农业气象(土壤水分部分)

合集下载

农业气象学授课教案

农业气象学授课教案

农业气象学授课教案开课专业:应用气象专业,农业资源与环境开课学时:48(其中:讲课学时38 ,实验实习学时10)课程的性质和任务:农业气象学是应用气象学的重要组成部分,属应用气象学专业的主干课程。

本门课程从农业生产与气象条件的关系入手,主要介绍农业气象要素(光、热、水、气)对农业生物生长发育及产量形成影响的基本理论与基本规律、气象条件调控技术以及农业气象模式建立的基本方法,并为后续专业课程的学习打下良好基础。

根据本课程特点及实际情况,本课程以理论教学为主,并适当配以实习,以加深对课堂知识的理解,提高学生分析问题与解决问题的能力。

第1讲第一章绪论一、教学目的:介绍农业与气象的关系、课程的主要内容和总体安排。

二、讲授的内容提纲:1、农业生产与气象条件1.1生物有机体生长发育和产量形成1.2农业生产与气象条件1.3土壤-植物-大气系统2、农业气象学的定义及其主要内容2.1农业气象学的定义2.2农业气象的目的、主要内容及其基本知识3、农业气象学的诞生与发展3.1我国农业气象工作的建立与发展3.2国外农业气象学的主要进展三、教学重点和难点:农业生产与自然环境的关系四、教学方法和实施的步骤:首先介绍农业生产与自然环境的关系,在此基础上,讲述农业气象学的基本概念以及其研究对象,使学生对本课程有一个大体的认识;然后,介绍课程的主要内容和安排,以便学生明确学习的目标。

第2讲第二章第1节光的生物学意义与植物的光学特性一、教学目的:介绍了光的生物学意义、植物叶片的光学特性以及光合作用的能量平衡与转换。

二、讲授的内容提纲:1、太阳辐射与农业生产1.1光在生物体生命中的作用1.2植物单叶的光学特性1.3植物群叶的光学特性1.4植物叶片的能量平衡1.5光合作用的能量转换;三、教学重点和难点:植物叶片的光学特性四、教学方法和实施的步骤:本讲首先介绍光在生物体生命中的作用;在此基础上,详细介绍了植物叶片的光学特性;最后讨论了植物在光合作用下能量平衡与能量转换等问题。

5_农业气象学_水分

5_农业气象学_水分

w
mw V
青岛农业大学农学与植保学院
农业气象学
第四章 水分
比湿:单位质量湿空气中所含的水汽质量。
(用 q 表示;单位为 g〃g-1或kg〃kg-1)
mw q m w md
青岛农业大学农学与植保学院
农业气象学
第四章 水分
空气密度:单位体积空气中所含的干空气和水汽质量之和。 (用 ρa 表示;单位为 kg 〃 m-3)
第四章 水分
第四章 水分
大气中的水份是大气组成成分中最富于变化的部分。
1. 空气湿度的表示方法和变化规律
2. 水面蒸发、农田蒸散及变化规律 3. 成云致雨的条件和降水特征、水分利用率
青岛农业大学农学与植保学院
农业气象学
第四章 水分
第一节 大气湿度
一、水的相变
1.水相变化的物理过程 2.水相变化中的蒸发潜热 L=2500-2.4t < 2450 J/g >
ρa:空气密度,
0.622 L a(esw ea) P
从周围空气中获得的热量
a Cp (ta tw)
Cp:空气质量热容,J/g〃℃
青岛农业大学农学与植保学院
农业气象学
第四章 水分
0.622 L a Cp (ta tw) a (esw ea ) P 0.622 L Cp (ta tw) (esw ea ) P Cp P ea esw (ta tw) 0.622 L Cp P 湿度常数 ( , Psychrometer constant) 0.622 L
当空气中水汽含量一定时,在压力不变的情况下,降低温度, 使空气达到饱和时的温度,称为露点温度。
例题:已知北京某年初夏ta=30℃,

