG 的距离为554.20.解:(1)由题意可得()0,22>-=-='x xa x x a x f ,当0≤a 时,()0>'x f ,此时()x f 在()∞+,0上单调递增;当0>a 时,令()0<'x f 得20a x <<,令()0>'x f 得2ax >,此时()x f 在⎪⎭⎫ ⎝⎛2,0a 上单调递减,在⎪⎭⎫⎝⎛+∞,2a 上单调递增.(2)当0=a 时,()02>=x x f ,()2212a a x f -≥显然成立.当0<a 时,()x f 在()∞+,0上单调递增,若()aa ex 2220-<<,由()0222<-aa 可得()10222<<-aa e,∴()()()2222212222ln 2ln 2ln 22a a aa a e a x a x a x x f aa -=-⋅-=-<-<-=-,与()2212a a x f -≥矛盾;当0>a 时,()x f 在⎪⎭⎫ ⎝⎛2,0a 上单调递减,在⎪⎭⎫ ⎝⎛+∞,2a 上单调递增,∴()2ln 2min a a a a f x f -=⎪⎭⎫⎝⎛=.∵()2212a a x f -≥,∴22122ln a a a a a -≥-,即012ln 2≥--aa .令()12ln 2--=a a a h ,则()aa a a h 22121-=-=',令()0>'a h 得2>a ,∴()a h 在()2,0上单调递减,在()∞+,2上单调递增,∴()()012ln 2ln 12min =-+-==h a h ,∴012ln 2≥--a a .综上,a 的取值范围是[)∞+,0.21.解:(1)由点()21,M 在抛物线C 上得p 222=,即2=p ,∴抛物线C 的准线方程为12-=-=p x .(2)设直线AB 的方程为1+=kx u ,()()2211,,y x B y x A ,,由直线MA 与MB 的倾斜角互补得0=+MB MA k k ,即()()()02244142142222221212222112211=++++=--+--=--+--y y y y y y y y x y x y ,∴421-=+y y .联立⎩⎨⎧=+=x y kx y 412得0442=+-y ky ,∴k y y k y y 442121==+,,∴44-=k,∴1-=k ,421-=y y .()()()()222221212222212112kx x kx x y x y x TB TA +⋅+=-+⋅-+=⋅()()24112212212=⎪⎭⎫ ⎝⎛+=+=y y k x x k .22.解:(1)由()⎩⎨⎧=-=t y t x 222得()222-=y x ,即0242=+-y x .故直线l 的普通方程是0242=+-y x .由()4sin 3122=+θρ得4sin 3222=+θρρ,代入公式⎩⎨⎧==θρθρsin cos y x 得43222=++y y x ,∴1422=+y x ,故曲线C 的直角坐标方程是1422=+y x .(2)由βθ=(其中()πβ,0∈,且21tan -=β,0≥ρ)得55sin =β,552cos -=β.将射线βθ=(0≥ρ)代入曲线C 的极坐标方程,可得2555314sin 314222=⎪⎪⎭⎫ ⎝⎛⨯+=+=βρM ,∴210=M ρ.直线l 的极坐标方程为024sin 2cos =+-θρθρ,将βθ=(0≥ρ)代入直线l 的极坐标方程可得:024sin 2cos =+-βρβρ,∴10=N ρ,∴21021010=-=-=M N MN ρρ.23.解:(1)()⎪⎩⎪⎨⎧≥-<<-+-≤+-=-++=3,1331,51,13322x x x x x x x x x f .①当1-≤x 时,34513-≥⇒≤+-x x ,解得134-≤≤-x ;②当31<<-x 时,055≤⇒≤+x x ,解得01≤<-x ;③当3≥x 时,2513≤⇒≤-x x ,无解.∴不等式的解集为⎭⎬⎫⎩⎨⎧≤≤-034x x .(2)∵R x ∈∀,()x f a a ≤-32,∴()min 23x f a a ≤-,由(1)知()x f 在()1-∞-,单调递减,[)3,1-单调递增,[)∞+,3单调递增,∴()()41min =-=f x f ,∴432≤-a a ,∴4342≤-≤-a a ,解得41≤≤-a .。

陕西省安康市2023-2024学年高三第三次质量联考文科数学试题含答案

陕西省安康市2023-2024学年高三第三次质量联考文科数学试题含答案

2023—2024学年安康市高三年级第三次质量联考文科数学考试满分:150分考试时间:120分钟注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在条形码区域内。

2.全部答案在答题卡上完成,答在本试卷上无效。

3.回答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案用0.5mm 黑色笔迹签字笔写在答题卡上。

4.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设()2341+i z=i +i +i ,则z =()A .11i 22+B .11i 22-C .11i 22--D .11i 22-+2.集合{{,M x y N y y ====,则下列选项正确的是()A .M N R= B .M N N= C .M N N= D .M N =∅3.已知函数()1f x x =-,公差不为0的等差数列{}n a 的前n 项和为n S .若()()10121013f a f a =,则2024S =()A .1012B .2024C .3036D .40484.若实数,x y 满足约束条件15117x y x y x y -≥-⎧⎪+≥⎨⎪+≤⎩,则2z x y =-的最大值为()A .0B .2C .9D .115.甲、乙、丙三人被随机的安排在周六、周日值班,每天至少要有一人值班,每人只在其中一天值班.则甲、乙被安排在同一天值班的概率为()A .16B .14C .13D .126.在ABC △中,M 是AB 的中点,3,AN NC CM = 与BN 相交于点P ,则AP =()A .3155AB AC+B .1355AB AC+C .1324AB AC+D .3142AB AC+7.已知正数,a b 满足ln 2aae b b ==,则()A .1a b <<B .1a b <<C .1a b>>D .1a b >>8.已知tan 24πθ⎛⎫-= ⎪⎝⎭,则sin 24πθ⎛⎫+= ⎪⎝⎭()A .7210-B .210-C .210D .72109.侧棱长与底面边长均为a 的正三棱柱的外接球的表面积为84π,则a =()A .12B .8C .6D .410.已知直线l 与椭圆2213y x +=在第四象限交于A B 、两点,l 与x 轴,y 轴分别交于C D 、两点,若AC BD =,则l 的倾斜角是()A .6πB .4πC .3πD .512π11.折扇是我国古老文化的延续,在我国已有四千年左右的历史,“扇”与“善”谐音,折扇也寓意“善良”“善行”.它常以字画的形式体现我国的传统文化,也是运筹帷幄、决胜千里、大智大勇的象征(如图1).图2是一个圆台的侧面展开图(扇形的一部分),若两个圆弧,DE AC 所在圆的半径分别是6和12,且120ABC ∠=︒,则该圆台的体积为()图1图2A .B .723C .2823D .1122312.在平面直角坐标系中,曲线241y x x =-+与坐标轴的交点都在圆C 上,AB 为圆C 的直径,点P 是直线34100x y ++=上任意一点,则PA PB ⋅的最小值为()A .4B .12C .16D .18二、填空题:本题共4小题,每小题5分,共20分。

陕西省安康市高考数学三模试卷

陕西省安康市高考数学三模试卷

陕西省安康市高考数学三模试卷姓名:________ 班级:________ 成绩:________一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填 (共14题;共70分)1. (5分)(2017·孝义模拟) 已知集合A={x∈Z|y=log3(x+5)},B={x∈R|2x< },则A∩B=________.2. (5分) (2019高二下·汕头月考) 已知复数 ,则的共轭复数为________.3. (5分)(2020·海安模拟) 命题A:|x-1|<3,命题B:(x+2)(x+a)<0;若A是B的充分而不必要条件,则实数a的取值范围是________.4. (5分)(2012·浙江理) 在△ABC中,M是BC的中点,AM=3,BC=10,则• =________.5. (5分)(2016·陕西模拟) 已知F是双曲线C:x2﹣ =1的右焦点,若P是C的左支上一点,A(0,6)是y轴上一点,则△APF面积的最小值为________.6. (5分) (2017高三上·沈阳开学考) 设点P是曲线y=2x2上的一个动点,曲线y=2x2在点P处的切线为l,过点P且与直线l垂直的直线与曲线y=2x2的另一交点为Q,则PQ的最小值为________.7. (5分)右面的程序框图输出的S的值为________8. (5分)已知,求sin2β﹣3sinβcosβ+4cos2β的值是________.9. (5分)(2017·丰台模拟) 若实数x,y满足约束条件且z=x+3y的最大值为4,则实数a的值为________.10. (5分)已知直线x﹣2y+2=0经过椭圆的一个顶点和一个焦点,那么这个椭圆的方程为________,离心率为________。

