4三极管讲义及放大电路
第4章 三极管及放大电路基础1

与 的关系
IC IC ICBO I E ICBO IC I B ICBO
(1 ) IC I B ICBO
I CBO IC IB 1 1
IE
N
P
N
I'C ICBO IC
IC I B (1 ) ICBO
共射直流电流放大倍数: IC I B 1.7 42.5 0.04 共射交流电流放大倍数: IC I B 2.5 1.7 40 0.06 0.04 说明: 例:UCE=6V时: 曲线的疏密反映了 的大小; IC(mA ) 160mA 电流放大倍数与工作点的位置有关; I 5 140mA CM 120mA 交、直流的电流放大倍数差别不大, 4 100mA 今后不再区别;
3 80mA
___
4. 集电极最大电流ICM 当值下降到正常值的三分之二时的 集电极电流即为ICM。
IC
2.5 2 1.7
1 0 2 4 6 8
IB 40mA
IB=60mA 20mA IB=0 10 UCE(V)
六、主要参数
5. 集-射极反向击穿电压U(BR)CEO 手册上给出的数值是25C、基极开路时的击穿电压U(BR)CEO。 6. 集电极最大允许功耗PCM 集电极电流IC 流过三极管, 所发出的焦耳热为: PC =ICUCE 导致结温 上升,PC 有限制, PCPCM 7. 频率参数
扩散 I C 复合 I B
IC
C
N
IB
P N
EC
或者 IC≈IB
I E IC I B (1 ) I B
EB
E
IE
二、电流放大原理
三极管及基本放大电路教案

三极管及基本放大电路教案课程名称:三极管及基本放大电路课程时长:2小时课程对象:高中物理学生教学目标:1.了解三极管的基本结构和工作原理。
2.理解三极管的放大特性和应用。
3.掌握基本放大电路的设计和计算方法。
教学准备:1.三极管和相关电路的实物模型。
2. PowerPoint演示文稿。
3.实验器材和电路板。
教学过程:Step 1: 引入(10分钟)a.向学生解释现在我们要学习的内容:三极管及其在基本放大电路中的应用。
b.显示三极管的实物模型,并解释它的基本结构。
c.引导学生思考:三极管是如何工作的?我们为什么要学习它?Step 2: 三极管的工作原理(20分钟)a. 使用PowerPoint演示文稿,详细解释三极管的工作原理,包括发射极、基极和集电极之间的关系。
b.引导学生观察示意图,并帮助学生理解电流流动的过程。
c.通过演示实物模型,展示三极管的工作原理。
Step 3: 三极管的放大特性(20分钟)a.解释三极管的放大特性,包括电压放大系数、电流放大系数和功率放大系数。
b.使用示意图和示波器显示放大效果,帮助学生更好地理解放大特性。
Step 4: 三极管基本放大电路设计(30分钟)a.介绍基本放大电路的种类,如共射放大电路、共基放大电路和共集放大电路。
b. 使用PowerPoint演示文稿和实物模型,逐步讲解这些电路的特点和设计方法。
c.通过示波器演示放大效果,让学生亲自动手设计和制作一个基本放大电路。
Step 5: 实验演示(20分钟)a.分发实验器材和电路板,组织学生进行实验演示。
b.引导学生观察实验现象,记录数据,并帮助学生分析实验结果。
Step 6: 总结与提问(10分钟)a.对本节课的内容进行总结,并再次强调三极管的重要性和应用。
b.提问学生关于三极管和基本放大电路的问题,并进行讨论。
课后作业:1.复习本节课内容,整理笔记。
2.阅读相关教科书内容,进一步理解三极管的工作原理和应用。
3.设计一个简单的基本放大电路,并计算电流和电压放大系数。
三极管及放大电路基础教案

三极管及放大电路基础教案章节一:三极管概述教学目标:1. 了解三极管的定义、结构和工作原理。
2. 掌握三极管的类型和符号。
教学内容:1. 三极管的定义:三极管是一种半导体器件,具有放大电信号的功能。
