七年级上册数学有理数的乘方知识点

合集下载

2.3 有理数的乘方2.3.1乘方课时2七年级上册数学人教版

2.3 有理数的乘方2.3.1乘方课时2七年级上册数学人教版

-32, -30, -16,
64, ⋯; ① 66, ⋯; ② 32, ⋯. ③
(2)第②③行中的数与第①行中的数分别有什么关系?
解:(2)对比第①②两行中位置对应的数,可以发现:第②行中
的数是第①行中相应的数加2,即
-2+2,(-2)2 +2 ,(-2)3 +2 ,(-2)4 +2, ⋯;
新知探究 知识点2 有理数乘方的规律探究
(1)第①行中的数可以看成按什么规律排列?
分析:(1)观察第①行中的数,发现各数均为2的倍数.联系数的 乘方,从符号和绝对值两方面考虑,可以发现排列的规律.
解:(1)第①行中的数可以看成按如下规律排列:
-2,(-2)2,(-2)3,(-2)4,⋯ .
新知探究 知识点2 有理数乘方的规律探究
例2 观察下面三行数: -2, 4, -8, 16, 0, 6, -6, 18, -1, 2, -4, 8,
1 2
=1​
024+(1​
024+2)+1​
024×
1 2
=1​ 024+1​ 026+512
=2​ 562.
新知探究 知识点2 有理数乘方的规律探究
跟踪训练 2.观察下列算式:
21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256, ⋯ ,
根据上述算式中的规律,你认为220的末位数字是( C )
新知探究 知识点1 有理数的混合运算
跟踪训练 1.计算: (1) (-1)10×2+(-2)3÷4;
解:(1) (-1)10×2+(-2)3÷4 =1×2+(-8)÷4 =2-2

七年级数学上册《有理数的乘方》知识点整理冀教版

七年级数学上册《有理数的乘方》知识点整理冀教版

七年级数学上册《有理数的乘方》知识点整理冀教版同底数幂相乘除,原来的底数作底数,指数的和或差作指数。

推导:设a^m*a^n中,m=2,n=4,那么a^2*a^4=*=a*a*a*a*a*a=a^6=a^所以代入:a^m*a^n=a^用字母表示为:a^m·a^n=a^或a^m÷a^n=a^1)15^2×15^3;2)3^2×3^4×3^8;3)5×5^2×5^3×5^4×…×5^901)15^2×15^3=15^=15^52)3^2×3^4×3^8=3^=3^143)5×5^2×5^3×5^4×…×5^90=5^=5^4095[1]正整数指数幂法则a^k=a*a*....*a,其中k∈N*负整数指数幂法则a^=1/,其中a≠0,k∈N*推导:a^=a^=/=1/[2]正分数指数幂法则a^=,其中n≠0,m/n>0,m,n∈N*负分数指数幂法则a^[-]=,其中,a^m≠0,m/n>0,n≠0,m,n∈N*分数指数幂时,当n=2k,k∈N*,且a^m<0时,则该数在实数范围内无意义特别地,0的非正数指数幂没有意义平方差两数和乘两数差等于它们的平方差。

用字母表示为:=a^2-b^2幂的乘方法则幂的乘方,底数不变,指数相乘。

用字母表示为:^n=a^特别指出:a^m^n=a^。

浙教版七年级上册数学.1有理数的乘方课件

浙教版七年级上册数学.1有理数的乘方课件
• 根据上述材料,解答下列问题:
• (1)二进制中的1011相当于十进制中的多少?
• (2)二进制中的什么数相当于十进制中的8?
• 解:(1)1011=1×23+0×22+1×21+1=11,即二进制中的1011相当于 十进制中的11.
• (2)8=23=0+0×21+0×22+1×23,即二进制中的1000相当于十进制中 的8.
• C.-2乘5 D.25的相反数
• 4.13世纪数学家斐波那契的《计算书》中有这样一个问题:“在罗马 有7位老妇人,每人赶着7头毛驴,每头驴驮着7只口袋,每只口袋里装 着7个面包,每个面包附有7把餐刀,每把餐刀有7只刀鞘”,则刀鞘数 为( C )
• A.42 B.49
• C.76 D.77
6
5.在-233 中,指数是___3_____,底数是_-__23_____,其结果是__-__2_87___,它表 示____3____个__-__23____相乘.
次方”. • (2)有理数乘方的符号法则: • ①正数的任何次幂是正数,负数的奇数次幂是负数,负数的偶数次幂
是正数. • ②0的任何正整数次幂是0,00没有意义. • 注意:(1)一个数可以看作这个数本身的一次方,如5就是51,指数1通
常省略不写. • (2)当幂的底数是负数或分数时,底数应该添上括号.
9
能力提升
• 11.你吃过“拉面”吗?如果把一个面团拉开,然后对折,再拉开,再 对折,如此反复做下去,对折10次拉出的面条是( D )
• A.20根 B.10根 • C.100根 D.1024根
• 12.定义一种新的运算:a&b=ab,如2&3=23=8,那么(3&2)&2=___8_1____.

有理数的乘方 北师大版数学七年级上册

有理数的乘方  北师大版数学七年级上册

知识点1 科学记数法
还记得底数为10的幂有什么规律吗?算一算,想一想. 101=__1_0_ , 102=_1_0_0_ ,103=_1_0_0_0_ , 104=_1_0_0_0_0_, 106=_1_0_0_0__0_0_0_, 1010 =_1_0_0_0_0__0_0_0_0_0_0__, … 指数与运算结果的位数有什么关系?
地球半径约为 6 400 000 m.
生活中常常会遇到比100万还大的数,比如:
光在真空中的传播速度约为 300 000 000米/秒
有使这些大数易 写易读的方法吗?
这些大数书写起来非 常不便,也容易写错.
知识点1 科学记数法
还记得底数为10的幂有什么规律吗?算一算,想一想.
101=__1_0_ , 102=_1_0_0_ ,103=_1_0_0_0_ , 104=_1_0_0_0_0_, 106=_1_0_0_0__0_0_0_, 1010 =_1_0_0_0_0__0_0_0_0_0_0__, … 指数与运算结果中的0的个数有什么关系? 10的指数等于1后面0的个数;
有一张厚度为0.1 mm的纸,将它对折1次后,厚度为2×0.1 mm.
(2) 假设对折20次,厚度为多少毫米?
对折1次: 21层 对折2次: 22层
220×0.1=104 857.6(mm) =104.857 6 m
对折3次: 23层
104.857 6 ÷3≈35
… …
对折20次: 220层 这张纸对折20次后大约有35层楼高.
知识点1 底数是2的幂
对折1次
对折2次
对折3次 ……
对折20次
21层
22层
23层 …… 220层
22 ×0.1=0.4(mm) 220×0.1=104 857.6(mm)

2.3 有理数的乘方2.3.1乘方课时1七年级上册数学人教版

2.3 有理数的乘方2.3.1乘方课时1七年级上册数学人教版

(2)
(34)2中底数是___34__,指数是__2__
9
,幂是___1_6 ___.
(3) (-5)4中底数是_-__5__,指数是__4__ ,幂是_6_2_5____.
(4) -54 中底数是_5____,指数是__4__ ,结果是_-__62_5___.
随堂练习 2. (1) (-7)8中,底数、指数各是什么?
读作“a的n次方”.
n个a
求n个相同乘数的积的运算,叫作乘方,乘方的结果叫作幂.
新知探究 知识点1 乘方的定义
n个a
a×a×···×a×a

an
底数
读法: a n 读作“a的n次方” a n 也读作“a的n次幂”
指数
新知探究 知识点1 乘方的定义 跟踪训练 1.把乘法形式写成幂的形式: (1)(−3)×(−3)×(−3)×(−3)=__(_−_3_)_4___.
这个问题就是这节课我们要学习的乘方.
新知探究 知识点1 乘方的定义 探究 计算下列图形中正方形的面积和正方体的体积.
2
2 面积:2×2=4
2
2 2 体积:2×2×2=8
新知探究 知识点1 乘方的定义
2
2 面积:2×2 =4
22 读作“2的平方” (或“2的2次方”)
2
2 2 体积:2×2×2 =8
(2)(-1)7 =__-__1____
(4)(-5)3 =__-__1_2_5__ 1
(6)(- 12)4 =___1_6____
(8)(-10)5 =_-__1_0_0__0_0_0_
随堂练习
4. 用计算器计算:
(1)(-11)6 =1 771 561 (2)167 =268 435 456 (3)8.43 =592.704 (4)(-5.6)3 =-175.616

