带电粒子在复合场中运动专题(含答案)
高考物理带电粒子在复合场中的运动技巧(很有用)及练习题含解析

一、带电粒子在复合场中的运动专项训练1.扭摆器是同步辐射装置中的插入件,能使粒子的运动轨迹发生扭摆.其简化模型如图:Ⅰ、Ⅱ两处的条形匀强磁场区边界竖直,相距为L ,磁场方向相反且垂直纸面.一质量为m ,电量为-q ,重力不计的粒子,从靠近平行板电容器MN 板处由静止释放,极板间电压为U ,粒子经电场加速后平行于纸面射入Ⅰ区,射入时速度与水平和方向夹角30θ=︒(1)当Ⅰ区宽度1L L =、磁感应强度大小10B B =时,粒子从Ⅰ区右边界射出时速度与水平方向夹角也为30︒,求B 0及粒子在Ⅰ区运动的时间t 0(2)若Ⅱ区宽度21L L L ==磁感应强度大小210B B B ==,求粒子在Ⅰ区的最高点与Ⅱ区的最低点之间的高度差h(3)若21L L L ==、10B B =,为使粒子能返回Ⅰ区,求B 2应满足的条件(4)若12B B ≠,12L L ≠,且已保证了粒子能从Ⅱ区右边界射出.为使粒子从Ⅱ区右边界射出的方向与从Ⅰ区左边界射出的方向总相同,求B 1、B 2、L 1、、L 2、之间应满足的关系式.【来源】2011年普通高等学校招生全国统一考试物理卷(山东) 【答案】(1)32lm t qU π=(2)2233h L ⎛⎫=- ⎪⎝⎭(3)232mU B L q >(或232mUB L q≥)(4)1122B L B L =【解析】图1(1)如图1所示,设粒子射入磁场Ⅰ区的速度为v ,在磁场Ⅰ区中做圆周运动的半径为1R ,由动能定理和牛顿第二定律得212qU mv =①211v qvB m R = ②由几何知识得12sin L R θ= ③联立①②③,带入数据得012mUB L q=④设粒子在磁场Ⅰ区中做圆周运动的周期为T ,运动的时间为t12R T v π= ⑤ 22t T θπ=⑥ 联立②④⑤⑥式,带入数据得32Lmt qUπ=⑦ (2)设粒子在磁场Ⅱ区做圆周运动的半径为2R ,有牛顿第二定律得222v qvB m R = ⑧由几何知识得()()121cos tan h R R L θθ=+-+ ⑨联立②③⑧⑨式,带入数据得2233h L ⎛⎫=- ⎪⎝⎭⑩图2(3)如图2所示,为时粒子能再次回到Ⅰ区,应满足()21sin R L θ+<[或()21sin R L θ+≤] ⑾联立①⑧⑾式,带入数据得232mU B L q >(或232mUB L q≥) ⑿图3图4(4)如图3(或图4)所示,设粒子射出磁场Ⅰ区时速度与水平方向得夹角为α,有几何知识得()11sin sin L R θα=+ ⒀ [或()11sin sin L R θα=-]()22sin sin L R θα=+ ⒁[或]()22sin sin L R θα=- 联立②⑧式得1122B R B R = ⒂联立⒀⒁⒂式得1122B L B L = ⒃【点睛】(1)加速电场中,由动能定理求出粒子获得的速度.画出轨迹,由几何知识求出半径,根据牛顿定律求出B 0.找出轨迹的圆心角,求出时间;(2)由几何知识求出高度差;(3)当粒子在区域Ⅱ中轨迹恰好与右侧边界相切时,粒子恰能返回Ⅰ区,由几何知识求出半径,由牛顿定律求出B 2满足的条件;(4)由几何知识分析L 1、L 2与半径的关系,再牛顿定律研究关系式.2.如图1所示,宽度为d 的竖直狭长区域内(边界为12L L 、),存在垂直纸面向里的匀强磁场和竖直方向上的周期性变化的电场(如图2所示),电场强度的大小为0E ,0E >表示电场方向竖直向上。
2022年高考物理命题猜想与仿真押题——专题09 带电粒子在复合场中的运动(命题猜想)(解析版)

【考向解读】1.2022年主要考试热点:(1)带电粒子在组合复合场中的受力分析及运动分析.(2)带电粒子在叠加复合场中的受力分析及运动分析.(3)带电粒子在交变电磁场中的运动.2.带电粒子在复合场中的运动应当是2022年高考压轴题的首选.(1)复合场中结合牛顿其次定律、运动的合成与分解、动能定理综合分析相关的运动问题.(2)复合场中结合数学中的几何学问综合分析多解问题、临界问题、周期性问题等.【命题热点突破一】带电粒子在组合场中的运动磁偏转”和“电偏转”的差别电偏转磁偏转偏转条件带电粒子以v⊥E进入匀强电场带电粒子以v⊥B进入匀强磁场受力状况只受恒定的电场力只受大小恒定的洛伦兹力运动状况类平抛运动匀速圆周运动运动轨迹抛物线圆弧物理规律类平抛学问、牛顿其次定律牛顿其次定律、向心力公式基本公式L=vt,y=12at2,a=qEm,tan θ=atvr=mvqB,T=2πmqB,t=θ2πT例1.如图所示,静止于A处的离子,经加速电场加速后沿图中圆弧虚线通过静电分析器,从P点垂直CN 进入矩形区域的有界匀强电场,电场方向水平向左.静电分析器通道内有均匀辐射分布的电场,已知圆弧虚线的半径为R,其所在处场强为E、方向如图所示;离子质量为m、电荷量为q;QN=2d、PN=3d,离子重力不计.(1)求加速电场的电压U;(2)若离子恰好能打在Q点上,求矩形区域QNCD内匀强电场场强E0的值;(3)若撤去矩形区域QNCD内的匀强电场,换为垂直纸面对里的匀强磁场,要求离子能最终打在QN上,求磁场磁感应强度B的取值范围.(3)离子在匀强磁场中做匀速圆周运动,洛伦兹力供应向心力,依据牛顿其次定律,有qBv=mv2r则r=1BEmRq离子能打在QN上,则既没有从DQ边出去也没有从PN边出去,则离子运动径迹的边界如图中Ⅰ和Ⅱ.由几何关系知,离子能打在QN上,必需满足:32d<r≤2d则有12dEmRq≤B<23dEmRq.答案(1)12ER(2)3ER2d(3)12d EmRq≤B <23dEmRq【变式探究】如图所示的坐标系中,第一象限内存在与x轴成30°角斜向下的匀强电场,电场强度E=400 N/C;第四象限内存在垂直于纸面对里的有界匀强磁场,x轴方向的宽度OA=203cm,y轴负方向无限大,磁感应强度B=1×10-4T.现有一比荷为qm=2×1011 C/kg的正离子(不计重力),以某一速度v0从O点射入磁场,α=60 °,离子通过磁场后刚好从A点射出,之后进入电场.(1)求离子进入磁场B的速度v0的大小;(2)离子进入电场后,经多少时间再次到达x轴上;(3)若离子进入磁场B后,某时刻再加一个同方向的有界匀强磁场使离子做完整的圆周运动,求所加磁场磁感应强度的最小值.解析离子的运动轨迹如图所示离子沿电场方向做初速度为零的匀加速直线运动,加速度为a,位移为l2Eq=ma l2=12at2由几何关系可知tan 60°=l2l1代入数据解得t=3×10-7s(3)由Bqv=mv2r知,B越小,r越大.设离子在磁场中最大半径为R由几何关系得R=12(r1-r1sin 30°)=0.05 m由牛顿运动定律得B1qv0=mv20R得B1=4×10-4T则外加磁场ΔB1=3×10-4T答案(1)4×106 m/s(2)3×10-7s(3)3×10-4T【感悟提升】带电粒子在组合场中的运动问题,一般都是单物体多过程问题,求解策略是“各个击破”:(1)先分析带电粒子在每个场中的受力状况和运动状况,抓住联系相邻两个场的纽带——速度(一般是后场的入射速度等于前场的出射速度),(2)然后利用带电粒子在电场中往往做类平抛运动或直线运动,在磁场中做匀速圆周运动的规律求解.【命题热点突破二】带电粒子在叠加复合场中的运动例2.如图所示,水平线AC和竖直线CD相交于C点,AC上开有小孔S,CD上开有小孔P,AC与CD间存在磁感应强度为B的匀强磁场,磁场方向垂直纸面对里,∠DCG=60°,在CD右侧、CG的下方有一竖直向上的匀强电场E(大小未知)和垂直纸面对里的另一匀强磁场B1(大小未知),一质量为m、电荷量为+q的塑料小球从小孔S处无初速度地进入匀强磁场中,经一段时间恰好能从P孔水平匀速飞出而进入CD右侧,小球在CD右侧做匀速圆周运动而垂直打在CG板上,重力加速度为g.(1)求竖直向上的匀强电场的电场强度E的大小;(2)求CD右侧匀强磁场的磁感应强度B1的大小;(3)若要使小球进入CD右侧后不打在CG上,则B1应满足什么条件?解析(1)因小球在CD右侧受重力、电场力和洛伦兹力作用而做匀速圆周运动,所以有mg=qE,即E=mgq.(2)小球进入磁场后,由于重力作用,速率不断增大,同时在洛伦兹力的作用下小球右偏,当小球从小孔P水平匀速飞出时,受力平衡有Bqv =mg ,即v =mgBq从S 到P 由动能定理得mg CP =12mv 2,即CP =m 2g2q 2B2因小球从小孔P 水平飞入磁场B 1后做匀速圆周运动而垂直打在CG 上,所以C 点即为小球做圆周运动的圆心,半径即为r =CP 又因B 1qv =m v 2r联立得B 1=2B .答案 (1)mgq(2)2B (3)B 1≥4.3B【变式探究】如图所示,离子源A 产生的初速度为零、带电荷量为e 、质量不同的正离子被电压为U 1的加速电场加速后进入一电容器中,电容器两极板之间的距离为d ,电容器中存在磁感应强度大小为B 的匀强磁场和匀强电场.正离子能沿直线穿过电容器,垂直于边界MN 进入磁感应强度大小也为B 的扇形匀强磁场中,∠MNQ =90°.(不计离子的重力)(1)求质量为m 的离子进入电容器时,电容器两极板间的电压U 2; (2)求质量为m 的离子在磁场中做圆周运动的半径;(3)若质量为4m 的离子垂直打在NQ 的中点S 1处,质量为16m 的离子打在S 2处.求S 1和S 2之间的距离以及能打在NQ 上正离子的质量范围.解析 (1)设离子经加速电场后获得的速度为v 1,应用动能定理有U 1e =12mv 21离子进入电容器后沿直线运动,有U 2ed =Bev 1得U 2=Bd2U 1em又ON =R 2-R 1由几何关系可知S 1和S 2之间的距离ΔS =R 22-ON 2-R 1联立解得ΔS =2(3-1)2U 1mB 2e由R ′2=(2R 1)2+(R ′-R 1)2 解得R ′=52R 1再依据12R 1≤R x ≤52R 1解得m ≤m x ≤25m 答案 (1)Bd 2U 1em(2)2U 1mB 2e(3)m ≤m x ≤25m【命题热点突破三】带电粒子在交变电磁场中的运动及多解问题例3、如图甲所示,宽度为d 的竖直狭长区域内(边界为L 1、L 2),存在垂直纸面对里的匀强磁场和竖直方向上的周期性变化的电场(如图乙所示),电场强度的大小为E 0,E >0表示电场方向竖直向上.t =0时,一带正电、质量为m 的微粒从左边界上的N 1点以水平速度v 射入该区域,沿直线运动到Q 点后,做一次完整的圆周运动,再沿直线运动到右边界上的N 2点.Q 为线段N 1N 2的中点,重力加速度为g .上述d 、E 0、m 、v 、g 为已知量.(1)求微粒所带电荷量q 和磁感应强度B 的大小. (2)求电场变化的周期T .(3)转变宽度d ,使微粒仍能按上述运动过程通过相应宽度的区域,求T 的最小值.(2)设微粒从N 1运动到Q 的时间为t 1,做圆周运动的周期为t 2,则d2=vt 1⑤(1分)qvB =m v 2R⑥(2分)2πR =vt 2⑦(1分)联立③④⑤⑥⑦得t 1=d 2v ;t 2=πvg⑧(2分)电场变化的周期T =t 1+t 2=d 2v +πvg⑨(1分)【感悟提升】空间存在的电场或磁场是随时间周期性变化的,一般呈现“矩形波”的特点.交替变化的电场及磁场会使带电粒子顺次经过不同特点的电场、磁场或叠加的场,从而表现出多过程现象,其特点较为隐蔽,应留意以下两点:(1)认真确定各场的变化特点及相应时间,其变化周期一般与粒子在磁场中的运动周期关联. (2)把粒子的运动过程用直观草图进行分析.【变式探究】如图甲所示,两竖直线所夹区域内存在周期性变化的匀强电场与匀强磁场,变化状况如图乙、丙所示,电场强度方向以y 轴负方向为正,磁感应强度方向以垂直纸面对外为正.t =0时刻,一质量为m 、电量为q 的带正电粒子从坐标原点O 开头以速度v 0沿x 轴正方向运动,粒子重力忽视不计,图乙、丙中E 0=3B 0v 04π,t 0=πm qB 0,B 0已知.要使带电粒子在0~4nt 0(n ∈N)时间内始终在场区运动,求:(1)在t 0时刻粒子速度方向与x 轴的夹角; (2)右边界到O 的最小距离; (3)场区的最小宽度.解析 (1)由牛顿其次定律,得E 0q =ma v y =qE 0mt 0(2分)E 0=3B 0v 04πtan θ=v yv 0(1分) θ=37°(1分)(2)x 1=v 0t 0(1分)如图所示,由几何关系得x 2=R 1-R 1cos 53°(1分)B 0qv =m v 2R 1(1分) v =v 0cos 37°(1分)x =x 1+x 2=(π+0.5)mv 0qB 0(1分)答案 (1)37° (2)(π+0.5)mv 0qB 0(3)(1.5n +1.5+π)mv 0qB 0【高考真题解读】1.(2021·福建理综,22,20分)如图,绝缘粗糙的竖直平面MN 左侧同时存在相互垂直的匀强电场和匀强磁场,电场方向水平向右,电场强度大小为E ,磁场方向垂直纸面对外,磁感应强度大小为B .一质量为m 、电荷量为q 的带正电的小滑块从A 点由静止开头沿MN 下滑,到达C 点时离开 MN 做曲线运动.A 、C 两点间距离为h ,重力加速度为g .(1)求小滑块运动到C 点时的速度大小v C ;(2)求小滑块从A 点运动到C 点过程中克服摩擦力做的功W f ;(3)若D 点为小滑块在电场力、洛伦兹力及重力作用下运动过程中速度最大的位置,当小滑块运动到D 点时撤去磁场,此后小滑块连续运动到水平地面上 的P 点.已知小滑块在D 点时的速度大小为v D ,从D点运动到P 点的时间 为t ,求小滑块运动到P 点时速度的大小v P .(3)如图,小滑块速度最大时,速度方向与电场力、重力的合力方向垂直.撤 去磁场后小滑块将做类平抛运动,等效加速度为g ′g ′=(qE m)2+g 2⑥ 且v 2P =v 2D +g ′2t 2⑦解得v P =v 2D +⎣⎡⎦⎤(qE m )2+g 2t 2⑧ 答案 (1)E B (2)mgh -mE 22B 2(3)v 2D+⎣⎡⎦⎤(qE m )2+g 2t 22.(2021·重庆理综,9,18分)如图为某种离子加速器的设计方案.两个半圆形金属盒内存在相同的垂直于纸面对外的匀强磁场.其中MN 和M ′N ′是间距为h 的两平行极板,其上分别有正对的两个小孔O 和O ′,O ′N ′=ON =d ,P 为靶点,O ′P =kd (k 为大于1的整数).极板间存在方向向上的匀强电场,两极板间电压为U .质量为m 、带电量为q 的正离子从O 点由静止开头加速,经O ′进入磁场区域.当离子打到极板上O ′N ′区域(含N ′点)或外壳上时将会被吸取.两虚线之间的区域无电场和磁场存在,离子可匀速穿过,忽视相对论效应和离子所受的重力.求:(1)离子经过电场仅加速一次后能打到P 点所需的磁感应强度大小; (2)能使离子打到P 点的磁感应强度的全部可能值;(3)打到P 点的能量最大的离子在磁场中运动的时间和在电场中运动的时间. 解析 (1)粒子经电场加速一次后的速度为v 1,由动能定理得 qU =12mv 21①粒子能打到P 点,则在磁场中的轨道半径r 1=kd2②对粒子在磁场中由牛顿其次定律得qv 1B 1=mv 21r 1③联立①②③式解得B 1=22Uqmqkd④答案 (1)22Uqm qkd (2)22nUqmqkd(n =1,2,3,…,k 2-1)(3)(2k 2-3)πkmd22Uqm (k 2-1)h 2(k 2-1)mUq3.(2021·天津理综,12,20分)现代科学仪器常利用电场、磁场把握带电粒子的运动.真空中存在着如图所示的多层紧密相邻的匀强电场和匀强磁场,电场与磁场的宽度均为d .电场强度为E ,方向水平向右;磁感应强度为B ,方向垂直纸面对里,电场、磁场的边界相互平行且与电场方向垂直.一个质量为m 、电荷量为q 的带正电粒子在第1层电场左侧边界某处由静止释放,粒子始终在电场、磁场中运动,不计粒子重力及运动时的电磁辐射.