2. 三极管的结构:三极管由发射极、基极和集电极组成。
3. 三极管的工作原理:通过基极控制发射极和集电极之间的电流。
4. 三极管的类型:NPN型和PNP型。
5. 三极管的符号:NPN型三极管符号为“N”,PNP型三极管符号为“P”。
教学活动:1. 讲解三极管的定义、结构和工作原理。
2. 展示三极管的实物图和符号图。
3. 引导学生通过实验观察三极管的工作状态。
章节二:放大电路基础教学目标:1. 了解放大电路的定义和作用。
2. 掌握放大电路的基本组成和原理。
教学内容:1. 放大电路的定义:放大电路是一种通过反馈作用放大电信号的电路。
2. 放大电路的作用:放大微弱的信号,使其具有足够的功率驱动负载。
3. 放大电路的基本组成:电源、三极管、输入电阻、输出电阻和反馈电阻。
4. 放大电路的原理:通过三极管的放大作用,实现电信号的放大。
教学活动:1. 讲解放大电路的定义、作用和基本组成。
2. 展示放大电路的原理图和实际电路图。
3. 引导学生通过实验观察放大电路的工作状态。
章节三:三极管的放大特性教学目标:1. 了解三极管的放大特性。
2. 掌握三极管的放大原理。
教学内容:1. 三极管的放大特性:三极管的放大能力与基极电流、集电极电流和发射极电流之间的关系。
2. 三极管的放大原理:通过基极电流的控制,实现发射极和集电极之间电流的放大。
教学活动:1. 讲解三极管的放大特性和放大原理。
2. 分析三极管放大电路的输入和输出特性曲线。
3. 引导学生通过实验观察三极管的放大特性。
章节四:三极管放大电路的设计与应用教学目标:1. 了解三极管放大电路的设计方法。
2. 掌握三极管放大电路的应用。
教学内容:1. 三极管放大电路的设计方法:根据输入和输出信号的要求,选择合适的三极管、电阻等元件,设计合适的电路。
(完整版)三极管及放大电路原理

测判三极管的口诀三极管的管型及管脚的判别是电子技术初学者的一项基本功,为了帮助读者迅速掌握测判方法,笔者总结出四句口诀:“三颠倒,找基极;PN结,定管型;顺箭头,偏转大;测不准,动嘴巴。
”下面让我们逐句进行解释吧。
一、三颠倒,找基极大家知道,三极管是含有两个PN结的半导体器件。
根据两个PN结连接方式不同,可以分为NPN型和PNP型两种不同导电类型的三极管,图1是它们的电路符号和等效电路。
测试三极管要使用万用电表的欧姆挡,并选择R×100或R×1k挡位。
图2绘出了万用电表欧姆挡的等效电路。
由图可见,红表笔所连接的是表内电池的负极,黑表笔则连接着表内电池的正极。
假定我们并不知道被测三极管是NPN型还是PNP型,也分不清各管脚是什么电极。
测试的第一步是判断哪个管脚是基极。
这时,我们任取两个电极(如这两个电极为1、2),用万用电表两支表笔颠倒测量它的正、反向电阻,观察表针的偏转角度;接着,再取1、3两个电极和2、3两个电极,分别颠倒测量它们的正、反向电阻,观察表针的偏转角度。
在这三次颠倒测量中,必然有两次测量结果相近:即颠倒测量中表针一次偏转大,一次偏转小;剩下一次必然是颠倒测量前后指针偏转角度都很小,这一次未测的那只管脚就是我们要寻找的基极(参看图1、图2不难理解它的道理)。
二、PN结,定管型找出三极管的基极后,我们就可以根据基极与另外两个电极之间PN结的方向来确定管子的导电类型(图1)。
将万用表的黑表笔接触基极,红表笔接触另外两个电极中的任一电极,若表头指针偏转角度很大,则说明被测三极管为NPN型管;若表头指针偏转角度很小,则被测管即为PNP型。
三、顺箭头,偏转大找出了基极b,另外两个电极哪个是集电极c,哪个是发射极e呢?这时我们可以用测穿透电流ICEO的方法确定集电极c和发射极e。
(1) 对于NPN型三极管,穿透电流的测量电路如图3所示。
