真空中的静电场

合集下载

大学物理学 第五章 真空中的静电场

大学物理学 第五章 真空中的静电场

q
l 2
O
l 2
q
E
r
E
r
q
l 2
1
O
l 2
q
E
r
P
E
r
q E 2 4 0 ( r l / 2)
E E E
q E 2 4 0 ( r l / 2)
1
E E E
r l
q 2rl 4 0 ( r 2 l 2 / 4)2 1 2ql 1 2p E E 3 3 4 0 r 4 0 r
与 r2 成反比,r , E 0
思考: r 0
E ?
二、点电荷系的电场
E Ei
i i
1 qi e 2 ri 4 π 0 ri
dE
er q0
三、连续带电体的电场
E dE 1 dq e 2 r q 4 π 0 r
电荷密度
二.恒定电流与稳恒磁场的基本性质及规律
(第七章)
三.电磁感应现象及规律(第八章)
第五章
主要内容
§ 1 库仑定律 § 2 静电场 § 3 高斯定律 § 4 电势 电场强度
教学基本要求
一 了解电荷及性质;掌握库仑定律. 二 理解电场的概念;明确电场的矢量性和可 叠加性;会利用电场叠加原理求解简单带电体的电 场分布. 三 理解高斯定理的物理意义;能够利用高斯 定理求解特殊场分布.
q1q2 F12 k 2 e12 F21 r12
1 令 k ( 0 为真空电容率) 4 π0 1 0 8.8542 1012 C2 N 1 m 2 4πk 12 1 8.8542 10 F m

真空中的静电场

真空中的静电场

r0
场强迭加原理: EP E1P E2P EnP
电势迭加原理: Ua U1a U2a Una
(3)电荷守恒定律
电荷在没有与外界交换的系统内,只能从一个物体转 移到另一个物体,从物体的一部分转移到另一部分,但电 荷总量不变。
二、两个概念
电场强度矢量
E
F
q0
电势
Ua
Wa q0
E1 4
r2
1
o
Q
4 R3
3
4 r3
3
E
S
dS
1
o
qi
当 r≤R 时: 当 r>R 时:
E1
Qr
4o R3
Q
E2 4or 2
Q r R
当 r≤R 时:
R
U1 r E1dr R E2dr
q
R Qr
Q
R
r 4oR3 dr R 4or 2 dr
Q
8 o R3
(R2
r2)
Q
4 o R
E ds E ds
S S1
E ds E ds
E ds E ds
S2
S3
E 2rh
S3
S3
S3
P
S2
由高斯定理有
E 2 0 r
E 2rh h

E
0
2 0 r
r0
第一章 真空中的静电场1
一、实验基础—三条基本规律
(1)库仑定律: (2)迭加原理:
F
1
4 0
q1q2 r2
3. 常用高斯面
同心球面 圆柱形闭合面 长方形闭合面
[例1-1]求均匀带正电球体内外的场强分布。设球体半 径为R,带电量为Q。

真空中静电场1电场强度

真空中静电场1电场强度

库仑定律中的K有两种取法
第一种 国际单位制中 K 9109 m2N/c2
第二种 高斯制中
当时电量的单位尚未确定
令 K = 1 库仑定律的形式简单
f q1q2 r2
11
3. SI中库仑定律的常用形式 (有理化)

1
K 4 0
0 8.85 1012
c2 m2 N
真空中的介电常数或真空电容率
f
电磁学
1
第1章 真空中的静电场 §1 库仑定律 §2 电场 电场强度 §3 静电场的高斯定理 §4 静电场的环路定理 电势
2
§1 库仑定律 一、 基本认识 二、库仑定律
3
§1 库仑定律 一、基本认识
对电荷的基本认识 两种-- 正 负
电荷量子化 Q Ne
电量是相对论 不变量
4
原子是电中性的,原子核中的中子不带电、质子 带正电、核外电子带负电,并且所带电量的绝对值 相等。自然界中有两种电荷:正电荷、负电荷。
电荷量子化是个实验规律。
5
2.基本实验规律 1) 电荷守恒定律
2) 电力叠加原理
Qi c
f fi
i
q1
r
q2
r
6
库仑 (C.A.Coulomb 1736 1806)
法国物理学家,1785 年通过扭秤实验创立库 仑定律, 使电磁学的研 究从定性进入定量阶段. 电荷的单位库仑以他的 姓氏命名.E 1 4πε0 1E
4πε0
)2 p rp3 y3
26
习题10 一电偶极子由电荷q=1.0×10-6 C的两个异号点电荷组成,两电荷相距l =2.0 cm.把这电偶极子放在场强大小为E=1.0×105 N/C的均匀电场中.试求: (1) 电场作用于电偶极子的最大力矩. (2) 电偶极子从受最大力矩的位置转到平衡位置过程中,电场力作的功.