人教版七年级数学上册1.5.1 乘方(2)

人教版七年级数学上册1.5.1 乘方(2)

256 81
(4) (-1)11 = -1 (为什么?)
有理数混合运算时,运算顺序为:
1.先乘方,再乘除, 最后加减; 2.同级运算,从左到右进行 3.如有括号,先做括号内的运算,按小 括号、中括号、大括号依次进行。
例3 计算:
(1)2 (3)3 4 (3) 15
(2)(2)3 (3) [(4)2 2] (3)2 (2)
(3)(1)8=1(4)(1)2008 =1
(5)(1)7=-1(6)(1)2007 =-1
(1) 1的任何次幂都为 1。
(2) -1的幂很有规律: -1的奇次幂是-1 , -1的偶次幂是1。
抢答练习: 计算
102 100 103 1000; 104 10000
(10)2 100(10)3 -1000(10)4 10000
月底,长工兴冲冲的去领钱,他以为 自己一下子可以领到一笔天文财富,结 果财主只给了长工5分钱,而且还说是多 给了他.
长工算法:
第一天1分,第二天2分,第三 天4分,第四天16分,第五天 256分……
财主算法: 第一天0.01元,第二天0.02元, 第三天0.0004元,第四天 0.00000016元……
(3)对于0.1n ,1前面就有n个0
你能发现什么规 律吗?
退出 返回 上一张下一张
规律:
(1)底数为±10的幂的特点:1后面0的个数与 指数相同。
(2)底数为±0.1的幂的特点:1前面0的个数 与指数相同(包括小数点前的1个零。
乘方的故事
有一个长工到一个财主家去做工,他 和财主商定:“第一天给一分钱,第二 天给两分钱,以后每天是前一天的平方.” 财主答应了,到月底(30天)后,你猜 一猜:财主会给长工多少钱?

人教版七年级上册数学必背知识点归纳总结

人教版七年级上册数学必背知识点归纳总结

人教版七年级上册数学必背知识点归纳总结
第一章有理数
1.有理数的分类:正有理数、0、负有理数
2.有理数的运算:加法、减法、乘法、除法、乘方
3.绝对值:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0
4.有理数的大小比较:大于号、小于号、等于号
5.有理数的运算律:交换律、结合律、分配律
第二章代数式
1.代数式的定义:用字母表示数的式子
2.代数式的值:把字母代入式子中所得的结果
3.代数式的分类:整式、分式、根式
4.代数式的化简:同类项合并、加减法运算、幂的乘方、去括号、括号内运算
5.代数式的计算:加减法、乘除法、幂的运算
第三章图形与几何初步
1.角的概念:锐角、直角、钝角、平角、周角
2.角的度量:度量单位、度量工具、度量方法
3.角的分类:按角度大小分类、按方向分类
4.直线的性质:两点确定一条直线、经过两点有且只有一条直线
5.线段的性质:两点之间线段最短、线段长度不改变方向。