根据这个原理,用万用电表的黑、红表笔颠倒测量两极间的正、反向电阻Rce和Rec,虽然两次测量中万用表指针偏转角度都很小,但仔细观察,总会有一次偏转角度稍大,此时电流的流向一定是:黑表笔→c 极→b极→e极→红表笔,电流流向正好与三极管符号中的箭头方向一致(“顺箭头”),所以此时黑表笔所接的一定是集电极c,红表笔所接的一定是发射极e。
三极管及放大电路—多级放大电路(电子技术课件)

ሶ
20 ሶ = 20 1
=1
3.单级放大器频率特性
下限频率fL
上限频率fH
通频带BW = fH - fL≈fH
4.两级相同放大器的幅频率特性
绘制多级放大电路的
频率特性曲线时,只要将
各级对数频率特性在同一
横坐标上频率所对应的电
压增益相加,即为幅频特
性。
5.两级相同放大器的相频率特性
绘制多级放大电路的相
频特性曲线时,只要将各级
对数频率特性在同一横坐标
上频率所对应的相位差相加
,即为相频特性。
多级放大电路组成及耦合方式
2.6.1 多级放大电路组成及耦合方式
一、多级放大电路的组成
多级放大电路的组成框图如图所示,第一级的输入为电路总的输入,前级输出
工作点的相互影响。
直接耦合的两级共射放大电路
常用的解决电路形式
(a)
(b)
(a)采用电阻Re2提高VT2发射极电位,从而提高VT1集电极电位,避免
VT1进入饱和区。
(b)采用电阻R、稳压管VZ构成稳压电路,提高VT2发射极电位,从而
提高VT1集电极电位,避免VT1进入饱和区。
常用的解决电路形式
(c)
=
(−1)
总电压放大倍数为:
1 2
AU =
=
∙
∙⋯
= AU1 ∙ AU2 ∙ ⋯ ∙ AUN
1
1 1
(−1)
二、多级放大电路的级间耦合方式
多级放大器级间耦合方式一般有:阻容耦合,变压器耦合,直接耦合三种。
1.阻容耦合
前级输出信号通过电容、下
级输入电阻,传递到下一级的连
三极管及放大电路基础

IC(mA ) 4
3
2
1 36
截止区
100A 80A
IB= 60A 40A 20A 0 9 12 VCE(V)
IC RC
IB B C
VCE
RB
VBE EB
E IE
EC
(1-13)
特点:VBE<死区电压, IB≤0≈0, IC ≤ICEO≈ 0,VCE ≈EC
这时三极管C 、 E端相当于: 一个断开的开关。
过大,温升过高会烧坏三极管。所以要求:
PC =IC VCE≤PCM 6.集-射极反向击穿电压V(BR)CEO ——基极开路时,集电极与发射极之间允许的最大反向 电压。
(1-22)
由三个极限参数可画出三极管的安全工作区
IC ICM
ICVCE=PCM
安全工作区
O
V(BR)CEO
VCE
(1-23)
八、晶体管参数与温度的关系
IC RC
IB B
C VCE
RB
VBE EB
E IE
EC
如何判断是否截止?
若:VBE ≤0(死区电压)
或 VC>VE >VB 三极管可靠截止
IC
VCE
C RC
E
EC
(1-14)
(3) 放大区:IC=IB区域 , 发射结e正偏,集电结c反偏 特点: IC=IB , 且 IC = IB , VCE=EC-IC RC
(1-29)
三极管在电路中的应用
1、放大电路 对三极管放大电路的分析,包括静态分 析和动态分析两部分。 也就是直流方面的分析和交流方面的分 析 直流方面的分析主要是判断三极管是否 有合适的直流工作条件 交流方面的分析主要是判断放大电路是 否能够正常的放大信号。
4三极管及讲义放大电路

C iC1
PN
BN
E iC1(mA) 4 3
2
80A 60A 40A
C iC2
B
N
P P
E
80A 60A 40A 20A IB=0
-12 -9 -6
4 3 2 1
-3 vCE(V)
1
20A IB=0
3 6 9 12 vCE(V)2I0B=A0
vCE(V)
40A 60A
80A
iC2(mA)
四、主要参数
___
1. 电流放大倍数