11. (5分)已知x>0,y>0且+=1,求x+y的最小值为________12. (5分)在等差数列{an}中,若a5+a8+a11=3,则该数列的前15项的和为________13. (5分) (2019高二下·南昌期末) 伟大的数学家高斯说过:几何学唯美的直观能够帮助我们了解大自然界的基本问题一位同学受到启发,借助上面两个相同的矩形图形,按以下步骤给出了不等式:的一种“图形证明”.证明思路:图1中白色区域面积等于右图中白色区域面积;图1中阴影区域的面积为ac+bd ,图2中,设,图2阴影区域的面积可表示为________ 用含a , b , c , d ,的式子表示;由图中阴影面积相等,即可导出不等式当且仅当a , b , c , d满足条件________时,等号成立.14. (5分) (2016高一上·海安期中) 函数f(x)=|x2﹣2x﹣3|的单调增区间是________.二、解答题. (共10题;共130分)15. (14分)(2017·沈阳模拟) 在△ABC中,内角A,B,C的对边分别为a,b,c.已知.(Ⅰ)求角B的大小;(Ⅱ)若b=2,求a+c的取值范围.16. (14分)如图,四边形ABCD为菱形,G为AC与BD的交点,BE⊥平面ABCD.(1)证明:平面AEC⊥平面BED.(2)若∠ABC=120°,AE⊥EC,AB=2,求点G到平面AED的距离.17. (14分) (2019高一上·闵行月考) 如图所示为圆柱形大型储油罐固定在型槽上的横截面图,已知图中为等腰梯形(∥ ),支点与相距8 ,罐底最低点到地面距离为1 ,设油罐横截面圆心为,半径为5 ,,求:型槽的横截面(阴影部分)的面积.(参考数据:,,,结果保留整数)18. (16分)(2017·锦州模拟) 已知椭圆C: + =1(a>b>0)的上下两个焦点分别为F1 , F2 ,过点F1与y轴垂直的直线交椭圆C于M,N两点,△MNF2的面积为,椭圆C的离心率为(Ⅰ)求椭圆C的标准方程;(Ⅱ)已知O为坐标原点,直线l:y=kx+m与y轴交于点P,与椭圆C交于A,B两个不同的点,若存在实数λ,使得+λ =4 ,求m的取值范围.19. (16分) (2016高二下·衡阳期中) 设Sn为数列{an}的前n项和,且Sn=n2+n+1,n∈N* .(1)求数列{an}的通项公式;(2)求数列{ }的前n项和Tn.20. (16分) (2016高二上·常州期中) 已知函数f(x)= 在点(1,f(1))处的切线与x轴平行.(Ⅰ)求实数a的值及f(x)的极值;(Ⅱ)是否存在区间(t,t+ )(t>0),使函数f(x)在此区间上存在极值和零点?若存在,求实数t的取值范围,若不存在,请说明理由;(Ⅲ)如果对任意的,有|f(x1)﹣f(x2)|≥k| |,求实数k的取值范围.21. (10分) (2016高二下·永川期中) 如图,已知⊙O是△ABC的外接圆,AB=BC,AD是BC边上的高,AE 是⊙O的直径.(1)求证:AC•BC=AD•AE;(2)过点C作⊙O的切线交BA的延长线于点F,若AF=3,CF=9,求AC的长.22. (10分) (2015高二下·东台期中) 已知矩阵的一个特征值为﹣2,求M2 .23. (10分) (2016高三上·汕头模拟) 以坐标原点O为极点,O轴的正半轴为极轴建立极坐标系,已知曲线C的极坐标方程为ρ=2(sinθ+cosθ+ ).(1)写出曲线C的参数方程;(2)在曲线C上任取一点P,过点P作x轴,y轴的垂线,垂足分别为A,B,求矩形OAPB的面积的最大值.24. (10分) (2017高二下·河北期末) 已知函数(1)求证:;(2)若方程有解,求的取值范围.三、解答题 (共2题;共20分)25. (10分)如图,四棱锥P﹣ABCD中,底面ABCD为平行四边形,∠DAB=60°,AB=2AD=2,PD⊥底面ABCD,且PD=AD,求:平面PAB的一个法向量.26. (10分)若x>0,y>0,且x+y>2,(1),,时,分别比较和与2的大小关系;(2)依据(1)得出的结论,归纳提出一个满足条件x、y都成立的命题并证明.参考答案一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填 (共14题;共70分) 1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、二、解答题. (共10题;共130分)15-1、16-1、16-2、17-1、18-1、19-1、19-2、21-1、21-2、22-1、23-1、23-2、24-1、24-2、三、解答题 (共2题;共20分)25-1、26-1、。