农业气象学-水分-y-070

农业气象学-水分-y-070

农业气象学
三.降水的分类 根据降水强度分为:小雨、中雨、大雨、暴雨、 大暴雨、特大暴雨;小雪、中雪、大雪。 根据降水性质分为:连续性降水、间歇性降水、 阵性降水、毛毛状降水
农业气象学
§3.5水分与农业
农业气象学
一.水分的生理作用
(一)制造有机物的原料。 (二)重要的溶剂和生命的介质。 (三)调节植物体温。 (四)维持植物细胞及组织的紧张度。
农业气象学
2.饱和水汽压(E ):空气饱和状态下的水汽压。 饱和水汽压随温度升高而迅速增大,与温度关 系常用Magnus半经验公式表示,即
式中:E0是0℃时的饱和水汽压,等于6.11hPa; t 是蒸发面的温度(℃); a、b是经验系数。 用于纯水面上时 a=7.63,b=241.9;
E = E0 ×10
云滴非常小,只要云滴增大到其所受到 重力大于浮力,并使其下降的速度大于上升 气流的速度,并在下降的过程中不被蒸发掉, 降落到地面就会形成降水。
农业气象学
云滴增大的途径 1.凝结增长过程。 *: 2.碰并增长过程。
农业气象学
二.降水的表示方法 1.降水量:从云中降落到地的液态或固态水, 未经蒸发、渗透和流失,在水平面上积聚的水层厚 度。单位 ㎜ ,数值保留一位小数。 2.降水强度:单位时间内的降水量。 通常取10min、1h或1d内的降水量。 3.降水变率。 4.降水保证率。
农业气象学
§3.2 蒸发与蒸腾
当温度低于沸点时,水分子从液态或固态水的 自由面逸出而变为气态的过程或现象,称为蒸发。
单位时间内单位面积上蒸发的水量,称为蒸发 速率,也称蒸发通量密度,单位为g · ㎝-2· s-1 。 在气象观测中,某段时间内自然水面因蒸发而 消耗掉的水层厚度称为蒸发量,单位为 ㎜ 。