前面的电路中,三极管的发射极是输入输出的
公共点,称为共射接法,相应地还有共基、共
集接法。共射直流电流放大倍数:
___
IC
IB
工作于动态的三极管,真正的信号是叠加在
直流上的交流信号。基极电流的变化量为IB,
相应的集电极电流变化为IC,则交流电流放
大倍数为:
IC IB
2.集-基极反向饱和电流ICBO
I ICBO CE N P N
E IE
从基区扩 散到集电
E区 被C的收电集子,,
形成ICE。
BJT 内部载流子的传输过程:(1)、E区向B区注入电子,形成IE (2)、电子在B区复合,形成IB (3)、 C区收集电子,形成IC
三、 V-I特性曲线及结 论
iB
A
RB
V vBE
iC mA
EC V vCE
E PNP型三极管
二、IE, IB, IC 电流形成
进入P区的电子
少部分与基区的
空穴复合,形成
C
电流IB ,多数扩
散到集电结。
B
N
P
IB
N
三极管及其放大电路

第2章 半导体三极管及其基本放大电路
2.1.3 .BJT的特性曲线
BJT的特性曲线是指各电极电压与电流之间 的关系曲线,它是BJT内部载流子运动的外部 表现。
工程上最常用的是BJT的输入特性和输出特 性曲线。
第2章 半导体三极管及其基本放大电路
以共射放大电路为例:
输入特性:iBf vBEvCE 常 数 输出特性: iCf vCEiB常数
第2章 半导体三极管及其基本放大电路
输出特性曲线可以划分为三个区域: 饱和区——iC受vCE控制的区域,该区域内vCE的 数值较小。此时Je正偏,Jc正偏
iC /mA
25℃
=80μA =60μA =40μA
=20μA
vCE /V
第2章 半导体三极管及其基本放大电路
饱和区——iC受vCE显著控制的区域,该区域内vCE的数值较 小。此时Je正偏,Jc正偏。
电压增益2= 0lgAV dB 电流增益2= 0lgAI dB
由于功率与电压(或电流)的平方成比例, 因此功率增益表示为:
功率增益=10lgAP
【 AP
Po 】 Pi
第2章 半导体三极管及其基本放大电路
2.2.2
+
VS
-
R
=
i
Vi I i
输入电阻Ri
I i
Io
+
+
Rs Vi
放大电路 Ri (放大器)
2.3 共射基本放大电路
共射基本放大电路组成
放大的外部条件
输入回 路
输出回 路
两个回路 正确的直流偏置
ui为小信号 ui和VBB串接 RB为基极偏置电阻
RC为集电极偏置电
阻
第2章 半导体三极管及其基本放大电路
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
E PNP型三极管
二、IE, IB, IC 电流形成
进入P区的电子
少部分与基区的
空穴复合,形成
C
电流IB ,多数扩
散到集电结。
B
N
P
IB
N
RB
EB
E IE
发射结正偏, 发射区电子 不断向基区 扩散,形成 发射极电流 IE。
EC
集电结反偏,有
少子形成的反向
电流ICBO。
B
IB RB
EB
IC=ICE+ICBOICE C
I ICBO CE N P N
E IE
从基区扩 散到集电
E区 被C的收电集子,,
形成ICE。
BJT 内部载流子的传输过程:(1)、E区向B区注入电子,形成IE (2)、电子在B区复合,形成IB (3)、 C区收集电子,形成IC
三、 V-I特性曲线及结 论
iB
A
RB
V vBE
iC mA
EC V vCE
___
1. 电流放大倍数
前面的电路中,三极管的发射极是输入输出的
公共点,称为共射接法,相应地还有共基、共
集接法。共射直流电流放大倍数:
___
IC
IB
工作于动态的三极管,真正的信号是叠加在
直流上的交流信号。基极电流的变化量为IB,
相应的集电极电流变化为IC,则交流电流放
大倍数为:
IC IB
2.集-基极反向饱和电流ICBO
电极电位如何?