陕西省安康市高三数学三模试卷 文(含解析)-人教版高三全册数学试题

陕西省安康市高三数学三模试卷 文(含解析)-人教版高三全册数学试题

2016年某某省某某市高考数学三模试卷(文科)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合P={x|4<x<10},Q={x|3<x<7},则P∪Q等于()A.{x|3<x<7}B.{x|3<x<10}C.{x|3<x<4}D.{x|4<x<7}2.设复数z=2+i,则复数z(1﹣z)的共轭复数为()A.﹣1﹣3iB.﹣1+3iC.1+3iD.1﹣3i3.的值为()A.2B.1C.﹣2D.﹣14.如图,在平行四边形ABCD中,E为BC的中点,且=x+y,则()A.x=﹣1,y=﹣B.x=1,y=C.x=﹣1,y=D.x=1,y=﹣5.已知函数f(x)=sin(ωx﹣)(ω>0)的部分图象如图所示,则函数g(x)=cos (ωx+)的图象的一条对称轴方程为()A.x=B.x=C.x=D.x=6.在等差数列{a n}中,a3+a6=a4+5,且a2不大于1,则a8的取值X围是()A.(﹣∞,9]B.[9,+∞)C.(﹣∞,9)D.(9,+∞)7.若x,y满足约束条件,则目标函数z=2x+3y的最大值为()A.2B.3C.11D.188.执行如图所示的程序框图,则输出的S等于()A. B. C. D.9.一直三棱柱的每条棱长都是3,且每个顶点都在球O的表面上,则球O的半径为()A. B. C. D.310.某几何体的三视图如图所示,则该几何体的表面积为()A.72B.80C.86D.9211.已知双曲线M:x2﹣=1(b>0)的左、右焦点分别为F1,F2,过点F1与双曲线的一条渐近线平行的直线与另一条渐近线交于点P,若点P在焦点为(0,1)的抛物线y=mx2上,则双曲线M的离心率为()A. B. C. D.12.设函数f(x)=3|x﹣1|﹣2x+a,g(x)=2﹣x2,若在区间(0,3)上,f(x)的图象在g (x)的图象的上方,则实数a的取值X围为()A.(2,+∞)B.[2,+∞)C.(3,+∞)D.[3,+∞)二、填空题:本大题共4小题,每小题5分.13.某公司13个部门接受的快递的数量如茎叶图所示,则这13个部门接收的快递的数量的中位数为.14.椭圆mx2+y2=1(m>1)的短轴长为m,则m=.15.若函数f(x)=(a+2)x3﹣ax2+2x为奇函数,则曲线y=f(x)在点(﹣1,f(﹣1))处的切线方程为.16.记<n>表示正整数n的个位数,设S n为数列{b n}的前n项和,a n=<2n>,b n=a n+2n,则S 4n=.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.如图,在四边形ABCB′,△ABC≌△AB′C,AB⊥AB′,cos∠BCB′=,BC=2.(1)求sin∠BCA;(2)求BB′及AC′的长.18.已知某中学高三文科班学生的数学与地理的水平测试成绩抽样统计如下表:XA B C人数YA 14 40 10B a 36 bC 28 8 34若抽取学生n人,成绩分为A(优秀)、B(良好)、C(及格)三个等级,设x,y分别表示数学成绩与地理成绩,例如:表中地理成绩为A等级的共有14+40+10=64人,数学成绩为B 等级且地理成绩为C等级的有8人.已知x与y均为A等级的概率是0.07.(1)设在该样本中,数学成绩优秀率是30%,求a,b的值;(2)已知a≥8,b≥6,求数学成绩为A等级的人数比C等级的人数多的概率.19.如图,在四棱锥A﹣EFCB中,△AEF为等边三角形,平面AEF⊥平面EFCB,EF=2,四边形EFCB是高为的等腰梯形,EF∥BC,O为EF的中点.(1)求证:AO⊥CF;(2)求O到平面ABC的距离.20.已知圆M与圆N:(x﹣)2+(y+)2=r2关于直线y=x对称,且点D(﹣,)在圆M上(1)判断圆M与圆N的位置关系(2)设P为圆M上任意一点,A(﹣1,).B(1,),与不共线,PG为∠APB的平分线,且交AB于G,求证△PBG与△APG的面积之比为定值.21.设函数f(x)=﹣2cosx﹣x,g(x)=﹣lnx﹣(k>0).(1)求函数f(x)的单调增区间;(2)若对任意x1∈[0,],总存在x2∈[,1],使得f(x1)<g(x2),某某数k的取值X围.四.请考生从第22、23、24三题中任选一题作答.注意:只能做所选的题目.如果多做,则按所做的第一个题计分,解答时请写清题号.[选修4-1:几何证明选讲]22.如图,△ABO三边上的点C、D、E都在⊙O上,已知AB∥DE,AC=CB.(l)求证:直线AB与⊙O相切;(2)若AD=2,且tan∠ACD=,求AO的长.[选修4-4:坐标系与参数方程]23.在极坐标中,直线l的方程为ρ(3cosθ﹣4sinθ)=2,曲线C的方程为ρ=m(m>0).(1)求直线l与极轴的交点到极点的距离;(2)若曲线C上恰好存在两个点到直线l的距离为,某某数m的取值X围.[选修4-5:不等式选讲]24.已知不等式|x+2|+|x﹣2丨<10的解集为A.(1)求集合A;(2)若∀a,b∈A,x∈R+,不等式a+b>(x﹣4)(﹣9)+m恒成立,某某数m的取值X 围.2016年某某省某某市高考数学三模试卷(文科)参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合P={x|4<x<10},Q={x|3<x<7},则P∪Q等于()A.{x|3<x<7}B.{x|3<x<10}C.{x|3<x<4}D.{x|4<x<7}【考点】并集及其运算.【分析】直接利用集合的并集的运算法则,求出P∪Q即可.【解答】解:集合P={x|4<x<10},Q={x|3<x<7},则P∪Q={x|3<x<10},2.设复数z=2+i,则复数z(1﹣z)的共轭复数为()A.﹣1﹣3iB.﹣1+3iC.1+3iD.1﹣3i【考点】复数代数形式的乘除运算.【分析】把z=2+i代入z(1﹣z),利用复数代数形式的乘除运算化简,然后求得复数z(1﹣z)的共轭复数.【解答】解:∵z=2+i,∴z(1﹣z)=(2+i)(﹣1﹣i)=﹣1﹣3i,∴复数z(1﹣z)的共轭复数为﹣1+3i.故选:B.3.的值为()A.2B.1C.﹣2D.﹣1【考点】运用诱导公式化简求值.【分析】由条件利用诱导公式进行化简所给的式子,可得结果.【解答】解: ===1,故选:B.4.如图,在平行四边形ABCD中,E为BC的中点,且=x+y,则()A.x=﹣1,y=﹣B.x=1,y=C.x=﹣1,y=D.x=1,y=﹣【考点】平面向量的基本定理及其意义.【分析】利用平面向量的三角形法则用表示出.【解答】解:∵四边形ABCD是平行四边形,∴,,∵E是BC中点,∴=﹣=﹣.∴==.∴x=1,y=﹣.5.已知函数f(x)=sin(ωx﹣)(ω>0)的部分图象如图所示,则函数g(x)=cos (ωx+)的图象的一条对称轴方程为()A.x=B.x=C.x=D.x=【考点】正弦函数的图象.【分析】由周期求出ω,可得g(x)的解析式,再根据余弦函数的图象的对称性求得g(x)的图象的对称轴方程.【解答】解:根据函数f(x)=sin(ωx﹣)(ω>0)的部分图象,可得=﹣,∴ω=2,则函数g(x)=cos(ωx+)=cos(2x+),令2x+=kπ,求得x=﹣,k∈Z,故函数g(x)的图象的对称轴方程为x=﹣,k∈Z,当k=1时,x=,故选:B.6.在等差数列{a n}中,a3+a6=a4+5,且a2不大于1,则a8的取值X围是()A.(﹣∞,9]B.[9,+∞)C.(﹣∞,9)D.(9,+∞)【考点】等差数列的通项公式.【分析】由等差数列的性质得a3+a6=a4+a5,从而a5=5,又a2≤1,进而d≥,由此能求出a8的取值X围.【解答】解:∵在等差数列{a n}中,a3+a6=a4+5,且a2不大于1,又a3+a6=a4+a5,∴a5=5,又a2≤1,∴5﹣3d≤1,∴d≥,∴a8=a5+3d≥5+4=9.∴a8的取值X围是[9,+∞).故选:B.7.若x,y满足约束条件,则目标函数z=2x+3y的最大值为()A.2B.3C.11D.18【考点】简单线性规划.【分析】作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求z的最大值.【解答】解:作出不等式对应的平面区域(阴影部分),由z=2x+3y,得y=,平移直线y=,由图象可知当直线y=经过点C时,直线y=的截距最大,此时z最大.由,解得,即C(3,4).此时z的最大值为z=2×3+3×4=6+12=18,故选:D.8.执行如图所示的程序框图,则输出的S等于()A. B. C. D.【考点】程序框图.【分析】根据程序框图的流程,依次写出每次循环得到的S,i的值,当S=时,满足条件S<1,退出循环,输出S的值为.【解答】解:模拟执行程序,可得S=600,i=1执行循环体,S=600,i=2不满足条件S<1,执行循环体,S=300,i=3不满足条件S<1,执行循环体,S=100,i=4不满足条件S<1,执行循环体,S=25,i=5不满足条件S<1,执行循环体,S=5,i=6不满足条件S<1,执行循环体,S=,i=7满足条件S<1,退出循环,输出S的值为.故选:C.9.一直三棱柱的每条棱长都是3,且每个顶点都在球O的表面上,则球O的半径为()A. B. C. D.3【考点】球的体积和表面积.【分析】正三棱柱的两个底面的中心的连线的中点就是球的球心,球心与顶点的连线长就是半径,利用勾股定理求出球的半径.【解答】解:正三棱柱的两个底面的中心的连线的中点就是球的球心,球心与顶点的连线长就是半径,所以,r==.故选:A.10.某几何体的三视图如图所示,则该几何体的表面积为()A.72B.80C.86D.92【考点】由三视图求面积、体积.【分析】利用三视图复原的几何体,画出图形,利用三视图的数据求解几何体的表面积即可.【解答】解:如图:三视图复原的几何体是五棱柱ABCEF﹣A1B1C1E1F1,其中底面面积S==14,底面周长C=1+4+5+1+5=16,高为h=4,表面积为:2S+Ch=28+64=92.故选:D.11.已知双曲线M:x2﹣=1(b>0)的左、右焦点分别为F1,F2,过点F1与双曲线的一条渐近线平行的直线与另一条渐近线交于点P,若点P在焦点为(0,1)的抛物线y=mx2上,则双曲线M的离心率为()A. B. C. D.【考点】双曲线的简单性质.【分析】根据条件求出交点坐标,结合点与抛物线的关系建立方程进行求解即可.【解答】解:过点F1(﹣c,0)与双曲线的一条渐近线y=x平行的直线方程为y=b(x+c),与另一条渐近线y=﹣bx联立得得,即P(﹣,),由y=mx2上得x2=y,则焦点坐标为(0,),由=1得m=,∴=×,即c=8b,∵c2=b2+1,∴b2=,即e==,故选:C12.设函数f(x)=3|x﹣1|﹣2x+a,g(x)=2﹣x2,若在区间(0,3)上,f(x)的图象在g (x)的图象的上方,则实数a的取值X围为()A.(2,+∞)B.[2,+∞)C.(3,+∞)D.[3,+∞)【考点】函数恒成立问题.【分析】由题意可得3|x﹣1|﹣2x+a>2﹣x2在0<x<3上恒成立,即有a>2﹣x2+2x﹣3|x﹣1|的最大值,由二次函数和指数函数的最值的求法,可得x=1时,右边取得最大值,即可得到a 的X围.【解答】解:由题意可得3|x﹣1|﹣2x+a>2﹣x2在0<x<3上恒成立,即有a>2﹣x2+2x﹣3|x﹣1|的最大值,由h(x)=2﹣x2+2x﹣3|x﹣1|=3﹣(x﹣1)2﹣3|x﹣1|,当x=1∈(0,3)时,h(x)取得最大值,且为3﹣0﹣1=2,即有a>2.故选A.二、填空题:本大题共4小题,每小题5分.13.某公司13个部门接受的快递的数量如茎叶图所示,则这13个部门接收的快递的数量的中位数为10 .【考点】众数、中位数、平均数.【分析】利用茎图的性质和中位数的定义直接求解.【解答】解:由茎叶图的性质得:某公司13个部门接受的快递的数量按从小到大的顺序排的第7个数为中位数,∵第7个数是10,∴这13个部门接收的快递的数量的中位数为10.故答案为:10.14.椭圆mx2+y2=1(m>1)的短轴长为m,则m= 2 .【考点】椭圆的简单性质.【分析】根据题意,将椭圆mx2+y2=1的方程变形为标准方程可得+=1,比较与1的大小可得该椭圆的焦点在y轴上,且b=,进而依据题意可得m=2,解可得m的值,即可得答案.【解答】解:根据题意,椭圆mx2+y2=1的方程可以变形为+=1,又由m>1,则<1,故该椭圆的焦点在y轴上,则b=,又由该椭圆的短轴长为m,则有m=2,解可得m=2;故答案为:2.15.若函数f(x)=(a+2)x3﹣ax2+2x为奇函数,则曲线y=f(x)在点(﹣1,f(﹣1))处的切线方程为y=8x+4 .【考点】利用导数研究曲线上某点切线方程.【分析】由奇函数的定义可得f(﹣x)=﹣f(x),求得a=0,求出f(x)的导数,求得切线的斜率和切点,由点斜式方程可得所求切线的方程.【解答】解:函数f(x)=(a+2)x3﹣ax2+2x为奇函数,可得f(﹣x)=﹣f(x),即有﹣(a+2)x3﹣ax2﹣2x=﹣(a+2)x3+ax2﹣2x,可得a=0,f(x)=2x3+2x,f(x)的导数为f′(x)=6x2+2,可得y=f(x)在点(﹣1,f(﹣1))处的切线斜率为6+2=8,切点为(﹣1,﹣4),即有y=f(x)在点(﹣1,f(﹣1))处的切线方程为y+4=8(x+1),即为y=8x+4.故答案为:y=8x+4.16.记<n>表示正整数n的个位数,设S n为数列{b n}的前n项和,a n=<2n>,b n=a n+2n,则S4n= 24n+1+20n﹣2 .【考点】数列的求和.【分析】先判断出{a n}的周期为4,再根据的数列的求和公式计算即可.【解答】解:∵a n=<2n>,∴a1=a5=2,a2=a6=4,a3=a7=8,a4=a8=6,∴{a n}的周期为4,∴S4n=a1+21+a2+22+…+a n+2n=(a1+a2+…+a4n)+(21+22+…+24n)=(2+4+8+6)n+=24n+1+20n﹣2,故答案为:24n+1+20n﹣2三、解答题:解答应写出文字说明、证明过程或演算步骤.17.如图,在四边形ABCB′,△ABC≌△AB′C,AB⊥AB′,cos∠BCB′=,BC=2.(1)求sin∠BCA;(2)求BB′及AC′的长.【考点】相似三角形的性质.【分析】(1)利用△ABC≌△AB′C,可得∠BCA=∠B′CA,利用cos∠BCB′=,即可求sin∠BCA;(2)利用余弦定理求出BB′,利用正弦定理求出BB′,即可求出AC′的长.【解答】解:(1)∵△ABC≌△AB′C,∴∠BCA=∠B′CA,∴cos∠BCB′=2cos2∠BCA﹣1,∵cos∠BCB′=,∴cos2∠BCA=,∴sin2∠BCA=,∴sin∠BCA=;(2)∵BC=2,∴BB′2=8+8﹣2×=4,∴BB′=2∵,∴AB=,设BB′与AC 交于O,则AO=1,CO==,∴AC=+1.18.已知某中学高三文科班学生的数学与地理的水平测试成绩抽样统计如下表:XA B C人数YA 14 40 10B a 36 bC 28 8 34若抽取学生n人,成绩分为A(优秀)、B(良好)、C(及格)三个等级,设x,y分别表示数学成绩与地理成绩,例如:表中地理成绩为A等级的共有14+40+10=64人,数学成绩为B 等级且地理成绩为C等级的有8人.已知x与y均为A等级的概率是0.07.(1)设在该样本中,数学成绩优秀率是30%,求a,b的值;(2)已知a≥8,b≥6,求数学成绩为A等级的人数比C等级的人数多的概率.【考点】列举法计算基本事件数及事件发生的概率.【分析】(1)由频率=,能求出a,b的值.(2)由14+a+28>10+b+34,得a>b+2.由此利用列举法能求出所求概率.【解答】解:(1)由频率=,得到,∴,故a=18,而14+a+28+40+36+8+10+b+34=200,∴b=12.…(2)∵a+b=30且a≥8,b≥6,∴由14+a+28>10+b+34,得a>b+2.(a,b)的所有结果为(8,22),(9,21),(10,20),(11,19),…(24,6)共17组,其中a>b+2的共8 组,故所求概率为:.…19.如图,在四棱锥A﹣EFCB中,△AEF为等边三角形,平面AEF⊥平面EFCB,EF=2,四边形EFCB是高为的等腰梯形,EF∥BC,O为EF的中点.(1)求证:AO⊥CF;(2)求O到平面ABC的距离.【考点】点、线、面间的距离计算;直线与平面垂直的性质.【分析】(1)证明AO⊥EF,推出AO⊥平面EFCB,即可证明AO⊥CF.(2)取BC的中点G,连接OG.推出OG⊥BC,OA⊥BC,得到BC⊥平面AOG,过O作OH⊥AG,垂足为H,说明OH⊥平面ABC,O到平面ABC的距离为OH,求解即可.【解答】(1)证明:因为△AEF等边三角形,O为EF的中点,所以AO⊥EF…又因为平面AEF⊥平面EFCB,AO⊂平面AEF,平面AEF∩平面EFCB=EF,所以AO⊥平面EFCB,…又CF⊂平面EFCB,所以AO⊥CF…(2)解:取BC的中点G,连接OG.由题设知,OG⊥BC…由(1)知AO⊥平面EFCB,又BC⊂平面EFCB,所以OA⊥BC,因为OG∩OA=O,所以BC⊥平面AOG…过O作OH⊥AG,垂足为H,则BC⊥OH,因为AG∩BC=G,所以OH⊥平面ABC.…因为,所以,即O到平面ABC的距离为.(另外用等体积法亦可)…20.已知圆M与圆N:(x﹣)2+(y+)2=r2关于直线y=x对称,且点D(﹣,)在圆M上(1)判断圆M与圆N的位置关系(2)设P为圆M上任意一点,A(﹣1,).B(1,),与不共线,PG为∠APB的平分线,且交AB于G,求证△PBG与△APG的面积之比为定值.【考点】直线与圆的位置关系.【分析】(1)先求得点N关于直线y=x对称点M的坐标,可得圆M的方程,再根据圆心距大于两圆的半径之和,可得两圆相离.(2)设∠PAB=2α,则∠APG=∠BPG=α,可得==.设点P (x,y),求得PA2和 PB2的值,可得的值.【解答】解:(1)由于点N(,﹣)关于直线y=x对称点M(﹣,),故圆M的方程为:(x+)2+(y﹣)2=r2.把点D(﹣,)在圆M上,可得r2=,故圆M的方程为:(x+)2+(y﹣)2=.可得圆N:(x﹣)2+(y+)2=,N(,﹣),根据|MN|==>,故两圆相离.(2)设∠PAB=2α,则∠APG=∠BPG=α,∴==.设点P(x,y),则(x+)2+(y﹣)2=.PA2=(x+1)2+(y﹣)2 =(x+1)2+﹣(x+)2=x;PB2=(x﹣1)2+(y﹣)2 =(x﹣1)2+﹣(x+)2=﹣x;∴=4,∴=2,即=2.21.设函数f(x)=﹣2cosx﹣x,g(x)=﹣lnx﹣(k>0).(1)求函数f(x)的单调增区间;(2)若对任意x1∈[0,],总存在x2∈[,1],使得f(x1)<g(x2),某某数k的取值X围.【考点】利用导数研究函数的单调性;利用导数求闭区间上函数的最值.【分析】(1)将f(x)求导,令f′(x)>0,根据三角函数图象及性质,即可解得f(x)的单调增区间;(2)根据x的取值X围,函数f(x)的单调性及最大值,根据k的取值X围,分别求得g (x)的最大值,使得f(x1)<g(x2),则需要f(x)max<g(x)max,即可求出满足条件的实数k的取值X围.【解答】解:(1)f′(x)=2sinx﹣1,令f′(x)>0,得2sinx﹣1>0,解得:2kπ+<x<2kπ+,k∈Z,∴f(x)递增区间为(2kπ+,2kπ+)k∈Z,(2)当x∈[0,],f′(x)=2sinx﹣1<0,∴f(x)在[0,],上递减,∴f(x)max=f(0)=﹣2,当0<k≤时,g′(x)=﹣+=,∵x∈[,1],g′(x)≤0,∴g(x)在[,1]上递减,∴g(x)max=g()=ln2﹣2k,由题意可知,ln2﹣2k>﹣2,又0<k≤,∴0<k≤,当k≥1时,g′(x)≥0,g(x)在[,1]上递增,∴g(x)max=g(1)=﹣k>﹣2,∴1≤k<2,当<k<1时,当≤x<k,g′(x)<0,当k<x≤1,g′(x)<0,∴g(x)max=g(k)=﹣lnk﹣1>﹣2,∴<k<1,综上,k∈(0,2).四.请考生从第22、23、24三题中任选一题作答.注意:只能做所选的题目.如果多做,则按所做的第一个题计分,解答时请写清题号.[选修4-1:几何证明选讲]22.如图,△ABO三边上的点C、D、E都在⊙O上,已知AB∥DE,AC=CB.(l)求证:直线AB与⊙O相切;(2)若AD=2,且tan∠ACD=,求AO的长.【考点】与圆有关的比例线段;圆的切线的判定定理的证明.【分析】(1)连结OC,OC⊥AB,推导出OA=OB,OC⊥AB,由此能证明直线AB与⊙O相切.(2)延长DO交⊙O于点F,连结FC,由弦切角定理得△ACD∽△AFC,从而=,由此能求出AO的长.【解答】证明:(1)∵AB∥DE,∴,又OD=OE,∴OA=OB,如图,连结OC,∵AC=CB,∴OC⊥AB,又点C在⊙O上,∴直线AB与⊙O相切.解:(2)如图,延长DO交⊙O于点F,连结FC,由(1)知AB是⊙O的切线,∴弦切角∠ACD=∠F,∴△ACD∽△AFC,∴tan∠ACD=tan∠F=,又∠DCF=90°,∴=,∵AD=2,∴AC=6,又AC2=AD•AF,∴2(2+2r)=62,∴r=8,∴AO=2+8=10.[选修4-4:坐标系与参数方程]23.在极坐标中,直线l的方程为ρ(3cosθ﹣4sinθ)=2,曲线C的方程为ρ=m(m>0).(1)求直线l与极轴的交点到极点的距离;(2)若曲线C上恰好存在两个点到直线l的距离为,某某数m的取值X围.【考点】简单曲线的极坐标方程.【分析】(1)令θ=0,得ρ(3cos0﹣4sin0)=2,由此能求出直线l与极轴的交点到极点的距离.(2)先求出直线l和曲线C的直角坐标方程,由曲线C表示以原点为圆心,以m为半径的圆,且原点到直线l的距离为,结合题设条件能求出实数m的取值X围.【解答】解:(1)∵直线l的方程为ρ(3cosθ﹣4sinθ)=2,∴令θ=0,得ρ(3cos0﹣4sin0)=2,∴3ρ=2,∴直线l与极轴的交点到极点的距离ρ=.(2)直线l的直角坐标方程为3x﹣4y﹣2=0,曲线C的直角坐标方程为x2+y2=m2,曲线C表示以原点为圆心,以m为半径的圆,且原点到直线l的距离为,∵曲线C上恰好存在两个点到直线l的距离为,∴.∴实数m的取值X围是(,).[选修4-5:不等式选讲]24.已知不等式|x+2|+|x﹣2丨<10的解集为A.(1)求集合A;(2)若∀a,b∈A,x∈R+,不等式a+b>(x﹣4)(﹣9)+m恒成立,某某数m的取值X 围.【考点】基本不等式;绝对值不等式的解法.【分析】(1)化不等式|x+2|+|x﹣2丨<10为3个不等式组,解不等式组可得;(2)由题意可得﹣10<a+b<10,由基本不等式可得(x﹣4)(﹣9)≤25,由恒成立可得m+25≤﹣10,解不等式可得.【解答】解:(1)不等式|x+2|+|x﹣2丨<10等价于,或或,解得﹣5<x<5,故可得集合A=(﹣5,5);(2)∵a,b∈A=(﹣5,5),x∈R+,∴﹣10<a+b<10,∴(x﹣4)(﹣9)=1﹣﹣9x+36=37﹣(+9x)≤37﹣2=25,∵不等式a+b>(x﹣4)(﹣9)+m恒成立,∴m+25≤﹣10,解得m≤﹣35。