七年级数学上册专题第4讲有理数的加减乘除乘方运算重点、考点知识总结及练习

七年级数学上册专题第4讲有理数的加减乘除乘方运算重点、考点知识总结及练习

第4讲有理数的加减乘除乘方运算知识点1 加减运算有理数加法法则:①同号两数相加,取相同的符号,并把绝对值相加.②异号两数相加,绝对值相等时,和为0;绝对值不相等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.③一个数同0相加,仍得这个数.有理数减法法则:减去一个数,等于加这个数的相反数. .有理数加法运算律:①加法交换律:两个加数相加,交换加数的位置,和不变.②加法结合律:三个数加,先把前两个数相加,或者先把后两个数相加,和不变.有理数加减混合运算的步骤:①把算式中的减法转化为加法; ②省略加号与括号;③利用运算律及技巧简便计算,求出结果. 加减混合运算技巧:把符号相同的加数相结合; 把和为整数的加数相结合;把分母相同或便于通分的加数相结合; 既有小数又有分数的运算要统一后再结合; 把带分数拆分后再结合; 分组结合; 先拆项后结合.【典例】⎧⎪⎨⎪⎩加减运算有理数的运算乘除运算乘方运算()a b a b -=+-a b b a +=+()()a b c a b c ++=++1.计算:(1)4+(﹣6);(2)(﹣116)+(-23);(3)-2-(﹣3.5);(4)|(﹣7)+(﹣2)|-(﹣3);(5)[1.4﹣(﹣3.6+5.2)﹣4.3]﹣(﹣1.5).【方法总结】考查了有理数的加法,在进行有理数加法运算时,首先判断两个加数的符号:是同号还是异号,是否有0,从而确定用哪一条法则.在应用过程中,要牢记“先符号,后绝对值”.注意:绝对值有括号的作用.2.【题干】计算:(1)﹣2.4+3.5﹣4.6+3.5;(2)(−478)−(−512)+(−414)−(+3178);(3)−200956−(+200823)−(−401834)+(−112);(4)1+(﹣2)+3+(﹣4)…+2015+(﹣2016)+2017+(﹣2018).【方法总结】(1)把和为整数的数结合在一起;(2)把分母相同或容易通分的数结合在一起;(3)拆项法,把带分数拆成整数和分数,再把所有整数和分数分别结合在一起;(4)找规律,相邻两数之和为﹣1.本题考查的是有理数加减混合运算,掌握有理数加减混合运算的方法“将有理数加减法统一成加法”是解题的关键.能使用运算律的要使用运算律,以简化计算,减少计算错误. 【随堂练习】1.(2017秋•小店区校级月考)计算:(1)﹣3+(﹣4)﹣(﹣5); (2)1+(﹣2)+|﹣2|﹣5; (3)﹣5﹣(+11)+;(4).2.(2016秋•靖远县校级月考)计算题: (1)27﹣28+(﹣7)﹣32 (2)1+(﹣2)﹣(﹣3)﹣4; (3)0.5+(﹣)﹣(﹣2.75)+0.25 (4)3+(﹣1)+(﹣3)+1+2.知识点2 乘除运算有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.任何数同相乘,都得.有理数乘法的运算步骤:先确定积的符号,再确定积的绝对值. 多个有理数相乘:(1)几个不是的数相乘,负因数的个数是偶数时,积为正数;负因数的个数是奇数时,积为负数,即“奇负偶正”.(2)几个数相乘,如果其中有因数为,那么积等于. 有理数乘法运算律:(1)乘法交换律:一般地,有理数乘法中,两个数相乘,交换因数的位置,积相等.(2)乘法结合律:一般地,有理数乘法中,三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等.00000ab ba(3)分配律:一般地,有理数乘法中,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加.倒数的概念:乘积是的两个数互为倒数.整除:一个整数a 除以一个不为0的整数b ,商是整数,而没有余数,则我们说a 能被b 整除(或说b 能整除a ).【典例】1.计算:(1)(﹣2)×(﹣8); (2)(﹣8)÷(﹣1.25); (3)11÷17×(−411); (4)(−1.5)×45÷(−25)×34.【方法总结】(1)根据有理数的乘法运算法则进行计算即可得解; (2)根据有理数的除法运算法则进行计算即可得解;(3)把除法转化为乘法,然后根据有理数的乘法运算法则进行计算即可得解;(4)把小数转化为分数,除法转化为乘法,然后根据有理数的乘法运算法则进行计算即可得解.()()ab c a bc =()a b c ab ac +=+1本题考查了有理数的乘法和除法,熟记运算法则是解题的关键.2.计算:(1)37×(﹣45)×712×58;(2)292324÷(﹣112);(3)﹣5×(﹣115)+13×(﹣115)﹣3×(﹣115).【方法总结】(1)利用乘法交换律和乘法结合律,把分子或分母容易约分的因数结合;(2)先把除法转换为乘法,再利用乘法的分配律计算;(3)利用乘法分配律的逆运用,即可解答.本题考查了有理数的乘除法的运算,解决本题的关键是选用合适的乘法运算律进行计算.【随堂练习】1.(2017秋•夏邑县期中)小华在课外书中看到这样一道题:计算:()+().她发现,这个算式反映的是前后两部分的和,而这两部分之间存在着某种关系,利用这种关系,她顺利地解答了这道题(1)前后两部分之间存在着什么关系?(2)先计算哪部分比较简便?并请计算比较简便的那部分.(3)利用(1)中的关系,直接写出另一部分的结果.(4)根据以上分析,求出原式的结果.2.(2017秋•兴化市期中)小明对小丽说:“请你任意想一个数,把这个数乘2后加12,然后除以6,再减去你原来所想的那个数与6的差的三分之一,我可以知道你计算的结果.”请你根据小明的说法探索:(1)如果小丽一开始想的那个数是﹣5,请列式并计算结果; (2)如果小丽一开始想的那个数是2m ﹣3n ,请列式并计算结果; (3)根据(1)、(2),尝试写出一个结论.3.(2017秋•盐都区校级月考)阅读下列材料: 计算:÷﹙﹣+﹚. 解法一:原式=÷﹣÷+÷=×3﹣×4+×12=.解法二:原式=÷﹙﹣+﹚=÷=×6=.解法三:原式的倒数=﹙﹣+﹚÷=﹙﹣+﹚×24=×24﹣×24+×24=4. 所以,原式=.(1)上述得到的结果不同,你认为解法 是错误的; (2)请你选择合适的解法计算:﹙﹣﹚÷﹙﹣+﹣﹚.知识点3 乘方乘方的概念:求个相同因数的积的运算叫做乘方,乘方的结果叫做幂.(1)一般地,个相同的因数相乘,即,记作,读作“的次方”;(2)在中,叫做底数,叫做指数;(3)当看作的次方的结果时,读作的次幂. 注意:,其底数为,;,其底数为,;,其底数为,; n n a n a a a a ⋅⋅⋅⋅⋅⋅⋅ 个n a a n n a a n n a a n a n ()224-=()2-()()()22224-=-⨯-=224-=-2()()222121224-=-⨯=-⨯⨯=-239=749⎛⎫⎪⎝⎭372333977749⎛⎫=⨯= ⎪⎝⎭,其底数为,; ,带分数的乘方运算,一定要先化成假分数后再运算.一个数可以看作这个数本身的一次方,例如,就是,指数通常省略不写. 正数的任何次幂都是正数;负数的奇数次幂是负数,负数的偶数次幂是正数.特别的,一个数的二次方,也称为这个数的平方;一个数的三次方,也称为这个数的立方. 科学记数法:把一个大于的数表示成的形式(其中,是正整数). 用科学记数法表示一个位整数,其中的指数是,的指数比整数的位数少. 万,亿 .【典例】1.一张纸的厚度为 0.09mm (毫米),将这张纸连续对折8次,这时它的厚度是多少?假设连续对折始终是可能的,那么对折15次后,所得的厚度是否可以超过你的身高?先猜猜,然后计算出实际答案.【方法总结】根据乘方的定义和题意可计算出折第一次、第二次、第三次、第四次得厚度,由此可算出折第8次的厚度.一张纸的厚度为0.09mm ,对折1次后纸的厚度为0.09×2mm ;对折2次后纸的厚度为0.09×2×2=0.09×22mm ;对折3次后纸的厚度为0.09×23mm ;对折n 次后纸的厚度为0.09×2n mm ,据此列出算式.即可求解.本题主要考查从实际问题中寻找规律的能力.乘方是乘法的特例,乘方的运算可以利用乘法的运算来进行.乘方的意义就是多少个某个数字的乘积. 2.若|x −2|+(y −23)2=0,则y x =__________.【方法总结】绝对值和偶次方具有非负性,由“若几个非负数的和为0,则这几个非负数都为0”可求出x 、y 的值,然后将x 、y 的值代入计算即可求解.239=77323339777⨯==221391224⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭51511010n a ⨯110a ≤<n n 101n -101410=810=3.德国科学家贝塞尔推算出天鹅座第61颗暗星距地球102000000000000km,比太阳到地球的距离还远690000倍.(1)用科学记数法表示出暗星到地球的距离;(2)用科学记数法表示出690000这个数;(3)如果光的速度大约是300000km/s,那么你能计算出从暗星发出的光线到地球需要多少秒吗?用科学记数法表示出来.【方法总结】用科学记数法表示较大数的形式为a×10n,其中1≤|a|<10,n为正整数.确定n的值时,要看由原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.此题考查科学记数法的表示方法,关键是要正确确定a的值以及n的值.【随堂练习】1.(2017秋•石景山区期末)(﹣1)2018÷.2.(2017秋•蚌埠期中)﹣32×(﹣)3=______.3.(2017秋•浦东新区期中)用简便方法计算:﹣35×(﹣)5×(﹣5)6(结果可用幂的形式表示)综合运用1.若|a|=2,b=﹣3,c是最大的负整数,a+b﹣c的值为_______.2.2.5+(﹣214)﹣1.75+(﹣12)=____.3.某外贸企业为参加2016年中国江阴外贸洽谈会,印制了105 000张宣传彩页.105 000这个数字用科学记数法表示为___________.4.一根1米长的绳子,第一次剪去一半,第二次剪去剩下的一半,如此剪下去,第四次后剩下的绳子的长度是_______ 米;第n次后剩下的绳子的长度是_______ 米.5.将一张长方形的纸按如图对折,对折时每次折痕与上次的折痕保持平行,第一次对折后可得到1条折痕(图中虚线),第二次对折后可得到3条折痕,第三次对折后得到7条折痕,那么第10次对折后得到的折痕比第9次对折后得到的折痕多_______条.6.计算:(﹣0.5)+|0﹣614|﹣(﹣712)﹣(﹣4.75).7.高速公路养护小组,乘车沿东西向公路巡视维护,如果约定向东为正,向西为负,当天的行驶记录如下(单位:千米):+18,﹣9,+7,﹣14,﹣3,+11,﹣6,﹣8,+6,+15.(1)养护小组最后到达的地方在出发点的哪个方向?距出发点多远?(2)养护过程中,最远处离出发点有多远?(3)若汽车行驶每千米耗油量为a升,求这次养护小组的汽车共耗油多少升?8.计算下列各式:(1)(﹣14)×(﹣100)×(﹣6)×(0.01);(2)91819×15;(3)﹣100×18﹣0.125×35.5+14.5×(﹣12.5%);(4)(1﹣2)×(2﹣3)×(3﹣4)×(4﹣5)×…(19﹣20).9.已知(x+3)2+|3x+y+m|=0中,y的平方等于它本身,求m的值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级上册数学有理数的乘方知识点
七年级上册数学有理数的乘方知识点
人教版七年级上册数学有理数的乘方知识点:期末考试复习
①求n个相同因数的积的.运算,叫乘方,乘方的结果叫幂。

在a的n次方中,a叫做底数,n叫做指数。

负数的奇次幂是负数,负数的偶次幂是正数(负奇负,负偶正)。

正数的任何次幂都是正数,0的任何次幂都是0。

新-课-标-第-一-网
②偶次方等于一个正数的值有两个(两个互为相反数)如:a2=4,a=2或a=-2
注意:|a|+b2=0得:a=0且b=0
强记:a0=1(a≠0);(-1)2=1;-12=-1;(-1)3=-1;
-13=-1;(-2)2=4;-22=-4;(-2)3=-8;-23=-8
③有理数的混合运算法则:先乘方,再乘除,最后加减;同级运算,
从左到右进行;如有括号,先做括号内的运算,按小括号、中括号、
大括号依次进行。

注意:12-4×5=12-20(不能把-变+)
④把一个大于10的数表示成a×10的n次方的形式,使用的就是科学计数法,注意a的范围为1≤a<10;n比原整数位减1。

(注意科学计数法与原数的互划。

⑤四舍五入到哪一位就是精确到哪一位,四舍五入时望后多看一位采用四舍五入。

比如:3.5449精确到0.01就是3.54而不是
3.55.(再如:2.40万:精确到百位;6.5×104精确到千位,有数量
级和科学计数法的要还原成原数,看数量级和科学计数法的最后一个数)。

相关文档
最新文档