C
B
PN N
C
B
NP P
E E
VB、VC、VE大于零 且VC > VB>VE
VB、VC、VE小于零 且-VC >- VB>-VE
总的来说:处于放大区时,NPN型、PNP型两种三极管,
满足 VC > VB >VE
思考2:在同一坐标上绘制NPN型、PNP型三极管的
输出特性曲线
iC2(mA)
(三)、结论
1、三极管工作在三个区域的条件及特点:
(1) 放大区:发射结正偏,集电结反偏。
(2)
即: IC=IB , 且 IC = IB
(2) 饱和区:发射结正偏,集电结正偏。
IB>IC,VCE0.3V C、E间相当于短路
(3) 截止区:发射结反偏,集电结反偏, IB=0 ,
IC=ICEO 0
C、E间相当于开路
uCE
六、常见三极管实物外形
§ 4.2 基本共射极放大电路
一、放大电路的分类
三极管放 大电路有 三种形式
共射放大器 共基放大器 共集放大器
以共射放 大器为例 讲解工作 原理
二、 共射放大电路的基本组成
iC
RB
RC C2
+VCC iC
t
C1
iB
T
Rs
RB
vBE
VCC
vS ~ VB
vI
v0
vS
vI
4三极管及放大电路
§4.1 晶体三极管
一、 基本结构
NPN型
集电极
C
N
B
P
基极
N
E
集电区: 面积较大
基区:较薄,
掺杂浓度低 B
基极
发射区: 掺杂浓度较高
发射极
PNP型
集电极
C
P N P
E
发射极
C 集电极
集电结
N
B
P
基极
N
发射结
E
发射极
C
C
N
B
P
N
P
B
N
P
E
E
C * 三极管的符号 C
B
B
E NPN型三极管
6. 集电极最大允许功耗PCM
• 集电极电流IC 流过三极管,
所发出的焦耳
IC ICM
热为:
PC =ICUCE
• 必定导致结温 上升,所以PC 有限制。
PCPCM
安全工作区
ICUCE=PCM
U(BR)CEO
UCE
五、温度对BJT参数及特性的影响
T iC
、 ICEO 、 ICBO
IC
温度上升时, 输出特性曲 线上移
t
t
v0 t
vo t
未加电容C2 加电容C2
三、 符号规定
VA : 大写字母、大写下标,表示直流量。 vA : 小写字母、大写下标,表示交直
流量(全量)。
va : 小写字母、小写下标,表示交流分量。
vA
全量
va
交流分量
VA直流分量
t
§ 4.3 放大电路的分析方法
引言: (§1.4-- §1.5的内容)
___
1. 电流放大倍数
前面的电路中,三极管的发射极是输入输出的
公共点,称为共射接法,相应地还有共基、共
集接法。共射直流电流放大倍数:
___
IC
IB
工作于动态的三极管,真正的信号是叠加在
直流上的交流信号。基极电流的变化量为IB,
相应的集电极电流变化为IC,则交流电流放
大倍数为:
IC IB
四、主要参数
ICBO A
ICBO是集 电结反偏 由少子的 漂移形成 的反向电 流,受温 度的变化 影响。
3. 集-射极反向饱和电流ICEO
集电结反 偏有ICBO
B
ICEO= IBE+ICBO
C
ICBO IBE N
P
ICEO受温度影响 很大,当温度上
升时,ICEO增加 很快,所以IC也 相应增加。三极
管的温度特性较
C iC1
PN
BN
E iC1(mA) 4 3
2
80A 60A 40A
C iC2
B
N
P P
E
80A 60A 40A 20A IB=0
-12 -9 -6
4 3 2 1
-3 vCE(V)
1
20A IB=0
3 6 9 12 vCE(V)2I0B=A0
vCE(V)
40A 60Aຫໍສະໝຸດ 80AiC2(mA)四、主要参数
2、电流的放大作用及分配 iC(mA)
4
直流电流放大系数: 3
80A 60A
IC
IB
2
40A
1
20A
IB=0
3 6 9 12 vCE(V)
交流电流放大系数:
IC
, 大 约 为 10-100
I B
电流分配关系
IC IB IE IB IC (1)IB
思考1:处于放大区时,NPN型、PNP型两种三极管的各
VB>VE和VC>VB ,
iCf(vCE)vBE常数IICC只 =与IB,IB有称关为且放大
VCE0.3V, VB>VE和 VB>VC ,
4
iC(mA )
区
100A
称为饱和
区。
3
80A
60A
2
IB=0,IC=ICEO,
VB< VE和 1
VB<VC,称为 截止区。
40A
20A IB=0 3 6 9 12 vCE(V)
差。
IBE
N
根据放大关系,
ICBO进入N E
区,形成
由于IBE的存 在,必有电流
IBE。
IBE。
4.集电极最大电流ICM
集电极电流IC上升会导致三极管的值的下降, 当值下降到正常值的三分之二时的集电极电 流即为ICM。
5.集-射极反向击穿电压U(BR)CEO
当集---射极之间的电压UCE超过一定的数值 时,三极管就会被击穿。手册上给出的数值是 25C、基极开路时的击穿电压。
EB
实验线路
(一)、输入特性: iBf(vBE)vCE常 数
vCE=0V
80
vCE =0.5V
iB(A)
vCE 1V
60 死区电压:
硅管0.5- 40
0.7V,锗 管0.1-0.3V。
20
工作压降: 硅管
VBE0.5~0.7V,锗管 UBE0.1~0.3V。
0.4 0.8
vBE(V)
(二)、输出特性: