机械工程材料第四章铁碳合金相图

合集下载

第4章铁碳合金相图

第4章铁碳合金相图

A 1538℃ B 1495℃, 0.53%C
H 1495℃ , 0.09%C
N 1394℃
J 1495℃ , 0.17%C
E 1148℃ , 2.11%C
4)wC0.53%~2.11%合金,按匀晶转变凝固后,组织为单相奥氏体。 ) % %合金,按匀晶转变凝固后,组织为单相奥氏体。
A 1538℃ B 1495℃, 0.53%C
2. ES线 线 ES线:碳在 线 奥氏体中的 溶解度曲线. 溶解度曲线 ES线是二次 线是二次 渗碳体的开 始析出线 →ACm线。
3. PQ线 线 PQ线:碳在铁素体 线 中的溶解度曲线。 中的溶解度曲线。
当铁素体从727℃冷 ℃ 当铁素体从 却下来时, 却下来时,要从铁 素体中析出渗碳体, 素体中析出渗碳体, 称之为三次渗碳体, 称之为三次渗碳体, 记为Fe 记为 3CⅢ。
莱氏体:共晶转变形成的奥氏体与渗碳体的混合物, 表示。 莱氏体:共晶转变形成的奥氏体与渗碳体的混合物,以符号Ld表示。 进行共晶转变的合金成分范围: 2.11%~6.69% 进行共晶转变的合金成分范围:wC2.11%~6.69% 莱氏体组织形态:颗粒状奥氏体分布在呈连续分布的渗碳体基底上。 莱氏体组织形态:颗粒状奥氏体分布在呈连续分布的渗碳体基底上。 莱氏体的力学性能: 莱氏体的力学性能:塑性很差
五、三条重要的特性曲线
1. GS线 线 GS线→A3线 线 冷却:奥氏体析出铁 冷却 奥氏体析出铁 素体开始线 加热:铁素体溶入奥 加热 铁素体溶入奥 氏体终了线。 氏体终了线。 GS线由 点(A3点)演 线由G点 线由 演 变而来, 变而来,随着含碳 量的增加, 量的增加,使奥氏 体向铁素体的同素 异晶转变温度逐渐 下降,从而由A 下降,从而由 3点 变成了A 变成了 3线。

第四章 铁碳合金相图

第四章 铁碳合金相图

表4.3 铁碳合金的分类
第四节铁碳合金的成分、组织、性能间的关系 一、含碳量与平衡组织间的关系
随着含碳量增加时,渗碳体不仅数量增加,形态和分布也发生了很 大变化。(渗碳体分布在P内——网状分布在A晶界上——形成莱氏 体时,渗碳体则成了基体 。)
二、含碳量与力学性能间的关系
( 1 )硬度 WC 增加,硬度增加;
奥氏体的晶胞示意图
奥氏体的显微组织
三、渗碳体
渗碳体(Fe3C)



铁与碳形成的间隙化合物,含碳 量6.69%; 室温相——常作为钢的第二弥散 强化相; 渗碳体具有高硬度、高脆性、低 强度和低塑性; 一次渗碳体 Fe3CI:从液相直接 结晶出来。 二次渗碳体 Fe3CII:从 A 中析出。 三次渗碳体Fe3CIII:从F中析出。
第三节 典型铁碳合金的结晶过程及其组织
一、合金Ⅰ(共析钢)
结晶过程
共析结晶过程
1点以上 L; 1~2点 L+A; 2~3点 A; 3点 共析转变AS
727℃
(FP+Fe3C) ≡ P
QFe3 C
(片层状分布)共析铁素体 共析渗碳体 珠光体团
3~4点 F+ Fe3CIII+ Fe3C ≡ P
0.77 0.0218 11.2% 6.69 0.0218
第一节 铁碳合金的基本相
同素异晶转变——是指金属在结晶成固态以
后继续冷却的过程中晶格类型随温度下降而 发生变化的现象,也称同素异构转变。
Fe的冷却曲线及相应的晶体结构
L-Fe 液相
1538℃
δ-Fe 体心
1394℃
γ-Fe 面心
912℃ α-Fe 体心
同素异构转变(重结晶)的特点

4 铁碳合金相图

4 铁碳合金相图

一、共析钢
1 C 2
•珠光体中铁素体与渗碳体的
相对量可用杠杆定律求得。
w FP SK 6.69 0.77 100%
PK 6.69 0.0218 88.8%
PS 0.77 - 0.0218
3
w Fe 3 C
PK 6.69 0.0218 11 .2 % (1 - w FP ) 100%
σb
750~900MPa
δ
20%~25%
αk
24~32J/㎝2
第四章 铁碳合金相图
硬度
180~280HBS
共晶转变与共析转变比较
相同点: • 在恒温下,由一相转变成两相混合物
不同点:
• 共晶转变——从液相发生转变;共晶体-莱氏体Ld;
• 共析转变——从固相发生转变;共析体-珠光体P;
• 由于原子在固态下扩散困难,故共析体比共晶体 更细密。
第四章 铁碳合金相图
二、下半部分图形-固态的相变
2.图中各线的分析
• PQ-碳在铁素体中固溶线,碳在铁素体中的最大溶解度是P 点,随着温度降低溶解度减小。从727℃到室温,铁素体中
溶碳量从wC=0.0218%减小到wC=0.0008%。
第四章 铁碳合金相图
三次渗碳体(Fe3CⅢ)——由727℃冷却到室温的过程中,过 剩的碳将以渗碳体形式从铁素体中析出,称为三次渗碳体。 一次渗碳体(Fe3CⅠ)——自液态合金中直接析出的渗碳体。 二次渗碳体(Fe3CⅡ)——自奥氏体中析出的渗碳体。
第四章 铁碳合金相图
三、渗碳体
σb
30MPa
δ
0%
αk
0J/㎝2
硬度
800HBW
• 渗碳体是指晶体点阵为正交点阵,化学式近似于Fe3C的一种 具有复杂晶格的间隙化合物,用符号Fe3C表示。 • 其含碳量为wc=6.69%,熔点为1227℃,不发生同素异构转变, 有磁性转变,在230℃以下具有弱磁性,230℃以上失去铁磁 性。 • 渗碳体中碳原子可被氮等小尺寸原子置换,而铁原子则可被 其他金属原子置换。这种以渗碳体为溶剂的固溶体称为合金 渗碳体。 • Fe3C在钢和铸铁中与其他相共存时呈片状、球状、网状或块 状。在碳钢中起强化相,其形态与分布对钢的性能有很大影 响。在一定条件下会分解成石墨状的自由碳。

铁碳合金相图

铁碳合金相图

200×
(6)过共晶白口铁 ( C % = 3 % )结晶过程
室温组织:
Le′+ Fe3CI
500×
标注了组织组成物的相图
3.铁碳合金的 成分-组织-性能关系
含碳量与相的相对量关系:
C %↑→F %↓,Fe3C %↑
含碳量与组织关系: 图(a)和(b) 含碳量与性能关系 HB:取决于相及相对量 强度:C%=0.9% 时最大 塑性、韧性:随C%↑而↓
图4-13
6.亚共晶白口铁结晶过程
图4-14 亚共晶白口铁结晶过程示意图
亚共晶白口铁组织金相图
图4-15
7.过共晶白口铁结晶过相图
图4-17
二、碳对铁碳合金平衡组织和性 能的影响
含碳量对平衡组织的影响 含碳量对铁碳合金机械性能的影响
Ⅲ 3 Ⅱ
3

含碳量对平衡组织的影响
图4-18 含碳量对平衡组织的影响示意图
含碳量对铁碳合金机械性能的影响
图4-19含碳量对铁碳合金机械性能的影响
§4铁碳合金的成分—组织—性能
关系
一、含碳量与平衡组织间的关系
一、含碳量与平衡组织间的关系
1、含碳量——相相对量 C%↑→F%↓,Fe3C%↑ 2、含碳量——组织 F--->F+P--->P--->P+Fe3CII-->P+Fe3CII+Le’--->Le’-->Le’+Fe3CII--->Fe3C
第四章 铁碳合金相图
§1铁碳合金的基本相 §2 铁碳相图 §3典型铁碳合金的结晶过程及其组织 §4铁碳合金的成分—组织—性能关系
§1铁碳合金的基本相
• 一、铁碳合金相图中组元的性质和相的类

第4章第二讲 Fe-C合金相图

第4章第二讲 Fe-C合金相图

4.4 铁碳合金相图
包晶点
B J
共晶点
F C
共析点
S
K
4.4 铁碳合金相图
2. 相图中的线 液相线(ABCD): 结晶时液相的成分变化线 固相线(AHJECF): 结晶时固相的成分变化线
4.4 铁碳合金相图
A H B J E C
液相线(ABCD):
D F
固相线(AHJECF):
4.4 铁碳合金相图
4.4 铁碳合金相图
(1) 铁素体 ( F ) 碳溶于α–Fe中形 成的间隙固溶体。 C 原子溶于八面体间隙。 铁素体的含碳量非常 低,在727℃时C在α -Fe中最大溶解量为 0.0218%,室温下含 碳仅为0.005%,所以 其性能与纯铁相似。
4.4 铁碳合金相图
(2) 奥氏体 ( A ) Austenite 碳溶于γ-Fe 中形成的间隙 固溶体。 γ具有 fcc结构。具有 面心立方晶体 结构的奥氏体 可以溶解较多 的碳,1148°C 时最多可以溶 解2.11%的碳。
4.4 铁碳合金相图
4.4 铁碳合金相图
一、 Fe – C 二元相图基本知识
温 度
Fe
Fe3C Fe2C (6.69%C)
FeC
C
4.4 铁碳合金相图
4.4 铁碳合金相图
二、 形成Fe - Fe3C 相图组元和基本组织的结构 一、组元 * 铁 ( ferrite ) * 渗碳体 ( Cementite ) 二、基本相 * 液相L、 δ相、 γ相、α相、 Fe3C相 二、基本组织 * 铁素体 ( F )、奥氏体(A)、渗碳体 ( Fe3C ) * 珠光体(P)、莱氏体(Ld)、
4.4 铁碳合金相图
ES:碳在奥氏体中的溶解度随温度的变化线。

第四章 铁碳合金相图(全)

第四章 铁碳合金相图(全)
工程材料及热工处理
第四章 铁碳合金相图
主讲人: 刘 怿 凡
§4.1 固态合金的相结构
几个重要概念
1.合金
两种或两种以上的金属,或金属与非金属元素组成 的具有金属特性的物质
2.组元
组成合金的最基本的独立物质称为组元,可以是组 成合金的元素,也可以是化合物,有二元、三元等。
3.相
在合金中,凡成分相同、结构相同并以明显界面相 互分开的均匀组成部分,是合金中最基本的组成部分。
●白口铸铁硬度高、脆性大,不能切削加工,也不能锻造,但其耐 磨性好,铸造性能优良,适用于作要求耐磨、不受冲击、形状复杂 的铸件,例如拔丝模、冷轧辊、货车轮、犁铧、球磨机的磨球等。
§4.4 铁碳合金相图的应用
2.在铸造工艺方面的应用
根据Fe—Fe3C相图可以确定合金的浇注温度。浇注温度一般在 液相线以上50~100℃。
§4.1 固态合金的相结构
4.组织
用肉眼或显微镜观察到的金属材料的内部情景,包 括晶粒的大小、形状、相对数量和相对分布。“特殊形 态的微观形貌”
5.合金系
由相同组元配制的一系列成分不同的合金,组成一 个合金系统。
合金组织中的相结构决定合金的性能
§4.1 固态合金的相结构
合金的相结构
晶体结构、原子结构不同、组元相互作用不同——不同相结构
4.在热处理工艺方面的应用
Fe—Fe3C相图对于制订热处理工艺有着特别重要的意义。一些 热处理工艺如退火、正火、淬火的加热温度都是依据Fe—Fe3C相图 确定的。
§4.4 铁碳合金相图的应用
在运用Fe—Fe3C相图时应注意以下两点:
①Fe—Fe3C相图只反映铁碳二元合金中相的平衡状态,如含有其 它元素,相图将发生变化,与实际情况有较大差异。

第四章 铁碳合金相图

第四章 铁碳合金相图

的性能与纯铁相似,硬度低而塑性高,并有铁磁
性。
铁碳合金中的基本相
• 铁素体的力学性能特点是塑性、韧性好,
而强度、硬度低。
• δ=30%~50%,AK=128~160J
σb=180~280MPa,50~80HBS。
铁碳合金中的基本相
• 铁素体的显微组织与纯铁相同,用4%硝酸 酒精溶液浸蚀后,在显微镜下呈现明亮的 多边形等轴晶粒,在亚共析钢中铁素体呈
铁碳合金中的基本相
• 奥氏体的组织与铁素体相似,但晶界较
为平直,且常有孪晶存在。
铁碳合金中的基本相
3、渗碳体(Cementite)
• 渗碳体是铁和碳形成的具有复杂结构的金
属化合物,用化学分子式“Fe3C”表示。它
的碳质量分数wc=6.69%,熔点为1227℃。
• 硬而脆,耐腐蚀。用4%硝酸酒精溶液浸蚀 后,在显微镜下呈白色,如果用4%苦味酸 溶液浸蚀,渗碳体呈暗黑色。
第四章 铁碳合金相图
LOGO
概述
• 钢铁是现代工业中应用最广泛的材料,其 基本组成元素是铁和碳,故称为铁碳合金。 普通碳钢和铸铁就属于铁碳合金的范畴, 而合金钢则是有意加入一些合金元素的铁 碳合金。 • 为了研究铁碳合金的组织和性能以及它们 与成分、温度的关系,就必须学习铁碳合 金相图。
概述
• 铁碳合金相图最早是在1889年测定的,距
• 钢中wc↑,其可焊性↓,故焊接用钢主要是指 低碳 钢和低碳合金钢。
上一级
• (三) 切削加工性能
• 金属的切削加工性能是指金属进行切削 加工时的难易程度。 • 钢的硬度为160~230HBS时,切削加工 性最好。
上一级
ቤተ መጻሕፍቲ ባይዱ
LOGO
水平线ECF为共晶反应线。

第四章铁碳合金第一节铁碳合金系相图

第四章铁碳合金第一节铁碳合金系相图

第四章铁碳合金第一节铁碳合金系相图一、铁碳合金系组元的特性1、纯铁纯铁的同素异构转变金属在固态下,晶格类型随温度变化的现象。

重结晶δ-Fe。

α-Fe,γ-Fe2、碳石墨:六棱柱体0.142纳米0.34纳米耐高温导电润滑强度、硬度、塑性、韧性极低金刚石:正四面体共价键巴基球:60个碳原子12个五边形和20个六边形球面结构三维超导体非线性光学材料二、铁碳双重相图碳在铁碳合金中的存在形式固溶体渗碳体石墨Fe3C Fe2C FeCFe-Fe3C与Fe-G三、Fe-Fe3C相图的特征1、图中的基本相(1)铁素体:碳溶于α-Fe中形成的间隙固溶体。

Fα强度、硬度低,塑性、韧性高2、奥氏体:碳溶于γ-Fe中形成的固溶体。

Aγ强度、硬度不高,塑性很好3、渗碳体:铁和碳形成的金属化合物。

Fe3C4、δ固溶体:碳溶于δ -Fe中形成的间隙固溶体。

5、液相L第二节铁碳合金平衡结晶过程分析一、铁碳合金的分类(一)工业纯铁:C<0.0218%(二)钢共析钢:C=0.77%亚共析钢:0.0218%<C<0.77%过共析钢:0.77%<C<2.11%(三)白口铸铁共晶白口铸铁:C=4.3%亚晶白口铸铁:2.11%<C<4.3%过共晶白口铸铁:4.3%<C<6.69%第四节碳钢一、钢铁材料的生产过程1、碳钢中的常存元素碳钢中的常存元素是指除Fe、C外,因冶金必然带来的、且对性能有一定影响其它元素,在碳钢中一般指:Si、Mn 冶金时自然存在对性能无不利影响而保留S、P 冶金时难以彻底清除而存在于钢中一般钢中大致含量:Si 0.25~0.30%Mn 0.25~0.50%S <0.05% P <=0.045 三、碳钢的分类、牌号及应用第四节碳钢1、碳钢的分类:按含碳量分:低碳钢WC 0.25%中碳钢0.25%< WC 0.6%高碳钢WC>0.6%按质量分:普通碳素钢WP 0.045%WS 0.055%优质碳素钢WP 0.040%WS 0.040%高级优质碳素钢WP 0.035%WS 0.030%2、碳钢的牌号及应用(1)普通碳素结构钢:五类20种。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章铁碳合金相图教学目的及其要求通过本章学习,使学生们掌握铁碳合金的基本知识,学懂铁碳相图的特征点、线及其意义,了解铁碳相图的应用。

主要内容1.铁碳合金的相组成2.铁碳合金相图及其应用3.碳钢的分类、编号及应用学时安排讲课4学时教学重点1.铁碳合金相图及应用2.典型合金的结晶过程分析教学难点铁碳合金相图的分析和应用。

教学过程纯铁、铁碳合金中的相一、铁碳合金的组元铁:熔点1538℃,塑性好,强度硬度极低,在结晶过程中存在着同素异晶转变。

不同结构的铁与碳可以形成不同的固溶体。

由于纯铁具有同素异构转变,在生产上可以通过热处理对钢和铸铁改变其组织和性能。

碳:在Fe-Fe3C相图中,碳有两种存在形式:一是以化合物Fe3C形式存在;二是以间隙固溶体形式存在。

二、铁碳合金中的基本相相:指系统中具有同一聚集状态、同一化学成分、同一结构并以界面隔开的均匀组成部分。

铁碳合金系统中,铁和碳相互作用形成的相有两种:固溶体和金属化合物。

固溶体是铁素体和奥氏体;金属化合物是渗碳体。

这也是碳在合金中的两种存在形式。

1.铁素体碳溶于Fe中形成的间隙固溶体称为铁素体,用或者F表示,为体心立方晶格结构。

塑性好,强度硬度低。

2.奥氏体碳溶于Fe中形成的间隙固溶体称为奥氏体,用或者A表示,为面心立方晶格结构。

塑性好,强度硬度略高于铁素体,无磁性。

3.渗碳体Fe3C:晶体结构复杂,含碳量6.69%,熔点高,硬而脆,几乎没有塑性。

渗碳体对合金性能的影响:(1)渗碳体的存在能提高合金的硬度、耐磨性,使合金的塑性和韧性降低。

(2)对强度的影响与渗碳体的形态和分布有关:以层片状或粒状均匀分布在组织中,能提高合金的强度;以连续网状、粗大的片状或作为基体出现时,急剧降低合金的强度、塑性韧性。

二、两相机械混合物珠光体:铁素体与渗碳体的两相混合物,强度、硬度及塑性适中。

莱氏体:奥氏体与渗碳体的混合物;室温下为珠光体与渗碳体的混合物,又硬又脆。

铁素体、奥氏体、渗碳体、珠光体和莱氏体为铁碳合金中的基本组织,是铁碳合金中的组织组成物。

组织组成物:指构成显微组织的独立部分,可以是单相,也可以是两相或多相混合物。

显微组织:指在金相显微镜下所观察到的金属及合金内部的微观形貌,包括相和晶粒的形态、大小、分布等。

第二节铁碳合金相图一、相图中的点(14个)1.组元的熔点: A (0, 1538) 铁的熔点;D (6.69, 1227) Fe3C的熔点2.同素异构转变点:N(0, 1394)δ-Fe (γ-Fe;G(0, 912)γ-Fe ( α-Fe3.碳在铁中最大溶解度点:P(0.0218,727),碳在α-Fe 中的最大溶解度E(2.11,1148),碳在γ-Fe 中的最大溶解度H (0.09,1495),碳在δ-Fe中的最大溶解度Q(0.0008,RT),室温下碳在α-Fe 中的溶解度三相共存点:S(共析点,0.77,727),(A+F +Fe3C)C(共晶点,4.3,1148),(A+L +Fe3C)J(包晶点,0.17,1495)(+A+L )其它点B(0.53,1495),发生包晶反应时液相的成分F(6.69,1148 ),渗碳体K (6.69,727 ) ,渗碳体二、相图中的线1.液相线(ABCD):结晶时液相的成分,在其上体系为液相;2.固相线(AHJECF):结晶时固相的成分,其下为固相。

3.恒温转变的线:HJB 包晶线、ECF共晶线、PSK共析线。

PSK 线,共析线。

在此线上的合金都要发生共析反应。

冷却时,奥氏体转变为珠光体的温度;加热时,珠光体转变为奥氏体的温度;PSK线又称A1线。

4.固溶度线ES线:碳在奥氏体中的溶解度线,随温度温度(,溶解度( ;0.77%~2.11%C。

冷却时,从奥氏体中开始析出二次渗碳体的温度;加热时,二次渗碳体完全溶入奥氏体中的温度。

ES线又叫作Acm线。

PQ 线:碳在铁素体中的溶解度;随温度( ,最大溶解度( ;0.0008% ~0.0218%C;冷却时,从铁素体中开始析出三次渗碳体的温度;加热时,三次渗碳体完全溶入铁素体的温度。

5.同素异构转变线:NH 和NJ,GS 和GP。

GS线:冷却时,由奥氏体向铁素体转变的开始温度;加热时,铁素体完全转变为奥氏体的温度,GS线又叫作A3线。

三、相图中的相区1.单相区(4个+1个):L、δ、A、F 、(+Fe3C)2.两相区(7个):L + δ、L + Fe3C、L + A、δ+ A 、A + F 、A + Fe3C 、F + Fe3C。

四、基本转变类型1.匀晶反应L (δ: 由液相中直接结晶出δ相。

合金的成分线与AB线相交,Wc:0 ~0.53%。

L( A: 由液相中直接结晶出A相。

合金的成分线与BC线相交,Wc:0.53% ~ 4.3%。

L( Fe3C: 由液相中直接结晶出Fe3C相。

合金的成分线与CD线相交,Wc:4.3% ~ 6.69% 2.包晶反应含义:具有J点成分的铁碳合金冷却至14950C,液相和δ相在转变过程中恰好全部消耗完,生成了单一的J点成分的A相。

包晶点:J(0.17,1495)产物:单相奥氏体(A )发生包晶反应的合金成分:0.09%--0.53% C 。

即合金的成分线与HJB线相交。

3.共晶反应含义:由C点成分的液相在11480C下,同时生成具有E点成分的A 相和Fe3C。

发生共晶反应的成分范围:2.11 %—6.69% C,合金成分线与ECF线相交)。

产物:A和Fe3C的两相混合物,称为莱氏体,用Ld表示,其组织形态是以Fe3C为基体,A 呈粒状或杆状分布在Fe3C基体上。

共晶点:C (4.3,1148)4.共析反应含义:在7270C下,由S点成分的A相同时生成P点成分的F相和Fe3C相合金范围:0.0218 ~6.69%C,合金成分线与PSK线相交。

产物:F和Fe3C的两相混合物,称为珠光体,用P表示,形态呈层片状。

共析点:S(0.77,727),具有S点成分的A相冷却至7270C时,发生共析转变,生成珠光体。

五种渗碳体的异同(Fe3CI、Fe3CⅡ、Fe3CIⅡ、共晶Fe3C、共析Fe3C):它们只是形成条件、形态与分布不同,对铁碳合金性能有所不同,就其本身来说,并无本质区别,都是同一种物质,即Fe3C,6.69%C。

五、铁碳合金分类工业纯铁、钢(亚共析、共析、过共析钢)、铸铁(亚共晶、共晶、过共晶白口铸铁)六、典型铁碳合金的结晶过程分析分析方法和步骤:在相图的横坐标上找出给定的成分点,过该点作成分线;在成分线与相图的各条线的交点作标记(一般用1、2、3、4…….)写出每两个点之间或者重要点上发生的转变(由液相分析至室温)。

室温下该成分线所在的相区,合金室温下就具有那个相;组织组成物则取决于冷却过程中发生的转变。

Wc=0.77%的铁碳合金结晶过程分析合金在1点温度以上为液相L;在1~2温度之间,发生匀晶反应,从液相中析出奥氏体相;在2~3点温度之间,为单相奥氏体,只有温度的降低;在3点(S点)时到达共析温度(7270C,奥氏体发生共析反应,生成珠光体组织;3点以下直到室温,合金温度降低,为珠光体组织。

所以,Wc=0.77%的铁碳合金室温下的相:F+Fe3C组织组成物:P(珠光体)(100%)组织形貌:F和Fe3C层片状混合物Wc=0.4%的铁碳合金结晶过程分析合金在1点温度以上为液相L;在1~2点温度之间,发生匀晶转变,从液相中结晶出δ铁素体相;在2点1495℃,液相L与δ相发生包晶反应,生成奥氏体A,液相有剩余;在2~3点温度之间,剩余的液相向A相转变;在3~4点温度之间,为单相奥氏体,合金温度降低;在4~5点温度之间,同素异构转变,A向F(先共析铁素体)转变,为(F+A)两相;在5点727℃,未转变成F的A发生共析反应,生成珠光体(P)组织;从5点直到室温,组织为(F+P),合金温度降低,没有组织转变。

室温下的相:F+Fe3C组织组成物:F和P组织形貌:块状F和片状P过共析钢(1.2%C)合金在BC线温度以上为液相L;在BC线~JE线温度之间,发生匀晶反应,从液相中析出奥氏体相;在JE线~ES线温度之间,为单相奥氏体,合金温度降低;在ES线~PSK线温度之间,从奥氏体中析出二次渗碳体相(先共析渗碳体),合金为A+Fe3C Ⅱ两相;在PSK线上727℃时,未转变的奥氏体发生共析反应,转变为珠光体组织;从727℃直到室温,合金温度降低,没有发生组织转变。

室温下的相:F+Fe3C室温组织:珠光体+二次渗碳体。

组织形态:片状P和二次渗碳体呈网状分布在A晶界。

在过共析钢中,当碳含量小于0.9%时,二次渗碳体呈片状分布在A晶界;当碳含量大于0.9%时,二次渗碳体成为网状沿晶界分布。

室温下组织组成物的质量百分数的计算:4.白口铸铁的平衡结晶过程(略)七.Fe-Fe3C相图的应用(一)、碳对铁碳合金平衡组织和性能的影响1.含碳量对合金平衡组织的影响Fe3C的形态:2.含碳量对力学性能的影响铁素体(F):软而韧,硬度极低;渗碳体(Fe3C):硬而脆。

所以,(1)含碳量增加,硬度增加;塑性韧性降低。

(2)含碳量增加,强度先增后降(0.9%最高):当碳含量在小于0.9%时,渗碳体含量越多,分布越均匀,铁碳合金强度越高;当碳含量超过0.9%时,渗碳体在钢的组织中呈网状分布在晶界,而在白口铸铁的组织中作为基体存在,使强度降低。

3.含碳量对工艺性能的影响切削加工性能:一般认为中碳钢的塑性比较适中,硬度在HB200左右,切削加工性能最好。

含碳量过高或过低,都会降低其切削加工性能。

可锻性:低碳钢比高碳钢好。

由于钢加热呈单相奥氏体状态时,塑性好、强度低,便于塑性变形,所以一般锻造都是在单相奥氏体状态下进行。

铸造工艺性能:铸铁的流动性比钢好,易于铸造,特别是靠近共晶成分的铸铁,其结晶温度低,流动性也好,更具有良好的铸造性能。

从相图的角度来看,凝固温度区间越大,越容易形成分散缩孔和偏析,铸造工艺性能越差。

可焊性:一般,含碳量越低,钢的焊接性能越好,所以低碳钢比高碳钢更容易焊接。

(二)、Fe—Fe3C相图的应用1.为制定热加工工艺提供依据。

(1)制定热处理工艺的依据(2)为制定热加工工艺提供依据,包括铸造、锻造、焊接、热处理。

铸造方面铸造合金成分的确定和浇注温度的确定。

锻造方面确定始锻温度和终锻温度。

焊接方面分析热影响区的组织。

热处理方面确定热处理加热的温度。

2.为选材提供成分依据。

工业纯铁:室温下退火态的组织由等轴晶粒组成;强度低,塑性、韧性好;作为功能材料使用,如变压器的铁芯等。

含碳量在0.15-0.25%的亚共析钢:属低碳钢,为工程结构用钢。

这类钢主要用于房屋,桥梁、船舶、车辆、矿井或油井井架等大型工程结构件,一般不进行热处理,直接在热轧或正火状态下使用。

相关文档
最新文档