农业气象观测规范土壤分册

农业气象观测规范土壤分册

农业气象观测规范土壤分册农业气象观测规范土壤分册是一份非常重要的文档,它主要描述了一些关于土壤观测的规范和标准。

这些规范和标准对于农业生产非常关键,因为土壤是农业生产的基本要素之一。

通过规范和标准的执行,可以保证土壤观测的准确性和可靠性,提高农业生产的效率和质量。

土壤观测是农业生产的重要组成部分之一,它可以帮助农民了解土壤的质量和特点,为农业生产提供可靠的依据。

土壤观测包括土壤水分、土壤温度、土壤含盐量、土壤肥力等多个指标,这些指标对于农业生产具有非常重要的意义。

但是,如果土壤观测不规范或者不标准化,就会影响观测结果的准确性和可靠性,进而导致农业生产的效益下降。

因此,规范土壤观测非常重要。

农业气象观测规范土壤分册就是对土壤观测进行规范和标准化的一个文档。

这个文档中包含了很多关于土壤观测的规范和标准,比如对于土壤监测点的选取要求、土壤观测仪器的选用和使用要求、土壤观测数据的处理和分析要求等等。

这些规范和标准可以帮助农民进行科学、准确的土壤观测,提高农业生产的效益。

首先,规范土壤监测点的选取要求。

按照规范,土壤监测点应该选择在显著的土壤类型或者土地利用变化区域,同时要考虑土壤深度、土层物理化学性质的选取等因素。

这样可以确保观测结果的代表性和可靠性。

其次,规范土壤观测仪器的选用和使用要求。

农业气象观测规范土壤分册中明确了对于土壤水分、土壤温度、土壤含盐量、土壤肥力等指标观测仪器的选用、校准和使用等方面的要求。

比如,土壤水分的观测仪器必须能够精确地测定土壤水分的含量和分布状态,同时要求环境温度等要素对土壤水分观测的影响要降至最低。

最后,规范土壤观测数据的处理和分析要求。

农业气象观测规范土壤分册中要求对于所观测到的数据进行处理、分析和转换,提供必要的统计数据和分析报告以便于管理者或者科研人员进行进一步的决策和研究。

总之,农业气象观测规范土壤分册是重要的文档,它标准化和规范化了土壤观测的过程,提高了农业生产的效益和质量。

土壤水分

土壤水分

3、中子土壤水分仪的使用 首先在欲测量的田间埋设测量导管,导管长度为测量要求的最深深度 (市场所购成品管通常不超过6米,更长需套接)。导管一般为铝质或薄壁不 锈钢管,底部焊接密封以防水渗入。导管上端高出地面约10厘米以防防雨 水灌入。测量时仪器底部喇叭口与导管对接,探头顺着导管放至欲测深度, 这时中子穿过导管壁进入土壤,取得土壤水分信息后再穿过导管壁回到探 头,只要30秒左右即可得到该土层的含水量值,这样从上往下即可逐层测 出导管深度范围内的土壤含水量。仪器内有10条多项式标定方程供用户选 择,用于不同土质的测量计算。测量结果可自动贮存在仪器的单片计算机 系统中,每次可存1800个数据。测量完毕后,这些数据可通过串行口输入 到计算机的中子水分仪管理软件中,并能复制到EXCEL软件里,然后进 一步计算处理。导管通常是半永久性埋置,可连续测量许多年,由于不用 取样,没有扰动土壤,每次测量位置和测量条件一致,可得到被测田地水 分长期准确完整的资料。CS830型中子水分仪在20年的使用期内,测量效 率不会有任何下降,除了充电电池只能用5年左右外,不用更换任何其他 部件,一次投资长期受益,综合费用低于其他测量方法。中子水分仪的另 一个重要优点是可测冰和结晶水,这在冰土层测量中是其它测量方法不可 比拟的。
三、土壤水分的有效性
土壤水分的有效性:是指水分被植物利用的程度。 有效水:可被植物吸收利用的那一部分水分称有 效水。 无效水:另一部分不能被植物吸收利用的水称为 无效水。 土壤水分常数(吸湿系数、凋萎系数、最大分子 持水量、田间持水量、毛管持水量、饱和持水量等都 是土壤水分常数,这些常数对于作物的生长有一定意 义) 土壤有效水的范围(%)=田间持水量(%)-凋 萎系数(%)
毛管悬着水:借毛管力保持在土壤 上层不与地下水相连的水分。这种悬着在 上层土壤中的毛管水称为毛管悬着水。 毛管悬着水的最大时的土壤含水量 称为田间持水量。这是确定灌水量的重要 参数。不同质地,土壤田间持水量有很大 不同。

土壤湿度气象观测方法介绍

土壤湿度气象观测方法介绍

土壤湿度气象观测方法介绍作者:鲁向东来源:《农业与技术》2018年第07期摘要:土壤水分观测是气象为农服务工作之一,对土壤水分连续观测是监测农田旱、涝情况的重要依据。

实践中通过对土壤中不同层中数量变化的、水分的移动情况及其岩石、大气等自然体等水分交换整体概况的深入分析,有利于获取到所需的土壤水分状况信息。

作为土壤成分的重要组成部分,其水分的存在,为土壤中自身的特性、气体的活动等密切相关,影响着土壤养分、微生物活动等不同要素。

若土壤水分状况良好,则有利于提高其生产力。

因此,需要结合土壤的实际情况,对其水分状况、变化规律等进行深入分析,以便促进我国现代农业发展。

在对土壤湿度进行气象观测时,应注重人工实测与仪器自动的气象观测方法的配合使用。

基于此,本文将对土壤水分观测方法和土壤湿度项目表述的意义进行系统阐述。

关键词:人工实测;自动观测;土壤湿度;气象观测方法中图分类号:S16 文献标识码:A DOI:10.11974/nyyjs.201804310611 人工实测方法1.1 地段选择选择有代表性的地块作为长期观测点,分作物地段和固定地段,每次观测都在此地块上进行。

1.2 观测时间固定观测时间为每年3月18日开始至土壤冻结达10cm结束,每旬逢8日下午取土观测;因农事活动服务需要可增加观测次数。

1.3 取样方法固定观测地段和作物观测地段各层均取4个重复。

采用烘干称重法测定土壤湿度,计算土壤重量含水率,土壤相对湿度、土壤水分总贮存量和有效水分贮存量。

测定深度一般为50cm。

分0~10cm、10~20cm,20~30cm,30~40cm,40~50cm5个层次。

把观测地段分成4个小区,每次取土各小区取1个重复。

取土下钻地点应距前次测点1~2m且在两行作物中间,垄作、沟作地段应分别在垄背、垄沟上取土。

每个层次取土样40~60g,放入盛土盒内,随即盖好盒盖,再将钻头内余土刮净并观测记录该土层的土壤质地。

按上述步骤依次取出各个重复各个深度的土样。

农业气象观测规范-土壤水分分册

农业气象观测规范-土壤水分分册

土壤水分分册土壤水分分册名目第一章土壤水分测定测定土壤水分的意义土壤水分状况是指水分在土壤中的移动、各层中数量的变化以及土壤和其它自然体〔大气、生物、岩石等〕间的水分交换现象的总称。

土壤水分是土壤成分之一,对土壤中气体的含量及运动、固体结构和物理性质有一定的碍事;制约着土壤中养分的溶解、转移和汲取及土壤微生物的活动,对土壤生产力有着多方面的重大碍事。

土壤水分又是水分平衡组成工程,是植物耗水的要紧直截了当来源,对植物的生理活动有重大碍事。

经常进行土壤水分状况的测定,掌握土壤水分变化规律,对农业生产实时效劳和理论研究都具有重要意义。

土壤湿度测定一般瞧测地段种类土壤湿度测定设有三种瞧测地段,除为实时效劳外,各有其不同的目的:1.固定瞧测地段:为研究土壤水分平衡及其时空变化规律,所设置的长期固定的周年土壤湿度测定地段。

地段对所在地区的土壤水分状况应具有代表性。

地段设置在大气候瞧测场内,要是瞧测场内土质不均匀或代表性差,应设置在台站四面植株密度均匀、高度小于20厘米的草地上。

2.作物瞧测地段:为了研究作物需水量、监测土壤水分变化对作物生长发育及产量形成的碍事,并为农业生产田间治理效劳。

在要紧旱地作物、牧草和果树等生育状况瞧测地段上,进行土壤湿度的测定,随作物〔或牧草、果树等〕生育状况瞧测地段的转移而转移。

3.辅助瞧测地段:为满足当地墒情效劳的需要进行临时性或季节性土壤湿度瞧测〔如墒情普查〕所设置的地段。

这类地段数量一般较多,应代表当地的土壤类型和土壤水分状况。

为便于历年土壤水分状况比立也应相对固定。

辅助地段的设置、测定时刻、测定深度、重复次数等由上级业务主管部门和台站自行确定。

测定时刻1.固定瞧测地段:每旬第三天和第八天采纳中子仪各进行一次测定,包括土壤冻结期间。

2.作物瞧测地段:作物从播种到成熟,多年生植物〔如牧草和果树〕,从第一个发育期到最后一个发育期的时段内,每旬第八天采纳烘干称重法测定土壤湿度。

关于越冬作物,从冬季冻结深度大于或等于10厘米起到春季0—10厘米深冻土层完全融化这一时段内停测。

5 土壤水分

5 土壤水分
1.自然条件下,土壤含水量在时间、空间上都是剧烈的变化着,几乎很难达到一 种固定状态,因而,湿土的概念是一种瞬时状态,为了使各地或各时期土壤含水 量有一个可比性,寻求稳定的、标准的状态作基数非常重要。这里,只有烘干土 壤才是一种稳定状态。 2.用烘干土作基数表示土壤水分含量变化过程较为直观。 例如:某土壤湿时重为120g,烘干后为100g,分别用烘干土和湿土作基数,计算 土壤水分丢失1半后含水量变化: 水分丢失前
绝对水体积(方 亩) 水层厚土(H) 面积(亩) / 1 2000 H 1000 3 2 H 3
第一节 土壤水分概念及其含量的表示方法
(四) 相对含水量 (relative water content) 相对含水量是指土壤含水量占田间持水量的百分数。正如空气相对湿度一样, 相对含水量说明土壤实际含水量的饱和程度(以田间持水量为标准),在农业生 产中经常应用。用下式表示: 土壤自然含水量 土壤相对含水量( ) % 100 田间持水量 注意:分子和分母的量纲要统一 分子和分母所表示的是同一种土壤。
Vw s s dw v Vs w b
第一节 土壤水分概念及其含量的表示方法
三.土壤含水量的测定技术
土 壤 含 水 量 的 测 定 技 术 概 述
TDR法
(一)土壤含水量测定技术-烘干法 Methods of measurement for soil water content
由此可见:用烘干土作基数表示水分变化过程更为直观
100 w干 应用时注意:已知土壤样品含水量,由湿土折算成干土计算公式 100 m 今后凡表示土壤组成的百分数都应以烘干土中为基数!
第一节 土壤水分概念及其含量的表示方法
(二) 容积含水量 (volumetric water content) 容积含水量即单位土壤总容积中水分所占的容积分数,以称为容积湿度,容积含 水量多用百分比表示,也用容积分数表示: 百分比形式可用下式表示: 水分容积 土壤容积含水量( %) 100 土壤容积 V 其数学表达式为: w 100
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

土壤水分分册
第一章土壤水分测
湿度测定的一般规定
观测地段种类:
固定观测地段作物观测地段辅助观测地段
测定时间
固定地段:每旬第三天和第八天用中子仪各进行一次测定。

作物观测地段:作物从播种到成熟,多年生植物从第一个发育期到最后一个发育期的时段内,每旬第八天用烘干称重法测土壤湿度。

固定观测地段在下午测定,作物观测地段土壤湿度测定在上午进行。

固定地段:测定深度一般位2米,每10厘米读数一次。

作物观测地段:测定深度一般位50厘米,分0 ┄10厘米,10 ┄20厘米…… 40 ┄50厘米等5个层次。

测定重复
固定观测地段和作物观测地段各层均取4个重复
计算项目:
土壤重量含水率,土壤相对湿度、土壤水分总贮存量和有效水分贮存量
特殊情况处理的规定:
降水和灌溉影响取土时,可顺延到降水或灌溉停止可以取土时补测,当顺延日期超过下旬第3天时,则不再补测。

烘干称重法测定土壤湿度
烘干称重法是用土钻从观测地段取回各个要求深度所有的重复的土样,称重后送入一定温度的烘箱中烘干再称重,土壤含水率与干土百分比即为土壤重量含水率。

仪器工具
土钻、盛土盒、刮土刀、提箱
托盘太平(载重量为100克、感应量为0.1克)、烘箱、高温表。

盛土盒盒身,盒盖应标上号码,号码要一致,每年第一次取土前应称量盛土盒的重量,以克为单位,取一位小数。

天平要定期送往计量部门检定。

测定顺序
1. 下钻地点的确定:观测地段分成4个小区,作上标志,每次取土各小区取一个重复,取土下钻地点应距前次测点1-2米且在两行作物中间。

2. 钻土取样垂直顺时针下钻,按所需深度,由浅入深,顺序取土当钻杆上所刻深度达到所取土层下限并与地表平齐时,提出土钻,即为所取土层的土样。

将钻头零刻度以下和盒土钻开口处的土壤及钻头口外表的浮土去掉,然后将钻头平放,采用剖面去土的方法,
迅速地用小刀刮去土样40-60克,放入盛土盒内,随即盖好盒盖,再将钻头内余土刮净并观测记录该土层的土壤质地。