(1)求粒子在第2层磁场中运动时速度v 2的大小与轨迹半径r 2;(2)粒子从第n 层磁场右侧边界穿出时,速度的方向与水平方向的夹角为θn , 试求sin θn ;(3)若粒子恰好不能从第n 层磁场右侧边界穿出,试问在其他条件不变的状况 下,也进入第n 层磁场,但比荷较该粒子大的粒子能否穿出该层磁场右侧边界,请简要推理说明之.(2)设粒子在第n 层磁场中运动的速度为v n ,轨迹半径为r n (各量的下标均代表 粒子所在层数,下同). nqEd =12mv 2n ⑤qv n B =m v 2nr n⑥图1粒子进入第n 层磁场时,速度的方向与水平方向的夹角为αn ,从第n 层磁场右侧边界穿出时速度方向与水平方向的夹角为θn ,粒子在电场中运动时,垂直于电场线方向的速度重量不变,有v n -1sin θn -1=v n sin αn ⑦ 由图1看出r n sin θn -r n sin αn =d ⑧由⑥⑦⑧式得r n sin θn -r n -1sin θn -1=d ⑨由⑨式看出r 1sin θ1,r 2sin θ2,…,r n sin θn 为一等差数列,公差为d ,可得r n sin θn =r 1sin θ1+(n -1)d ⑩图2粒子穿出时的速度方向与水平方向的夹角为θn ,由于 q ′m ′>q m ⑮则导致 sin θn ′>1⑯说明θn ′不存在,即原假设不成立.所以比荷较该粒子大的粒子不能穿出该层磁场右侧边界.答案 (1)2qEd m 2BmEdq(2)B nqd2mE(3)见解析4.(2021·江苏单科,15,16分)一台质谱仪的工作原理如图所示, 电荷量均为+q 、质量不同的离子飘入电压为U 0的加速电场,其初速度几乎为零.这些离子经加速后通过狭缝O 沿着与磁场垂直的方向进入磁感应强度为B 的匀强磁场,最终打在底片上.已知放置底片的区域MN =L ,且OM =L .某次测量发觉MN 中左侧23区域MQ 损坏,检测不到离子,但右侧13区域QN 仍能正常检测到离子.在适当调整加速电压后,原本打在MQ 的离子即可在QN 检测到.(1)求原本打在MN 中点P 的离子质量m ;(2)为使原本打在P 的离子能打在QN 区域,求加速电压U 的调整范围;(3)为了在QN 区域将原本打在MQ 区域的全部离子检测完整,求需要调整U 的最少次数.(取lg 2=0.301,lg 3=0.477,lg 5=0.699) 解析 (1)离子在电场中加速: qU 0=12mv 2在磁场中做匀速圆周运动:qvB =m v 2r解得r =1B2mU 0q打在MN 中点P 的离子半径为r 0=34L ,代入解得m =9qB 2L 232U 0(2)由(1)知,U =16U 0r 29L 2离子打在Q 点时r =56L ,U =100U 081 离子打在N 点时r =L ,U =16U 09,则电压的范围 100U 081≤U ≤16U 09 (3)由(1)可知,r ∝U由题意知,第1次调整电压到U 1,使原本Q 点的离子打在N 点L 56L =U 1U 0此时,原本半径为r 1的打在Q 1的离子打在Q 上56L r 1=U 1U 0解得r 1=⎝⎛⎭⎫562L答案 (1)9qB 2L 232U 0 (2)100U 081≤U ≤16U 09(3)3次5.(2022·浙江理综,25,22分)离子推动器是太空飞行器常用的动力系统.某种推动器设计的简化原理如图1所示,截面半径为R 的圆柱腔分为两个工作区.Ⅰ为电离区,将氙气电离获得1价正离子;Ⅱ为加速区,长度为L ,两端加有电压,形成轴向的匀强电场.Ⅰ区产生的正离子以接近0的初速度进入Ⅱ区,被加速后以速度v M 从右侧喷出.Ⅰ区内有轴向的匀强磁场,磁感应强度大小为B ,在离轴线R /2处的C 点持续射出肯定速率范围的电子.假设射出的电子仅在垂直于轴线的截面上运动,截面如图2所示(从左向右看).电子的初速度方向与中心O 点和C 点的连线成α角(0<α≤90°).推动器工作时,向Ⅰ区注入淡薄的氙气.电子使氙气电离的最小速率为v 0,电子在Ⅰ区内不与器壁相碰且能到达的区域越大,电离效果越好.已知离子质量为M ;电子质量为m ,电荷量为e .(电子遇到器壁即被吸取,不考虑电子间的碰撞)(1)求Ⅱ区的加速电压及离子的加速度大小;(2)为取得好的电离效果,请推断Ⅰ区中的磁场方向(按图2说明是“垂直纸面对里”或“垂直纸面对外”);(3)α为90°时,要取得好的电离效果,求射出的电子速率v 的范围;(4)要取得好的电离效果,求射出的电子最大速率v max 与α角的关系. 解析 (1)由动能定理得12Mv 2M=eU ①U =Mv 2M2e②a =eE M =e U ML =v 2M 2L③(4)电子运动轨迹如图所示, OA =R -r ,OC =R2,AC =r依据几何关系得r =3R4(2-sin α)⑨由⑥⑨式得v max =3eBR4m (2-sin α)答案 (1)Mv 2M 2e v 2M2L (2)垂直纸面对外(3)v 0≤v <3eBR 4m (4)v max =3eBR4m (2-sin α)6.(2022·重庆理综,9,18分)如图所示,在无限长的竖直边界NS 和MT 间布满匀强电场,同时该区域上、下部分分别布满方向垂直于NSTM 平面对外和向内的匀强磁场,磁感应强度大小分别为B 和2B ,KL 为上、下磁场的水平分界线,在NS 和MT 边界上,距KL 高h 处分别有P 、Q 两点,NS 和MT 间距为1.8h .