第11章_真空中的静电场

第11章_真空中的静电场

§11-2 2、电场力
电场 电场强度
( Electric Field Force) 静电场力叠加原理

电场对处在其中的其他电荷的作用力 两个电荷之间的相互作用力本质上是: 一个电荷的 电场作用在另一个电荷上的电场力.
二、电场强度( Electric Field Strength )
静电场的最基本特征: 对引入电 场中的其他电荷产生电作用力。 1、试探电荷q0 ( Test Charge )
-19
库仑
§11-1 电荷 库仑定律
1906-1917年,密立 根用液滴法首先从实验上 证明了,微小粒子带电量 的变化不连续。
q = Ne
1 ⎧ ⎪q = ± 3 e 夸克 —— ⎨ 2 ⎪q = ± e 3 ⎩ (Coulomb`s Law)
四、真空中的库仑定律
1、点电荷 (Point Charge) 在具体问题中,当带电体的形状和大小与它们 之间的距离相比允许忽略时,可以把带电体看作 点电荷(Point Charge).
F21 = −F 12
同种电荷: q1q2 > 0 q1
F12
q2
r12
r0
F21
异种电荷: q1q2 < 0
q1
F12
r12
F21
q2
§11-1 电荷 库仑定律 讨论
1 4πε 0
(1) k ⇒
k = 9.0 × 109 Nm 2 / C 2
(2) 作用力与反作用力,库仑力或静电力 (3) 适用条件 1) 真空中 2) 点电荷
§11-1 电荷 库仑定律
γ
e + + e − → 2γ
(Quantization of Electric Charge)

第1章 真空中的静电场1 静电的基本现象和基本规律

第1章 真空中的静电场1 静电的基本现象和基本规律

(3)上面给出的库仑定律只适用于惯性体系中静止的 点电荷,存在相对运动时库仑定律要作小小的修改。 (4) 库仑定律是电学中的基本定律是整个电学的基础。 关于库仑定律的发现,请同学们参考有关书籍,阅后必然 受益不浅,很有启发。 (5) 平方反比律与光子静止质量是否为零有着密切关 系。
提问
通过回顾库仑定律的发现,你有什么体会?
k=
1 4πε 0
= 8.99 × 10 9 Nm 2 C − 2 ≈ 9.0 × 10 9 Nm 2 / C 2
在计算过程中,一般都将k当作一个常数处理,不是 这种形式也应凑成这种形式。 1 9 2 2
k= 4πε 0 ≈ 9.0 × 10 Nm / C
在CGSE制中, k=1。CGSE制仍然有人用,因为其公 式非常简洁。
下面看一个核反应的例子,β衰变的一般反应式:
A z
XN= Y
A z +1 N −1
+ e +ν e

其中 A:质量; Z:原子序数即电荷数; N:中子数; ν e : 为反电子中微子。
根据物质的电结构,我们可以更好地理解和掌握电 荷守恒定律。众所周知:
⎧ ⎧电子 ⎪ ⎪ ⎪原子⎨ 物质⎨ ⎪原子核 ⎪ ⎩ ⎪分子 ⎩ (带负电) ⎧质子 (带正电) ⎨ ⎩中子 (不带电)
(2) 库仑定律与万有引力定律
GM 1 M 2 0 F引 = − r12 2 r12
G:万有引力常数,数值 为6.67 ×10-11牛顿米2/千克2 或6.67×10-8达因厘米2/克2 “-”表示吸引力,在 F引 的 作用下,趋向于使r12减小 (因为M1和M2恒大于零)。
两者的相同之处在于:都是长程力,具有平方反比 的特征,且都满足牛顿第三定律; 不同之处: (a) 电荷有正有负,所以存在引力和斥力, 而质量恒 为正,只有引力而没有斥力。 (b) 静电力可以屏蔽,而万有引力却无法屏蔽。 (c) 静电力远大于引力。以电子和质子间的库仑力和 万有引力为例,可以得到F电/F引~2.3×1039,因此通常在 讨论原子、固体、液体的结构及化学作用时,只需考虑库 仑力,而忽略引力。