按上述步骤依次取出各个重复各个深度的土样。

每个重复的土样取完后将剩余的土按原来对于层顺序填入钻孔中。

3. 称重与湿土共重,土样取完带回室内,檫净盛土盒外表泥土,校准天平后逐个称重,以克为单位,取一位小数,然后复称检查一遍。

4. 烘烤土样:在核实称重无误后,打开盒盖,盒盖套在盒底,放入烘箱内烘烤。

烘烤温度应稳定在100-150℃之间,烘土时间的长短以土样完全烘干,土样重量不再变化时为准,具体时间视土壤性质而定。

5. 称盒与干土共重:烘烤完毕,断开电源,待烘箱稍冷却后取出土样并迅速盖好盒盖,进行称重,然后复称一遍,当全部计算完毕经检验确认无误时,才可倒掉土样。

5. 计算土壤重量含水率:
计算公式W=(g2 - g3)/ (g3 - g1) x 100%
W:土壤重量含水率(%)g1:盒重(克)
g2:盒与湿土共重(克)g3:盒与干土共重(克)
先算出各个深度每个重复的土壤重量含水率,再求出各个深度4个重复平均值,均取一位小数。

土壤相对湿度和土壤水分贮存量的计算
土壤相对湿度
以重量含水率占田间持水量的百分比表示。

计算公式:
R=w / fe X 100%
R:土壤相对湿度(%)取整数记载
W: 土壤重量含水率(%)
Fe:田间持水量(用重量含水率表示)
土壤水分贮存量
1.土壤水分总贮存量
土壤水分总贮存量是指一定深度(厚度)的土壤总的含水量,以水层深度毫米表示,取整数记载。

计算公式:
v = p x h x w x 10
v:土壤水分总贮存量(毫米)
p:地段实测土壤容重(克/立方厘米)
h:土层厚度(厘米)
w:土壤重量含水率(%)
若实际值大于田间持水量,应在备注栏逐注明。

2. 土壤水分有效贮存量
土壤有效水分贮存量是指土壤中含有的大于凋萎湿度的水分贮存量。

计算公式:
u = p x h x (w - wk) x 10
u有效水分贮存量(毫米)
wk:凋萎湿度
其他土壤水分状况项目的测定
1 . 地下水位深度测定:
测定地点
除地下水位深度常年大于2米的台站外,均应进行地下水位深度的测定,一般可在作物观测地段附近选定能代表当地地下水位的,供灌溉或饮水使用的水井进行测定。

否则可视当地条件设置观测专用的简易管井盒或竹管井。

测定时间
在土壤湿度测定日的上午进行。

为测定正确,一般应在早晨进行,当水井水位因灌溉或饮用等人为因素发生变化时,应在水井水位恢复到正常时进行补测。

测定方法
用绳、杆、皮尺进行测量(绳、皮尺下端应系一重物),以米为单位,取一位小数。

2. 干土层厚度测定
干土层的深浅是干旱程度的标志,每次测定土壤湿度时都要做干土层的测定,当干土
层厚度≥3厘米进行记载。

测定地点:在作物观测地段上进行。

测定时间;与土壤湿度测定同时进行。

测定发方法:在地段有代表性处出,用铁铲切一土壤垂直剖面,以干湿交界处为界限用直尺量出干土层厚度,以厘米为单位,取整数记载。

如降水渗透后湿土下有干土层,仍应观测记载干土层厚度,并在备注栏注明。

3. 降水渗透深度测定
在干旱季节观测降水渗透深度,对了解旱情解除程度和分析土壤水很有意义。

测定地点:在观测地段上进行。

测定时间;在土壤干土层(包括湿土层下的干土层)厚度≥3厘米,日降水量≥5毫米或过程降水量≥10毫米,降水后根据降水量大小,待雨水下渗后及时测定。

将农气簿2-1中备注栏和纪要栏进行整理,选择主要内容填入。

相关文档
最新文档