质量为m 、带电荷量为+q 的粒子从P 点垂直于NS 边 界射入该区域,在两边界之间做圆周运动,重力加速度为g .(1)求电场强度的大小和方向.(2)要使粒子不从NS 边界飞出,求粒子入射速度的最小值.(3)若粒子能经过Q 点从MT 边界飞出,求粒子入射速度的全部可能值. 解析 (1)设电场强度大小为E . 由题意有mg =qE得E =mgq,方向竖直向上.(2)如图1所示,设粒子不从NS 边飞出的入射速度最小值为V min ,对应的粒子 在上、下区域的运动半径分别为r 1和r 2,圆心的连线与NS 的夹角为φ. 由r =mvqB有r 1=mv min qB ,r 2=12r 1由(r 1+r 2)sin φ=r 2 r 1+r 1cos φ=hv min =(9-62)qBhm答案 (1)mg q ,方向竖直向上 (2)(9-62)qBhm(3)见解析7.(2022·大纲全国,25,20分)如图,在第一象限存在匀强磁场,磁感应强度方向垂直于纸面(xy 平面)向外;在第四象限存在匀强电场,方向沿x 轴负向.在y 轴正半轴上某点以与x 轴正向平行、大小为v 0的速度放射出一带正电荷的粒子,该粒子在(d ,0)点沿垂直于x 轴的方向进入电场.不计重力.若该粒子离开电场时速度方向与Y 轴负方向的夹角为θ,求(1)电场强度大小与磁感应强度大小的比值; (2)该粒子在电场中运动的时间.解析 (1)如图,粒子进入磁场后做匀速圆周运动.设磁感应强度的大小为B ,粒子质量与所带电荷量分别为m 和q ,圆周运动的半径为R 0.由洛仑兹力公式 及牛顿其次定律得qv 0B =m v 20R 0①由题给条件和几何关系可知R 0=d ②答案 (1)12v 0tan 2θ (2)2dv 0tan θ。
带电粒子在复合场中的运动(高考真题)

带电粒子在复合场中的运动(2007年全国卷2)25。
(20分)如图所示,在坐标系Oxy 的第一象限中在在沿y 轴正方向的匀强电场,场强大小为E 。
在其它象限中在在匀强磁场,磁场方向垂直于纸面向里,A 是y 轴上的一点,它到坐标原点O 的距离为h ;C 是x 轴上的一点,到O 点的距离为l ,一质量为m 、电荷量为q 的带负电的粒子以某一初速度沿x 轴方向从A 点进入电场区域,继而通过C 点进入磁场区域,并再次通过A 点,此时速度方向与y 轴正方向成锐角.不计重力作用。
试求: (1)粒子经过C 点时速度的大小和方向; (2)磁感应强度的大小B 。
(2008年全国卷1)25.(22分)如图所示,在坐标系xOy 中,过原点的直线OC 与x 轴正向的夹角φ=120º。
在OC 右侧有一匀强电场;在第二、三象限内有一匀强磁场,其上边界与电场边界重叠、右边界为y 轴、左边界为图中平行于y 轴的虚线,磁场的磁感应强度大小为B ,方向垂直纸面向里。
一带正电荷q 、质量为m 的粒子以某一速度自磁场左边界上的A 点射入磁场区域,并从O 点射出.粒子射出磁场的速度方向与x 轴的夹角θ=30º,大小为v 。
粒子在磁场中的运动轨迹为纸面内的一段圆弧,且弧的半径为磁场左右边界间距的两倍。
粒子进入电场后,在电场力的作用下又由O 点返回磁场区域,经过一段时间后再次离开磁场。
已知粒子从A 点射入到第二次离开磁场所用的时间恰好等于粒子在磁场中做圆周运动的周期.忽略重力的影响.求:⑴粒子经过A 点时速度的方向和A 点到x 轴的距离; ⑵匀强电场的大小和方向;⑶粒子从第二次离开磁场到再次进入电场时所用的时间.(2009年全国卷2)25。
(18分)如图,在宽度分别为1l 和2l 的Ov ABCyθφ两个毗邻的条形区域分别有匀强磁场和匀强电场,磁场方向垂直于纸面向里,电场方向与电、磁场分界线平行向右。
一带正电荷的粒子以速率v 从磁场区域上边界的P 点斜射入磁场,然后以垂直于电、磁场分界线的方向进入电场,最后从电场边界上的Q 点射出。
带电粒子在复合场中的运动(含详细解析过程)

带电粒子在复合场中的运动1、如图所示,在y > 0的空间中存在匀强电场,场强沿y 轴负方向;在y < 0的空间中,存在匀强磁场,磁场方向垂直xy 平面(纸面)向外.一电量为q 、质量为m 的带正电的运动粒子,经过y 轴上y = h 处的点P1时速率为v0,方向沿x 轴正方向,然后经过x 轴上x = 2h 处的P2点进入磁场,并经过y 轴上y = – 2h 处的P3点.不计粒子的重力,求 (1)电场强度的大小;(2)粒子到达P2时速度的大小和方向; (3)磁感应强度的大小. 2、如图所示的区域中,第二象限为垂直纸面向外的匀强磁场,磁感应强度为B ,第一、第四象限是一个电场强度大小未知的匀强电场,其方向如图。
一个质量为m ,电荷量为+q 的带电粒子从P 孔以初速度v0沿垂直于磁场方向进入匀强磁场中,初速度方向与边界线的夹角θ=30°,粒子恰好从y 轴上的C孔垂直于匀强电场射入匀强电场,经过x 轴的Q 点,已知OQ=OP ,不计粒子的重力,求:(1)粒子从P 运动到C 所用的时间t ; (2)电场强度E 的大小;(3)粒子到达Q 点的动能Ek 。
3、如图所示,半径分别为a 、b 的两同心虚线圆所围空间分别存在电场和磁场,中心O 处固定一个半径很小(可忽略)的金属球,在小圆空间内存在沿半径向内的辐向电场,小圆周与金属球间电势差为U ,两圆之间的空间存在垂直于纸面向里的匀强磁场,设有一个带负电的粒子从金属球表面沿+x 轴方向以很小的初速度逸出,粒子质量为m ,电量为q ,(不计粒子重力,忽略粒子初速度)求:(1)粒子到达小圆周上时的速度为多大?(2)粒子以(1)中的速度进入两圆间的磁场中,当磁感应强度超过某一临界值时,粒子将不能到达大圆周,求此最小值B 。
(3)若磁感应强度取(2)中最小值,且b =(2+1)a ,要粒子恰好第一次沿逸出方向的反方向回到原出发点,粒子需经过多少次回旋?并求粒子在磁场中运动的时间。
高考复习(物理)专项练习:带电粒子在复合场中的运动【含答案及解析】

专题分层突破练9带电粒子在复合场中的运动A组1.(2021湖南邵阳高三一模)如图所示,有一混合正离子束从静止通过同一加速电场后,进入相互正交的匀强电场和匀强磁场区域Ⅰ。
如果这束正离子束在区域Ⅰ中不偏转,不计离子的重力,则说明这些正离子在区域Ⅰ中运动时一定相同的物理量是()A.动能B.质量C.电荷D.比荷2.(多选)(2021辽宁高三一模)劳伦斯和利文斯设计的回旋加速器如图所示,真空中的两个D形金属盒间留有平行的狭缝,粒子通过狭缝的时间可忽略。
匀强磁场与盒面垂直,加速器接在交流电源上,A处粒子源产生的质子可在盒间被正常加速。
下列说法正确的是()A.虽然逐渐被加速,质子每运动半周的时间不变B.只增大交流电压,质子在盒中运行总时间变短C.只增大磁感应强度,仍可能使质子被正常加速D.只增大交流电压,质子可获得更大的出口速度3.(2021四川成都高三二模)如图所示,在第一、第四象限的y≤0.8 m区域内存在沿y轴正方向的匀强电场,电场强度大小E=4×103 N/C;在第一象限的0.8 m<y≤1.0 m区域内存在垂直于坐标平面向外的匀强磁场。
一个质量m=1×10-10 kg、电荷量q=1×10-6 C的带正电粒子,以v0=6×103 m/s的速率从坐标原点O沿x轴正方向进入电场。
不计粒子的重力。
(1)求粒子第一次离开电场时的速度。
(2)为使粒子能再次进入电场,求磁感应强度B的最小值。
4.(2021河南高三二模)如图所示,在平面直角坐标系xOy内有一直角三角形,其顶点坐标分别为d),(d,0),三角形区域内有垂直于纸面向里的匀强磁场,磁感应强度大小为B,x轴下方有沿(0,0),(0,√33着y轴负方向的匀强电场,电场强度大小为E。
一质量为m、电荷量为-q的粒子从y轴上的某点M 由静止释放,粒子第一次进入磁场后恰好不能从直角三角形的斜边射出,不计粒子重力。
(1)求M点到O点的距离。
高考物理一轮复习考点规范练30带电粒子在复合场中的运动(含解析)新人教版

考点规范练30带电粒子在复合场中的运动一、单项选择题1.如图所示,虚线区域空间内存在由匀强电场E和匀强磁场B组成的正交或平行的电场和磁场,有一个带正电小球(电荷量为+q,质量为m)从正交或平行的电磁复合场上方的某一高度自由落下,那么带电小球可能沿直线通过的是()A.①②B.③④C.①③D.②④答案:B解析:①图中小球受重力、向左的电场力、向右的洛伦兹力,下降过程中速度一定变大,故洛伦兹力一定变化,不可能一直与电场力平衡,故合力不可能一直向下,故一定做曲线运动;②图中小球受重力、向上的电场力、垂直向外的洛伦兹力,合力与速度一定不共线,故一定做曲线运动;③图中小球受重力、向左上方的电场力、水平向右的洛伦兹力,若三力平衡,则小球做匀速直线运动;④图中小球受向下的重力和向上的电场力,合力一定与速度共线,故小球一定做直线运动。
故选项B正确。
2.如图所示,一束质量、速度和电荷量不全相等的离子,经过由正交的匀强电场和匀强磁场组成的速度选择器后,进入另一个匀强磁场中并分裂为A、B两束,下列说法正确的是()A.组成A束和B束的离子都带负电B.组成A束和B束的离子质量一定不同C.A束离子的比荷大于B束离子的比荷D.速度选择器中的磁场方向垂直于纸面向外答案:C解析:由左手定则知,A、B离子均带正电,A错误;两束离子经过同一速度选择器后的速度相同,在偏转磁场可知,半径大的离子对应的比荷小,但离子的质量不一定相同,故选项B错误,C正确;速度选择中,由R=mmmm器中的磁场方向应垂直纸面向里,D错误。
3.右图是医用回旋加速器示意图,其核心部分是两个D 形金属盒,两金属盒置于匀强磁场中,并分别与高频电源相连。
现分别加速氘核(12H)和氦核(24He)。
下列说法正确的是( )A.它们的最大速度相同B.它们的最大动能相同C.两次所接高频电源的频率可能不相同D.仅增大高频电源的频率可增大粒子的最大动能 答案:A 解析:根据qvB=m m 2m ,得v=mmm m 。
高考物理一轮复习课时规范练31 带电粒子在复合场中的运动(含答案)

课时规范练31带电粒子在复合场中的运动基础对点练1.(感应加速器)(2022安徽宣城期末)无论周围空间是否存在闭合回路,变化的磁场都会在空间激发涡旋状的感应电场,电子感应加速器便应用了这个原理。
电子在环形真空室被加速的示意图如图所示,规定垂直于纸面向外的磁场方向为正,用电子枪将电子沿图示方向注入环形室。
它们在涡旋电场的作用下被加速。
同时在磁场内受到洛伦兹力的作用,沿圆形轨道运动。
下列变化规律的磁场能对注入的电子进行环向加速的是()2.(等离子体发电)下图为等离子体发电机的示意图。
高温燃烧室产生的大量的正、负离子被加速后垂直于磁场方向喷入发电通道的磁场中。
在发电通道中有两块相距为d的平行金属板,两金属板外接电阻R。
若磁场的磁感应强度为B,等离子体进入磁场时的速度为v,系统稳定时发电通道的电阻为r。
则下列表述正确的是()A.上金属板为发电机的负极,电路中电流为BdvRB.下金属板为发电机的正极,电路中电流为BdvR+rC.上金属板为发电机的正极,电路中电流为BdvR+rD.下金属板为发电机的负极,电路中电流为BdvR3.(电磁流量计)有一种污水流量计原理可以简化为如图所示模型:废液内含有大量正、负离子,从直径为d的圆柱形容器右侧流入,左侧流出。
流量值等于单位时间通过横截面的液体的体积。
空间有垂直纸面向里的磁感应强度为B的匀强磁场,下列说法正确的是()A.M点的电势高于N点的电势B.负离子所受洛伦兹力方向竖直向下C.MN两点间的电势差与废液的流量值成正比D.MN两点间的电势差与废液流速成反比4.(霍尔效应)右图为霍尔元件的工作原理示意图,导体的宽度为h、厚度为d,磁感应强度B垂直于霍尔元件的工作面向下,通入图示方向的电流I,CD两侧面会形成电势差U,其,式中比例常数k为霍尔系数,设载流子的大小与磁感应强度B和电流I的关系为U=k IBd电荷量的数值为q,下列说法正确的是()A.霍尔元件是一种重要的电传感器B.C端的电势一定比D端的电势高C.载流子所受静电力的大小F=q UdD.霍尔系数k=1,其中n为导体单位体积内的电荷数nq5.(回旋加速器)右图为一种改进后的回旋加速器示意图,其中盒缝间的加速电场的电场强度大小恒定,且被限制在AC板间,虚线中间不需加电场,如图所示,带电粒子从P0处以速度v0沿电场线方向射入加速电场,经加速后再进入D形盒中的匀强磁场做匀速圆周运动,对这种改进后的回旋加速器,下列说法正确的是()A.加速粒子的最大速度与D形盒的尺寸无关B.带电粒子每运动一周被加速一次C.带电粒子每运动一周P1P2等于P2P3D.加速电场方向需要做周期性的变化6.(多选)(组合场)如图所示,在第二象限内有水平向右的匀强电场,在第一、第四象限内分别存在如图所示的匀强磁场,磁感应强度大小相等。
重难点08 带电粒子在复合场中的运动(解析版)

2022年高考物理【热点·重点·难点】专练(全国通用)重难点08 带电粒子在复合场中的运动【知识梳理】考点带电粒子在组合场中的运动1.带电粒子在组合场中的运动是力电综合的重点和高考热点.这类问题的特点是电场、磁场或重力场依次出现,包含空间上先后出现和时间上先后出现,磁场或电场与无场区交替出现相组合的场等.其运动形式包含匀速直线运动、匀变速直线运动、类平抛运动、圆周运动等,涉及牛顿运动定律、功能关系等知识的应用.复习指导:1.理解掌握带电粒子的电偏转和磁偏转的条件、运动性质,会应用牛顿运动定律进行分析研究,掌握研究带电粒子的电偏转和磁偏转的方法,能够熟练处理类平抛运动和圆周运动.2.学会按照时间先后或空间先后顺序对运动进行分析,分析运动速度的承前启后关联、空间位置的距离关系、运动时间的分配组合等信息将各个运动联系起来.2.解题时要弄清楚场的性质、场的方向、强弱、范围等.3.要进行正确的受力分析,确定带电粒子的运动状态.4.分析带电粒子的运动过程,画出运动轨迹是解题的关键【重点归纳】1、求解带电粒子在组合复合场中运动问题的分析方法(1)正确受力分析,除重力、弹力、摩擦力外要特别注意静电力和磁场力的分析.(2)确定带电粒子的运动状态,注意运动情况和受力情况的结合.(3)对于粒子连续通过几个不同区域、不同种类的场时,要分阶段进行处理.(4)画出粒子运动轨迹,灵活选择不同的运动规律.2、带电粒子在复合场中运动的应用实例(1)质谱仪(2)回旋加速器(3)速度选择器(4)磁流体发电机(5)电磁流量计工作原理【限时检测】(建议用时:30分钟)一、单选题1.如图所示,两个平行金属板水平放置,要使一个电荷量为-q、质量为m的微粒,以速度v沿两板中心轴线S1S2向右运动,可在两板间施加匀强电场或匀强磁场。
设电场强度为E,磁感应强度为B,不计空气阻力,已知重力加速度为g。
下列选项可行的是()A.只施加垂直向里的磁场,且满足mg Bqv =B.同时施加竖直向下的电场和垂直纸面向里的磁场,且满足mg Bv Eq=+C.同时施加竖直向下的电场和水平向右的磁场,且满足mgq E=D.同时施加竖直向上的电场和垂直纸面向外的磁场,且满足mg E Bvq =+【答案】 C【解析】A.只施加垂直向里的磁场,根据左手定则,洛伦兹力竖直向下,无法跟重力平衡。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
带电粒子在复合场中运动专题
1、如图43所示,匀强电场水平向左,带正电物体沿绝缘水平板向右运动。
经过A点时的动能为100J,到达B点时,动能减少了原来的4/5,减少的动能中有3/5转化为电势能,则该物体第二次经过B点时的动能大小为:
A、4J;
B、6J,
C、8J,
D、12J.
2、有3个质量相等的粒子,一个带正电,一个带负电,一个不带电,均由左侧极板中央以相同的水平初速度射入在竖直方向的匀强电场中,分别落在正极板上的A、B、C三点,如图44所示,则:
A、它们在电场中的运动时间相同;
B、粒子A带负电、B不带电、C带正电;
C、它们在电场中的加速度a A>a B>a C;
D、它们到达正极板时的动能E KA>E KB>E KC.