陕西省安康市2015届高三第三次教学质量调研考试数学(文)试题 Word版含答案

陕西省安康市2015届高三第三次教学质量调研考试数学(文)试题 Word版含答案

安康市2014-2015学年度高三年级教学质量调研考试(第三次)数学试卷(文科)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、已知{}1,2,5A =,{}2,3,5B =,则A B 等于( )A .{}2,3B .{}2,5C .{}2D .{}1,2,3,52、已知1i i z+=,则在复平面内,复数z 所对应的点在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限3、在平行四边形CD AB 中,C A 为一条对角线,()2,4AB =,()C 1,3A =,则D B 等于( )A .()2,4B .()3,5C .()3,5--D .()2,4--4、已知3sin 35x π⎛⎫-= ⎪⎝⎭,则cos 6x π⎛⎫+ ⎪⎝⎭等于( ) A .45- B .35- C .45 D .355、已知双曲线2221y x b -=(0b >)的一条渐近线的方程为2y x =,则b 的值等于( )A .12B .1C .2D .4 6、定义在R 上的奇函数()f x 在[]1,0-上单调递减,则下列关系式正确的是( )A .()()011f f <<-B .()()110f f -<<C .()()101f f -<<D .()()101f f <<-7、对具有线性相关关系的变量x ,y ,测得一组数据如下表:根据上表,利用最小二乘法得它们的回归直线方程为10.5y x a =+,则a 的值等于( )A .1B .1.5C .2D .2.58、某几何体的三视图如图所示,则该几何体的表面积是( )A .90B .92C .98D .1049、已知()2,m M 是抛物线22y px =(0p >)上一点,则“1p ≥”是“点M 到抛物线焦点的距离不少于3”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件10、如图,四边形CD AB为矩形,AB =,C 1B =,以A为圆心,1为半径画圆,交线段AB 于E ,在圆弧D E 上任取一点P ,则直线AP 与线段C B 有公共点的概率为( )A .16B .14C .13D .2311、某程序框图如右图所示,若输出的57S =,则判断框内应填( )A .4k >B .5k >C .6k >D .7k >12、已知0x 是函数()1ln 1f x x x=+-的一个零点,若()101,x x ∈,()20,x x ∈+∞,则( )A .()10f x <,()20f x <B .()10f x >,()20f x >C .()10f x >,()20f x <D .()10f x <,()20f x >二、填空题(本大题共4小题,每小题5分,共20分.)13、2lg5lg2lg 2lg2+-= .14、从11=,()1412-=-+,149123-+=++,()149161234-+-=-+++,⋅⋅⋅,推广到第n 个等式为 .15、设变量x ,y 满足约束条件222y x x y x ≥⎧⎪+≤⎨⎪≥-⎩,则3z x y =-的最小值为 .16、某地区要建造一条防洪堤,其横断面为等腰梯形(如图),考虑到防洪堤坚固性及石块用料等因素,设计其横断面要求面积为的腰长为x 米,则其腰长x 的取值范围是 .三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17、(本小题满分10分)已知数列{}n a 是公差为整数的等差数列,且124a a =,37a =. ()1求数列{}n a 的通项公式;()2求数列{}12na -的前n 项和n S .18、(本小题满分12分)已知函数()sin f x x x =,0,2x π⎡⎤∈⎢⎥⎣⎦. ()1当函数()f x 取得最大值时,求自变量x 的值;()2若方程()0f x a -=有两个实数根,求a 的取值范围.19、(本小题满分12分)如图1,在直角梯形CD AB 中,DC 90∠A =,CD//AB ,4AB =,D CD 2A ==.将DC ∆A 沿C A 折起,使平面DC A ⊥平面C AB ,得到几何体D C -AB ,如图2所示.()1求证:C B ⊥平面CD A ;()2求几何体D C -AB 的体积.20、(本小题满分12分)某校研究性学习小组从汽车市场上随机抽取20辆纯电动汽车调查其续驶里程(单次充电后能行驶的最大里程),被调查汽车的续驶里程全部介于50公里和300公里之间,将统计结果分成5组:[)50,100,[)100,150,[)150,200,[)200,250,[]250,300,绘制成如图所示的频率分布直方图.()1求续驶里程在[]200,300的车辆数;()2若从续驶里程在[]200,300的车辆中随机抽取2辆车,求其中恰有一辆车的续驶里程在[)200,250的概率.21、(本小题满分12分)已知椭圆C :22221x y a b +=(0a b >>)的离心率为3,直线:l 2y x =+与以原点为圆心,椭圆的短半轴为半径的圆O 相切. ()1求椭圆C 的方程;()2设椭圆C 与曲线y kx =(0k >)的交点为A 、B ,求∆OAB 面积的最大值.22、(本小题满分12分)已知()ln f x x x =,()212g x x x a =-+. ()1当2a =时,求函数()y g x =在[]0,3上的值域;()2求函数()f x 在[],2t t +(0t >)上的最小值;()3证明:对一切()0,x ∈+∞,都有()12ln x g x x x e e'+>-成立.。

陕西省安康市2015届高三教学质量调研(四模)考试数学(理)试题

陕西省安康市2015届高三教学质量调研(四模)考试数学(理)试题

陕西省安康市2015届高三教学质量调研(四模)考试数学(理)试题考生注意:1.本试卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分.考试时间120分钟.2.请将各题答案填在试卷后面的答题卷上.3.本试卷主要考试内容:高考全部内容.第I卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合等于A.(1,2] B.[2,4)C.(2,4)D.(1,4)2.已知i是虚数单位,则等于3.五位同学在某次考试的数学成绩如茎叶图:则这五位同学这次考试的数学平均分为A.88 B.89 C.90 D.914.已知角的终边在第二象限,且等于5.在等差数列则公差d的值为A.1 B.-1 C.2 D.-26.相切”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件7.执行下边程序框图,输出的结果为A.20 B.30C.42 D.568.若一个底面是正三角形的三棱柱的主视图如图所示,则其侧面积为9.下列三个数,大小顺序正确的是10.已知函数图象相邻对称轴的距离为号,一个对称中心为,为了得到的图象,则只要将f(x)的图象A.向右平移个单位B.向右平移个单位C.向左平移个单位D.向左平移个单位11.双曲线与抛物线相交于A9B两点,直线AB恰好过它们的公共焦点F,则双曲线C的离心率为12.对于函数为某一三角形的三边长,则称f(x)为“可构造三角形函数”.已知函数是“可构造三角形函数”,则实数t的取值范围是第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20介.把答案填在答题卷中的横线上.13.二项式的展开式中的系数是.14.已知向量。