真空中的静电场

真空中的静电场

静电场基本概念和规律1、库仑定律在真空中,两点电荷之间的作用力满足:12312021124→→=r r q q F πε式中12→r 是从q 1看出,点电荷q 1的位置矢量,12→F 表示q 1作用于q 2的力。

同理21321012214→→=r r q q F πε 应该指出:1)库仑定律只有在真空中,对于两个点电荷成立。

亦即只有q 1、q 2的本身线度与它们之间的距离相比很小时,库仑定律成立。

2)注意库仑定律的矢量性。

当q 1、q 2为同号电荷,即q 1 q 2 >0时,表示12→F 与12→r ,21→F 与21→r 同向,即同号电荷相斥;当q 1 q 2 <0时,表示12→F 与12→r ,21→F 与21→r 反向,即异号电荷相吸。

3)静电力的迭加原理如果有q 0、q 1、q 2 ……q n 个电荷组成的点电荷系,从q 0看,各点电荷的矢径分别等于n r r r →→→21,,则点电荷q 0受到的静电力为i ni r q q r F i i→=→∑=14300πε上式称为静电力的迭加原理,即在点电荷系中,任意一点电荷所受的静电力应等于每个点电荷单独存在时对该点电荷所作用静电力的矢量和。

带电体(体积为V )作用于点电荷q 0的静电力→→⎰=r F r dq q V3004πε4)库仑定律仅适用于求相对于观察者静止的两点电荷之间的相互作用力,或者放宽一点,亦适用于求相对于观察者静止的点电荷作用于运动的点电荷力的情形。

其理由是电磁现象不满足伽利略相对性原理,而只满足狭义相对性原理。

5)库仑定律是静电场理论的基础。

正是由库仑定律和静电力迭加原理而导出了描述静电场性质的两条定理(高斯定理和环路定理)。

因此库仑定律是静电学的最基本的定律。

2、描述静电场特性的物理量 1)电场强度电场强度的定义:0q FE →→=即单位试验正电荷在电场中某点所受的力定义为该点的电场强度。

应该指出:a 、试验电荷必须满足两个条件:一是试验电荷的电量q 0必须充分小,使其q 0的的引入而改变原来的电场分布;二是试验电荷的线度必须充分小,由此才可以精确地检验出空间各点的电场强度。

第10章 真空中的静电场

第10章 真空中的静电场
1
尚未找到自由状态的夸克。但无论今后实验上是否能发现自由夸克,均不改变电荷的量 子性这一基本性质。
10.1.2 电荷守恒定律
大量实验证明,在一个与外界没有电荷交换的系统内,无论其内部发生怎样的物理过 程,系统内正负电荷量的代数和保持不变,即孤立系统内的电荷是守恒的。电荷守恒定律 说明,电荷既不能被创造,也不能被消灭,它只能从一个物体转移到另一个物体,或者从 物体的一个部分转移到另一个部分。
3
Fi F1i F2i
Fni
n
F ji
j 1
n j 1
qiq j 4π 0 rj2i
r joi
ji
ji
式中 F ji 是第 j 个点电荷 q j 对 qi 的静电力, Fi 是点电荷 qi 受到的总静电力。
(10.4)
§10.2 电场 电场强度
10.2.1 电场
实验指出,电荷与电荷之间存在相互作用力。那么这种作用力是通过什么途径传递 的呢?历史上关于这个问题曾长期有两种不同的观点。一种观点认为:电荷与电荷之间 的相互作用不需要任何中间物质来传递,也不需要时间,这称为“超距作用”观点。另一 种观点认为:电荷与电荷之间的相互作用是通过一种特殊的物质----电场(electric field) 来传递的。根据这种观点,任何电荷的周围都存在着电场,当一个电荷处于另一个电荷 产生的电场中时,它就会受到另一个电荷通过电场对它的作用力。因此这种观点可形象 地表示为
(dipole moment)。 电偶极子是一个重要的物理模型。电介质中的原子或分子都有正、负电荷中心,如
§10.1 库仑定律
10.1.1 电荷的量子性
人类认识电现象,是从摩擦起电开始的,比如,毛皮摩擦过的橡胶棒(或梳子)、 丝绸摩擦过的玻璃棒,可以吸引纸屑、羽毛等轻小物体,这是因为橡胶棒、玻璃棒带上 了电荷。这一现象至今仍在催生一些新奇的应用,如在静电复印机和激光打印机中,带 上静电荷的纸张可以吸附细微的墨粉。带有较强静电的陶瓷片还能用作静电吸盘,吸住 大面积的晶圆(硅片)。

真空中的静电场

真空中的静电场

r x R

dq( xi R) dE 4 0 ( x 2 R2 )3 / 2
R R(cos j sin k )
x E i 2 2 3/ 2 4 0 ( x R )
•若
Q
y
o
x R
Q E 2 4 0 x Q 2 4 0r
x
x
z
qi
fi q
f E q

i 1
n
fi
E Ei
E
i 1
q

i 1
n
ir
q
i n
或:
4 0ri
qi
3
ri
—场强叠加原理!
3. 任意带电体的场强
若为电荷连续分布的带电体,如图示
可以把带电体切割成无穷多个电荷 元,每个电荷元可看
在一个和外界没有电荷交换的系统内,正负电荷的代 数和在任何物理过程中保持不变。 讨论
q const.
i i
•电荷守恒定律是物理学 中普遍的基本定律 •电荷可以成对产生或湮 灭,保持代数和不变

-e +e
-e
+e
•电中性-物体带等量的正 负电荷 •物质的原子构成与带电 —原子的电中性、离子等
1. 点电荷的场强
根据库仑定律和场强的定义
q
Q r
er
Qq f e 2 r 4 0r
球对称
f E q E
Q 4 0r
e 2 r
E( x, y, z) E(r )
E(r)
const. r c
2. 点电荷系的场强 如果带电体由 n 个点电荷组 成,如图 由电力叠加原理:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

真空中的静电场
计算题
O
B
A


1.将一“无限长”带电细线弯成图示形状,设电荷均匀分布,电荷线密度为l,四分之一圆弧AB的半径为R,试求圆心O点的场强.
解:在O点建立坐标系如图所示.
半无限长直线A∞在O点产生的场强:
半无限长直线B∞在O点产生的场强:
四分之一圆弧段在O点产生的场强:
由场强叠加原理,O点合场强为:
2.一“无限长”圆柱面,其电荷面密度为:s = s0cos f ,式中f为半径R与x轴所夹的角,试求圆柱轴线上一点的场强.
解:将柱面分成许多与轴线平行的细长条,每条可视为“无限长”均匀带电直线,其电荷线密度为
= 0cos R d,
它在O点产生的场强为:
它沿x、y轴上的二个分量为:
d E x=-d E cos f =
d E y=-d E sin f =
积分:=

3. 如图所示,一厚为b的“无限大”带电平板,其电荷体密度分布为r =kx (0≤x≤b ),式中k为一正的常量.求:
(1) 平板外两侧任一点P1和P2处的电场强度大小;
(2) 平板内任一点P处的电场强度;
(3) 场强为零的点在何处?
解: (1) 由对称分析知,平板外两侧场强大小处处相等、方向垂直于平面且背离平面.设场强大小为E.
作一柱形高斯面垂直于平面.其底面大小为S,如图所示.
按高斯定理,即
得到E = kb2 / (4e0) (板外两侧)
(2) 过P点垂直平板作一柱形高斯面,底面为S.设该处场强为,如图所示.按高斯定理有
得到 (0≤x≤b)
(3) =0,必须是,可得
4. 一“无限大”平面,中部有一半径为R的圆孔,设平面上均匀带电,电荷面密度为s.如图所示,试求通过小孔中心O并与平面垂直的直线上各点的场强和电势(选O点的电势为零).
解:将题中的电荷分布看作为面密度为s的大平面和面密度为-s的圆盘叠加的
结果.选x轴垂直于平面,坐标原点O在圆盘中心,大平面在x处产生的场强为
圆盘在该处的场强为

该点电势为
5.一真空二极管,其主要构件是一个半径R1=5×10-4m的圆柱形阴极A 和一个套在阴极外的半径R2=4.5×10-3 m的同轴圆筒形阳极B,如图所示.阳极电势比阴极高300 V,忽略边缘效应. 求电子刚从阴极射出时所受的电场力.(基本电荷e=1.6×10-19 C)
解:与阴极同轴作半径为r (R1<r<R2 )的单位长度的圆柱形高斯面,设阴极上电荷线密度为l.按高斯定理有 2p rE = / e0
得到E= / (2pe0r) (R1<r<R2)
方向沿半径指向轴线.两极之间电势差
得到,所以
在阴极表面处电子受电场力的大小为
=4.37×10-14 N
方向沿半径指向阳极.
四研讨题
1. 真空中点电荷q的静电场场强大小为
式中r为场点离点电荷的距离.当r→0时,E→∞,这一推论显然是没有物理意义的,应如何解释?
参考解答:
点电荷的场强公式仅适用于点电荷,当r→0时,任何带电体都不能视为点电荷,所以点电荷场强公式已不适用.
若仍用此式求场强E,其结论必然是错误的.当r→0时,需要具体考虑带电体的大小和电荷分布,这样求得的E就有确定值.
2. 用静电场的环路定理证明电场线如图分布的电场不可能是静电场.
参考解答:
证:在电场中作如图所示的扇形环路abcda.在ab和cd段场强方向与路径方向垂直.在bc和da段场强大小不相等(电力线疏密程度不同)而路径相等.因而
按静电场环路定理应有,
此场不满足静电场环路定理,所以不可能是静电场.
3.如果只知道电场中某点的场强,能否求出该点的电势?如果只知道电场中某点的电势,能否求出该点的场强?为什么?
参考解答:
由电势的定义:
式中为所选场点到零势点的积分路径上各点的场强,所以,如果只知道电场中某点的场强,而不知道路径上各点的场强表达式,不能求出该点的电势。

由场强与电势的关系:
场中某点的电场强度是该点电势梯度的负值。

如果只知道电场中某点的电势值,而不知道其表达式,就无法求出电势的空间变化率,也就不能求出该点的场强。

4. 从工厂的烟囱中冒出的滚滚浓烟中含有大量颗粒状粉尘,它们严重污染了环境,影响到作物的生长和人类的健康。

静电除尘是被人们公认的高效可靠的除尘技术。

先在实验室内模拟一下管式静电除尘器除尘的全过程,在模拟烟囱内,可以看到,有烟尘从“烟囱”上飘出。

加上电源,烟囱上面的烟尘不见了。

如果撤去电源,烟尘又出现在我们眼前。

请考虑如何计算出实验室管式静电除尘器的工作电压,即当工作电压达到什么数量级时,可以实现良好的静电除尘效果。

参考解答:
先来看看静电除尘装置的结构:在烟囱的轴线上,悬置了一根导
线,称之谓电晕线;在烟囱的四周设置了一个金属线圈,我们称它为集电极。

直流高压电源的正极接在线圈上,负极接在电晕线上,如右上图所示。

可以看出,接通电源以后,集电极与电晕线之间就建立了一个非均匀电场,电晕线周围电场最大。

改变直流高压电源的电压值,就可
以改变电晕线周围的电场强度。

当实际电场强度与空气的击穿电场相近时空气发生电离,形成大量的正离子和自由电子。

自由电子随电场向正极飘移,在飘移的过程中和尘埃中的中性分子或颗粒发生碰撞,这些粉尘颗粒吸附电子以后就成了荷电粒子,这样就使原来中性的尘埃带上了负电。

在电场的作用下,这些带负电的尘埃颗粒继续向正极运动,并最后附着在集电极上。

(集电极可以是金属线圈,也可以是金属圆桶壁)当尘埃积聚到一定程度时,通过振动装置,尘埃颗粒就落入灰斗中。

这种结构也称管式静电除尘器。

如右中图所示。

对管式静电除尘器中的电压设置,我们可以等价于同轴电缆来计
算。

如右下图所示,r a与r b分别表示电晕极与集电极的半径,L及D分别表示圆筒高度及直径。

一般L为3-5m,D为200-300mm,故L>>D,此时电晕线外的电场可以认为是无限长带电圆柱面的电场。

设单位长度的圆柱面带电荷为。

用静电场高斯定理求出距轴线任意距离r处点P的场强为:
式中为沿径矢的单位矢量。

内外两极间电压U与电场强度E之关系为
,将式(1)代入式(2),
积分后得: , 故.
由于电晕线附近的电场强度最大,使它达到空气电离的最大电场强度时,就可获得高压电源必须具备的电压
代入空气的击穿电场,并取一组实测参数如下:
,计算结果.
若施加电压U低于临界值,则没有击穿电流,实现不了除尘的目的。

也就是说,在这样尺寸的除尘器中,通常当电压达到105V的数量级时,就可以实现良好的静电除尘效果。

静电除尘器除了上述的管式结构外还有其它的结构形式,如板式结构等。

可以参阅有关资料,仿上计算,也可以自行独立设计一种新型结构的静电除尘器。

相关文档
最新文档