3、空间某一区域中存在着方向互相垂直的水平匀强电场和水平匀强磁场,电场的方向水平向右,磁场方向如图45所示。
若不计重力,带电粒子在这区域中运动时动能保持不变。
则带电粒子运动的方向可能是()A.水平向右B.水平向左C.竖直向上D.竖直向下
4、如图46所示,三条虚线表示某电场中的三个等势面,其中U1=10V,U2=20V,U3=30V,一个带电粒子只受电场力作用,按图中实线轨迹从A点运动到B点,由此可知
A、粒子带正电
B、粒子速度变大
C、粒子加速度变小
D、粒子电势能变大
5、一个匀强电场的电场强度随时间变化的图象如图47所示,在这个匀强电场中有一个带电粒子,在t=0时刻由静止释放,若带电粒子只受电场力的作用,电场力的作用和带电粒子的运动情况是:
A、带电粒子将向一个方向运动;
B、0---3S内,电场力的冲量等于0,电场力的功亦等于0
C、3s末带电粒子回到原出发点;
D、2----4s内电场力的冲量不等于0,而电场力的功等于0.
6、质量为m的物块,带正电Q,开始时让它静止在倾角α=600的固定光滑绝缘斜面顶端,整个装置放在水平方向的E=的匀强电场,如图48所示,斜面高为H,释放物体后,物块落地的速度大小为:
A、B、C、2D、2.
7.如图49所示,甲是一带负电的小物块,乙是一不带电的绝缘物块。
甲、乙叠放在一起置于粗糙的水平地板上,地板上方空间有垂直纸面向里的匀强磁场。
现用水平恒力拉乙物块,使甲、乙无相对滑动地一起向左加速运动,在加速运动阶段()
A.甲、乙两物块间摩擦力不断减小B.甲、乙两物块间摩擦力不断增大
C.甲、乙两物块间摩擦力大小不变D.乙物块与地之间摩擦力不断减小
8、如图50所示,一根长直导线穿过通有恒定电流的金属圆环的中心且垂直于环的平面,导线和环中的电流方向如图50,那么金属环受到的磁场力为:
A.沿圆环的半径向外;B.沿环的半径向内;
C.水平向左;D.等于零。
9、如图51,一带负电的液滴在竖直向下的匀强电场和匀强磁场同时存在的空间,在水平面内做半径为r的匀速圆周运动,电场强度为E,磁感强度为B,不计空气阻力和浮力,则沿场的方向看,液滴沿时针方向运动,运动的线速度大小有。
10、:如图52所示,在x轴上方有匀强电场,场强为E;在x轴下方有匀强磁场,磁感强度为B,方向如图52,在x轴上有一点M,离O点距离为L,现有一带电量为+q的粒子,从静止开始释放后能经过M点,求如果此粒子放在y轴上,其坐标应满足什么关系?(重力忽略不计)
11.如图53所示,水平放置的铜棒ab长0.1m,质量为6×10-2kg,两端与长为1m的轻铜线相连,静止于竖直平面上。
整个装置处在斜向纸内与竖直方向成370角斜向下的匀强磁场中,磁场方向与ab垂直,磁感应强度B=0.5T。
现接通电源,使铜棒中保持有恒定电流通过,铜棒垂直纸面向外发生摆动。
已知铜棒摆动的最大偏角与竖直方向成740角,求通过的电流大小为多少?方向如何?(不计空气阻力,sin370=0.6,cos370=0.8,g取10m/s2)
12、如图54所示,正方形匀强磁场区边界长为a、由光滑绝缘壁围成,质量为m、电量为q的带正电粒子垂直于磁场方向和边界,从下边界正中央的A孔射入磁场中。
粒子碰撞时无能量和电量损失,不计重力和碰撞时间,磁感应强度的大小为B,粒子在磁场中运动的半径小于a。
欲使粒子仍能从A孔处射出,粒子的入射速度应为多少?在磁场中运动时间是多少?
带电粒子在复合场中运动专题
1.A;
2.BCD;
3.C;
4.BC;
5.BCD;
6.C;
7.BCD;
8.D;
9.顺时针,Bqr/E;
10.解析:由于此带电粒子是从静止开始释放的,要能经过M点,其起始位置只能在匀强电场区域,物理过程是:静止电荷位于匀强电场区域的y轴上,受电场力作用而加速,以速度V进入磁场,在磁场中受洛仑力作用作匀速圆周运动,向x轴偏转,回转半周期过x轴重新进入电场,在电场中经减速、加速后仍以原速率从距离O点2R处再次越过x轴,在磁场回转半周后又从距O点4R处飞越x,……如图30所示(图中电场力与磁场未画出)故有:当L=n·2R时粒子能经过M点,即R=L/2n(n=1、2、3……)设粒子静止于y轴正半轴上,和原点距离为h,由能量守恒mV2/2=qEh 对粒子在磁场中受洛仑兹力作用而作匀速圆周运动有:R=mv/qB 解上述各式得:h=B2qL2/8n2mE (n=1,2,3………)11.解析:对ab棒,受到重力、安培力和绳对棒的拉力,而重力和安培力都是恒力,由功能关系可知ab棒将在0°——74°之间来回摆动,ab棒位于θ=37°的位置为中心对称位置。
对ab棒,在θ=37°的位置,受力分析如图31所示,θ=37°时的安培力F安与重力mg的合力与绳的拉力T共线反向,由力的平行四边形定则和正弦定理得:
F安/sinθ=mg/sinα ,即:BIL/sinθ=mg/sin(π/2-2θ)
则通过的导体棒ab的电流大小为
I=mgsinθ/BLsin(π/2-2θ)=mgsinθ/BLcos2θ=mgsinθ/BL(cos2θ-sin2θ)
=6×10-2×10sin37°/0.5×0.1×(cos237°-sin237°)=25.7A
12.解析:欲使粒子仍能从A孔处射出,粒子的运动轨迹可能是如图32甲、乙所示的两种
情况。
对图32甲所示的情形,粒子运动的半径为R,则
R=a/2(2n+1),n=0,1,…… 又qVB=mV2/R,T=2πm/qB,
所以V=qBa/2(2n+1)m,
t=(4n+1)T=2(2n+1)πm/qB
n=0,1,2,……
对图32乙所示的情形,粒子运动的半径为R1,则
R1=a/4k,k=1,2,……
又qV1B=mV12/R1,
所以V1=qBa/4km,t=2kT=2k(π+2)πm/qB,k=1,2,……。