15.实数则不等式组所围成图形的面积为。

16.已知数列的最小值为。

三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(本小题满分12分)在△ABC中,内角A,B,C的对边分别为(1)求角A的大小;(2)设BC边的中点为的面积.18.(本小题满分12分)某公司对员工进行身体素质综合测试,测试成绩分为优秀、良好、合格三个等级,测试结果如下表:(单位:人)按优秀、良好、合格三个等级分层,从中抽取50人,其中成绩为优秀的有30人.(1)求a的值;(2)若用分层抽样的方法,在合格的员工中按男女抽取一个容量为5的样本,从中任选2人,记X为抽取女员工的人数,求X的分布列及数学期望.19.(本小题满分12分)已知在四棱锥P-ABCD中,底面ABCD是矩形,PAI平面ABCD,PA=AD=1,AB=2,E,F分别是AB、PD 的中点.(1)求证:AF∥平面PEC;(2)求平面PEC与平面ECD夹角的余弦值.20.(本小题满分12分)已知椭圆在椭圆上.(1)求椭圆C的方程,(2)设椭圆C的左右顶点分别为A,B,过点Q(2,O)的动直线l与椭圆C相交于M,N两点,是否存在定直线使得与AN的交点G总在直线BM上?若存在,求出一个满足条件的t值;若不存在,说明理由.21.(本小题满分12分)设函数(1)若函数上为减函数,求实数a的最小值;(2)若存在成立,求实数a的取值范围.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题计分.22.(本小题满分10分)选修4-1:几何证明选讲如图,△ABC是直角三角形,.以AB为直径的圆O交AC于点E,点D是BC边的中点,连接OD交圆O于点M.(1)求证:O,B,D,E四点共圆;(2)求证:23.(本小题满分10分)选修4-4:坐标系与参数方程平面直角坐标系中,曲线C1的参数方程为为参数),以坐标原点为极点,x轴的非负半轴为极轴,建立的极坐标系中,曲线C2的方程为(1)求C1和C2的普通方程;(2)求C1和C2公共弦的垂直平分线的极坐标方程.24.(本小题满分10分)选修4-5:不等式选讲设函数(1)若a=l,解不等式(2)若函数f(x)有最小值,求实数a的取值范围,。

陕西省安康市高考数学三模试卷 文(含解析)

陕西省安康市高考数学三模试卷 文(含解析)

陕西省安康市2015届高考数学三模试卷(文科)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知A={1,2,5},B={2,3,5},则A∪B等于( )A.{2,3} B.{2,5} C.{2} D.{1,2,3,5}2.已知1+i=,则在复平面内,复数z所对应的点在( )A.第一象限B.第二象限C.第三象限D.第四象限3.在平行四边形ABCD中,AC为一条对角线,=(2,4),=(1,3),则等于( ) A.(2,4)B.(3,5)C.(﹣3,﹣5)D.(﹣2,﹣4)4.已知sin()=则cos(x)等于( )A.﹣B.﹣C.D.5.已知双曲线x2﹣=1(b>0)的一条渐近线的方程为y=2x,则b的值等于 ( ) A.B.1 C.2 D.46.定义在R上的奇函数f(x)在[﹣1,0]上单调递减,则下列关系式正确的是( ) A.0<f(1)<f(﹣1) B.f(﹣1)<f(1)<0 C.f(﹣1)<0<f(1)D.f(1)<0<f(﹣1)7.对具有线性相关关系的变量x,y,测得一组数据如下表:x 2 4 5 6 8y 20 40 60 70 80根据上表,利用最小二乘法得它们的回归直线方程为=10.5x+a,则a的值等于( ) A.1 B.1.5 C.2 D.2.58.某几何体的三视图如图所示,则该几何体的表面积是( )A.90 B.92 C.98 D.1049.已知M(2,m)是抛物线y2=2px(p>0)上一点,则“p≥1”是“点M到抛物线焦点的距离不少于3”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条10.如图,四边形ABCD为矩形,AB=,BC=1,以A为圆心,1为半径画圆,交线段AB于E,在圆弧DE上任取一点P,则直线AP与线段BC有公共点的概率为( )A.B.C.D.11.某程序框图如图所示,若输出的S=57,则判断框内应填( )A.k>4?B.k>5?C.k>6?D.k>7?12.已知x0是函数的一个零点,若x1∈(1,x0),x2∈(x0,+∞),则( )A.f(x1)<0,f(x2)<0 B.f(x1)>0,f(x2)>0 C.f(x1)>0,f (x2)<0 D.f(x1)<0,f(x2)>0二、填空题(共4小题,每小题5分,满分20分)13.lg5lg2+lg22﹣lg2=__________.14.从1=1,1﹣4=﹣(1+2),1﹣4+9=1+2+3,1﹣4+9﹣16=﹣(1+2+3+4),…,推广到第n 个等式为__________.15.设变量x,y满足约束条件,则z=x﹣3y的最小值__________.16.某地区要建造一条防洪堤,其横断面为等腰梯形(如图),考虑到防洪堤坚固性及石块用料等因素,设计其横断面要求面积为9平方米,且高度不低于米,记防洪堤横断面的腰长为x(米),则其腰长x的取值范围是__________.三、解答题(本大题共6小题,共70分,解答时应写出文字说明,证明过程或演算步骤)17.已知数列{a n}是公差为整数的等差数列,且a1a2=4,a3=7.(1)求数列{a n}的通项公式;(2)求数列{2}的前n项和S n.18.已知函数f(x)=sinx+cosx,x∈[0,].(1)当函数取得最大值时,求自变量x的值;(2)若方程f(x)﹣a=0有两个实数根,求a的取值范围.19.如图1,在直角梯形ABCD中,∠ADC=90°,CD∥AB,AB=4,AD=CD=2.将△ADC沿AC 折起,使平面ADC⊥平面ABC,得到几何体D﹣ABC,如图2所示.(Ⅰ)求证:BC⊥平面ACD;(Ⅱ)求几何体D﹣ABC的体积.20.某校研究性学习小组从汽车市场上随机抽取20辆纯电动汽车调查其续驶里程(单次充电后能行驶的最大里程),被调查汽车的续驶里程全部介于50公里和300公里之间,将统计结果分成5组:[50,100),[100,150),[150,200),[200,250),[250,300),绘制成如图所示的频率分布直方图.(1)求续驶里程在[200,300]的车辆数;(2)若从续驶里程在[200,300]的车辆中随机抽取2辆车,求其中恰有一辆车的续驶里程在[200,250)的概率.21.已知椭圆C:+=1(a>b>0)的离心率为:,直线l:y=x+2与以原点为圆心,椭圆的短半轴为半径的圆O相切.(1)求椭圆C的方程;(2)设椭圆C与曲线|y|=kx(k>0)的交点为A,B,求△OAB面积的最大值.22.已知f(x)=xlnx,g(x)=﹣x+a.(1)当a=2时,求函数y=g(x)在[0,3]上的值域;(2)求函数f(x)在[t,t+2](t>0)上的最小值;(3)证明:对一切x∈(0,+∞),都有xlnx>成立.陕西省安康市2015届高考数学三模试卷(文科)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知A={1,2,5},B={2,3,5},则A∪B等于( )A.{2,3} B.{2,5} C.{2} D.{1,2,3,5}考点:并集及其运算.专题:集合.分析:直接利用并集运算得答案.解答:解:∵A={1,2,5},B={2,3,5},则A∪B={1,2,5}∪{2,3,5}={1,2,3,5}.故选:D.点评:本题考查了并集及其运算,是基础的会考题型.2.已知1+i=,则在复平面内,复数z所对应的点在( )A.第一象限B.第二象限C.第三象限D.第四象限考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:利用复数的运算法则和几何意义即可得出.解答:解:∵1+i=,∴z===在复平面内,复数z所对应的点在第一象限.故选:A.点评:本题考查了复数的运算法则和几何意义,属于基础题.3.在平行四边形ABCD中,AC为一条对角线,=(2,4),=(1,3),则等于( ) A.(2,4)B.(3,5)C.(﹣3,﹣5)D.(﹣2,﹣4)考点:平面向量的坐标运算.专题:平面向量及应用.分析:利用平行四边形对边平行相等,结合向量的运算法则,求解即可.解答:解:∵,∴==(﹣3,﹣5).故选:C.点评:本题考查向量的基本运算,向量的坐标求法,考查计算能力.4.已知sin()=则cos(x)等于( )A.﹣B.﹣C.D.考点:两角和与差的余弦函数;两角和与差的正弦函数.专题:计算题;三角函数的求值.分析:由诱导公式化简后即可求值.解答:解:cos(x)=sin[﹣(x)]=sin(﹣x)=.故选:D.点评:本题主要考察了诱导公式的应用,属于基础题.5.已知双曲线x2﹣=1(b>0)的一条渐近线的方程为y=2x,则b的值等于( ) A.B.1 C.2 D.4考点:双曲线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:利用双曲线x2﹣=1(b>0)的一条渐近线的方程为y=2x,可得=2,即可求出b 的值.解答:解:∵双曲线x2﹣=1(b>0)的一条渐近线的方程为y=2x,∴=2,∴b=2,故选:C.点评:本题考查双曲线的渐近线的方程,考查学生的计算能力,比较基础.6.定义在R上的奇函数f(x)在[﹣1,0]上单调递减,则下列关系式正确的是( ) A.0<f(1)<f(﹣1)B.f(﹣1)<f(1)<0 C.f(﹣1)<0<f(1)D.f(1)<0<f(﹣1)考点:奇偶性与单调性的综合;函数单调性的判断与证明;函数奇偶性的判断.专题:函数的性质及应用.分析:根据函数奇偶性和单调性之间的关系,进行判断即可.解答:解:∵定义在R上的奇函数f(x)在[﹣1,0]上单调递减,∴函数f(x)在[﹣1,1]上单调递减,则f(1)<0<f(﹣1),故选:D点评:本题主要考查函数奇偶性和单调性的应用,比较基础.7.对具有线性相关关系的变量x,y,测得一组数据如下表:x 2 4 5 6 8y 20 40 60 70 80根据上表,利用最小二乘法得它们的回归直线方程为=10.5x+a,则a的值等于( ) A.1 B.1.5 C.2 D.2.5考点:线性回归方程.专题:计算题;概率与统计.分析:求出横标和纵标的平均数,写出样本中心点,把样本中心点代入线性回归方程,得到关于a的方程,解方程求出a.解答:解:∵==5,==54∴这组数据的样本中心点是(5,54)把样本中心点代入回归直线方程=10.5x+a,∴54=10.5×5+a,故选:B.点评:本题考查线性回归方程,解题的关键是线性回归直线一定过样本中心点,这是求解线性回归方程的步骤之一.8.某几何体的三视图如图所示,则该几何体的表面积是( )A.90 B.92 C.98 D.104考点:由三视图求面积、体积.专题:计算题;空间位置关系与距离.分析:由三视图知几何体为一四棱柱,且四棱柱的高为4,底面为直角梯形,直角梯形的直角腰为4,两底边长分别为2,5,求得另一腰长,把数据代入表面积公式计算.解答:解:由三视图知几何体为一四棱柱,且四棱柱的高为4,底面为直角梯形,直角梯形的直角腰为4,两底边长分别为2,5,另一腰长为=5;∴几何体的表面积S=S底面+S侧面=2××4+(2+4+5+5)×4=92.故选:B.点评:本题考查了由三视图求几何体的表面积,由三视图判断几何体的形状及数据所对应的几何量是解题的关键.9.已知M(2,m)是抛物线y2=2px(p>0)上一点,则“p≥1”是“点M到抛物线焦点的距离不少于3”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条考点:必要条件、充分条件与充要条件的判断.专题:简易逻辑.分析:根据抛物线的定义和性质,利用充分条件和必要条件的定义即可得到结论.解答:解:抛物线的交点坐标为F(,0),准线方程为x=﹣,则点M到抛物线焦点的距离PF=2﹣(﹣)=2+,若p≥1,则PF=2+≥,此时点M到抛物线焦点的距离不少于3不成立,即充分性不成立,若点M到抛物线焦点的距离不少于3,即PF=2+≥3,即p≥2,则p≥1,成立,即必要性成立,故“p≥1”是“点M到抛物线焦点的距离不少于3”的必要不充分条件,点评:本题主要考查充分条件和必要条件的判断,利用抛物线的定义和性质是解决本题的关键.10.如图,四边形ABCD为矩形,AB=,BC=1,以A为圆心,1为半径画圆,交线段AB于E,在圆弧DE上任取一点P,则直线AP与线段BC有公共点的概率为( )A.B.C.D.考点:几何概型.专题:概率与统计.分析:由题意知本题是一个几何概型,由题意,试验包含的所有事件是∠BAD,而满足条件的事件是直线AP在∠CAB内时AP与BC相交时,即直线AP与线段BC有公共点,根据几何概型公式得到结果.解答:解:由题意知本题是一个几何概型,试验包含的所有事件是∠BAD,如图,连接AC交弧DE于P,则tan∠CAB=,∴∠CAB=30°,满足条件的事件是直线AP在∠CAB内时AP与BC相交时,即直线AP与线段BC有公共点∴概率P==,故选:C.点评:本题考查了几何摡型知识,几何概型的概率的值是通过长度、面积、和体积的比值得到.11.某程序框图如图所示,若输出的S=57,则判断框内应填( )A.k>4?B.k>5?C.k>6?D.k>7?考点:程序框图.专题:算法和程序框图.分析:执行程序框图,依次写出每次循环得到的k,S的值,当k=5时,根据题意此时满足条件,退出循环,输出S的值为57,从而即可判断.解答:解:执行程序框图,可得k=2,S=4;k=3,S=11;k=4,S=26;k=5,S=57;根据题意此时,满足条件,退出循环,输出S的值为57.故判断框内应填k>4.故选:A.点评:本题主要考察了程序框图和算法,正确得到退出循环时k,S的值是解题的关键,属于基础题.12.已知x0是函数的一个零点,若x1∈(1,x0),x2∈(x0,+∞),则( )A.f(x1)<0,f(x2)<0 B.f(x1)>0,f(x2)>0 C.f(x1)>0,f(x2)<0 D.f(x1)<0,f(x2)>0考点:函数的零点.专题:函数的性质及应用.分析:由题意可得方程的解即为函数f(x)的零点,在同一坐标系中作出函数y=1nx与的图象,由图象易知,,即f(x1)<0,同理可得,f(x2)>0,由此得出结论.解答:解:令=0,从而有,此方程的解即为函数f(x)的零点.在同一坐标系中作出函数y=1nx与的图象,如图所示.由图象易知,,从而,故,即f(x1)<0,同理可得,f(x2)>0.故选D.点评:本题主要考查函数的零点与方程的根的关系,体现了化归与转化与数形结合的数学思想,属于基础题.二、填空题(共4小题,每小题5分,满分20分)13.lg5lg2+lg22﹣lg2=0.考点:对数的运算性质.专题:函数的性质及应用.分析:直接利用对数的运算法则化简求解即可.解答:解:lg5lg2+lg22﹣lg2=lg2(lg5+lg2)﹣lg2=lg2﹣lg2=0.故答案为:0.点评:本题考查对数的运算法则的应用,基本知识的考查.14.从1=1,1﹣4=﹣(1+2),1﹣4+9=1+2+3,1﹣4+9﹣16=﹣(1+2+3+4),…,推广到第n 个等式为1﹣4+9﹣16+…+(﹣1)n+1•n2=(﹣1)n+1•(1+2+3+…+n).考点:归纳推理.分析:本题考查的知识点是归纳推理,解题的步骤为,由1=1,1﹣4=﹣(1+2),1﹣4+9=1+2+3,1﹣4+9﹣16=﹣(1+2+3+4),…,中找出各式运算量之间的关系,归纳其中的规律,并大胆猜想,给出答案.解答:解:∵1=1=(﹣1)1+1•11﹣4=﹣(1+2)=(﹣1)2+1•(1+2)1﹣4+9=1+2+3=(﹣1)3+1•(1+2+3)1﹣4+9﹣16=﹣(1+2+3+4)=(﹣1)4+1•(1+2+3+4)…所以猜想:1﹣4+9﹣16+…+(﹣1)n+1•n2=(﹣1)n+1•(1+2+3+…+n)故答案为:1﹣4+9﹣16+…+(﹣1)n+1•n2=(﹣1)n+1•(1+2+3+…+n)点评:归纳推理的一般步骤是:(1)通过观察个别情况发现某些相同性质;(2)从已知的相同性质中推出一个明确表达的一般性命题(猜想).15.设变量x,y满足约束条件,则z=x﹣3y的最小值﹣8.考点:简单线性规划.专题:计算题.分析:作出变量x,y满足约束条件所对应的平面区域,采用直线平移的方法,将直线l:平移使它经过区域上顶点A(﹣2,2)时,目标函数达到最小值﹣8解答:解:变量x,y满足约束条件所对应的平面区域为△ABC如图,化目标函数z=x﹣3y 为将直线l:平移,因为直线l在y轴上的截距为﹣,所以直线l越向上移,直线l在y轴上的截距越大,目标函数z的值就越小,故当直线经过区域上顶点A时,将x=﹣2代入,直线x+2y=2,得y=2,得A(﹣2,2)将A(﹣2,2)代入目标函数,得达到最小值z min=﹣2﹣3×2=﹣8故答案为:﹣8点评:本题考查了用直线平移法解决简单的线性规划问题,看准直线在y轴上的截距的与目标函数z符号的异同是解决问题的关键.16.某地区要建造一条防洪堤,其横断面为等腰梯形(如图),考虑到防洪堤坚固性及石块用料等因素,设计其横断面要求面积为9平方米,且高度不低于米,记防洪堤横断面的腰长为x(米),则其腰长x的取值范围是[2,6).考点:根据实际问题选择函数类型.专题:函数的性质及应用.分析:设出高h,利用条件列出h与x的关系,通过面积公式表示出BC,然后列出不等式组,求出腰长x的取值范围.解答:解:设高为h,又=(AD+BC),其中AD=BC+2=BC+x,h=,∴,得BC=,由得2≤x<6.故答案为:[2,6).点评:本题考查实际问题的应用,面积公式以及不等式组的解法,考查分析问题解决问题的能力.三、解答题(本大题共6小题,共70分,解答时应写出文字说明,证明过程或演算步骤)17.已知数列{a n}是公差为整数的等差数列,且a1a2=4,a3=7.(1)求数列{a n}的通项公式;(2)求数列{2}的前n项和S n.考点:数列的求和;等差数列的通项公式.专题:等差数列与等比数列.分析:(1)设等差数列{a n}的公差为d为整数,由a1a2=4,a3=7,可得a1(a1+d)=4,a1+2d=7.解得a1,d,再利用等差数列的通项公式即可得出.(2)2=23n﹣3=8n﹣1.再利用等比数列的前n项和公式即可得出.解答:解:(1)设等差数列{a n}的公差为d为整数,∵a1a2=4,a3=7,∴a1(a1+d)=4,a1+2d=7.解得,∴a n=a1+(n﹣1)d=1+3(n﹣1)=3n﹣2.(2)2=23n﹣3=8n﹣1.∴数列{2}的前n项和S n==.点评:本题考查了等差数列与等比数列的通项公式及其前n项和公式,考查了推理能力与计算能力,属于中档题.18.已知函数f(x)=sinx+cosx,x∈[0,].(1)当函数取得最大值时,求自变量x的值;(2)若方程f(x)﹣a=0有两个实数根,求a的取值范围.考点:两角和与差的正弦函数;正弦函数的图象.专题:三角函数的求值.分析:(1)化简可得f(x)=2sin(x+),易得当x=时,函数取最大值;(2)问题等价于f(x)与y=a有两个不同的交点,作图象易得a的取值范围.解答:解:(1)化简可得f(x)=sinx+cosx=2(sinx+cosx)=2sin(x+),∵由已知可得x∈[0,],∴当x+=即x=时,函数取最大值;(2)方程f(x)﹣a=0有两个实数根,等价于f(x)与y=a有两个不同的交点,作图象可得a的取值范围为:[,2)点评:本题考查两角和与差的三角函数公式,等价转化并作图是解决问题的关键,属中档题.19.如图1,在直角梯形ABCD中,∠ADC=90°,CD∥AB,AB=4,AD=CD=2.将△ADC沿AC折起,使平面ADC⊥平面ABC,得到几何体D﹣ABC,如图2所示.(Ⅰ)求证:BC⊥平面ACD;(Ⅱ)求几何体D﹣ABC的体积.考点:棱柱、棱锥、棱台的体积;直线与平面垂直的判定.专题:计算题.分析:(Ⅰ)解法一:由题中数量关系和勾股定理,得出AC⊥BC,再证BC垂直与平面ACD 中的一条直线即可,△ADC是等腰Rt△,底边上的中线OD垂直底边,由面面垂直的性质得OD⊥平面ABC,所以OD⊥BC,从而证得BC⊥平面ACD;解法二:证得AC⊥BC后,由面面垂直,得线面垂直,即证.(Ⅱ),由高和底面积,求得三棱锥B﹣ACD的体积即是几何体D﹣ABC的体积.解答:解:(Ⅰ)【解法一】:在图1中,由题意知,,∴AC2+BC2=AB2,∴AC⊥BC取AC中点O,连接DO,则DO⊥AC,又平面ADC⊥平面ABC,且平面ADC∩平面ABC=AC,DO⊂平面ACD,从而OD⊥平面ABC,∴OD⊥BC又AC⊥BC,AC∩OD=O,∴BC⊥平面ACD【解法二】:在图1中,由题意,得,∴AC2+BC2=AB2,∴AC⊥BC∵平面ADC⊥平面ABC,平面ADC∩平面ABC=AC,BC⊂面ABC,∴BC⊥平面ACD(Ⅱ)由(Ⅰ)知,BC为三棱锥B﹣ACD的高,且,S△ACD=×2×2=2,所以三棱锥B﹣ACD的体积为:,由等积性知几何体D﹣ABC的体积为:.点评:本题通过平面图形折叠后得立体图形,考查空间中的垂直关系,重点是“线线垂直,线面垂直,面面垂直”的转化;等积法求体积,也是常用的数学方法.20.某校研究性学习小组从汽车市场上随机抽取20辆纯电动汽车调查其续驶里程(单次充电后能行驶的最大里程),被调查汽车的续驶里程全部介于50公里和300公里之间,将统计结果分成5组:[50,100),[100,150),[150,200),[200,250),[250,300),绘制成如图所示的频率分布直方图.(1)求续驶里程在[200,300]的车辆数;(2)若从续驶里程在[200,300]的车辆中随机抽取2辆车,求其中恰有一辆车的续驶里程在[200,250)的概率.考点:频率分布直方图;列举法计算基本事件数及事件发生的概率.专题:算法和程序框图.分析:(1)利用小矩形的面积为1求出x的值;(2)据直方图求出续驶里程在[200,300]和续驶里程在[250,300)的车辆数,利用排列组合和概率公式求出其中恰有一辆车的续驶里程在[200,250)的概率.解答:解:(1)有直方图可知0.002×50+0.005×50+0.008×50+x×50+0.002×50=1解得x=0.003,续驶里程在[200,300]的车辆数为20×(0.003×50+0.002×50)=5(2)由题意可知,续驶里程在[200,300]的车辆数为3,续驶里程在[250,300)的车辆数为2,从5辆车中随机抽取2辆车,共有中抽法,其中恰有一辆车的续驶里程在[200,250)的抽法有种,∴其中恰有一辆车的续驶里程在[200,250)的概率为P(A)=.点评:本题考查直方图、古典概型概率公式;直方图中频率=纵坐标×组距,属于一道基础题.21.已知椭圆C:+=1(a>b>0)的离心率为:,直线l:y=x+2与以原点为圆心,椭圆的短半轴为半径的圆O相切.(1)求椭圆C的方程;(2)设椭圆C与曲线|y|=kx(k>0)的交点为A,B,求△OAB面积的最大值.考点:椭圆的简单性质.专题:计算题;不等式的解法及应用;直线与圆;圆锥曲线的定义、性质与方程.分析:(1)求得圆的方程,由直线和圆相切的条件,可得b=,由离心率公式和a,b,c 的关系,可得a,进而得到椭圆方程;(2)设A(x0,y0),(x0>0,y0>0),则y0=kx0,设AB交x轴于D,用k表示S△OAB,再由基本不等式即可得到最大值.解答:解:(1)由题意可得x2+y2=b2,直线l:x﹣y+2=0与圆O相切,有=b,即b=,e==,又c2=a2﹣b2=a2﹣2,解得a=,则椭圆方程为+=1;(2)设A(x0,y0),(x0>0,y0>0),则y0=kx0,设AB交x轴于D,由对称性可得S△OAB=2S△OAD=2×x0y0═kx02,由y0=kx0代入+=1,可得x02=,则S△OAB==≤=.当且仅当3k=,即k=时,△OAB面积的最大值为.点评:本题考查椭圆的方程和性质,同时考查直线和圆相切的条件,运用基本不等式求最值是解题的关键,属于中档题.22.已知f(x)=xlnx,g(x)=﹣x+a.(1)当a=2时,求函数y=g(x)在[0,3]上的值域;(2)求函数f(x)在[t,t+2](t>0)上的最小值;(3)证明:对一切x∈(0,+∞),都有xlnx>成立.考点:利用导数研究函数的单调性;二次函数的性质;二次函数在闭区间上的最值.专题:计算题.分析:(1)当a=2时,由g(x)=,x∈[0,3],利用二次函数的性质求出它的值域.(2)利用函数f(x)的导数的符号,分类讨论f(x)单调性,从而求出f(x)的最小值.(3)令 h(x)==﹣,通过h′(x)=的符号研究h(x)的单调性,求出h(x)的最大值为h(1)=﹣.再由f(x)=xlnx在(0,+∞)上的最小值为﹣,且f(1)=0大于h(1),可得在(0,+∞)上恒有f(x)>h(x),即.解答:解:(1)当a=2时,g(x)=,x∈[0,3],当x=1时,;当x=3时,,故g(x)值域为.(2)f'(x)=lnx+1,当,f'(x)<0,f(x)单调递减,当,f'(x)>0,f(x)单调递增.①若,t无解;②若,即时,;③若,即时,f(x)在[t,t+2]上单调递增,f(x)min=f(t)=tlnt,所以 f(x)min=.(3)证明:令 h(x)==﹣,h′(x)=,当 0<x<1时,h′(x)>0,h(x)是增函数.当1<x时.h′(x)<0,h(x)是减函数,故h(x)在(0,+∞)上的最大值为h(1)=﹣.而由(2)可得,f(x)=xlnx在(0,+∞)上的最小值为﹣,且当h(x)在(0,+∞)上的最大值为h(1)时,f(x)的值为ln1=0,故在(0,+∞)上恒有f(x)>h(x),即.点评:本题主要考查利用导数研究函数的单调性,二次函数的性质,函数的恒成立问题,属于中档题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档