【高考数学试题】2001年春季高考.(北京、内蒙古、安徽卷).理科数学试题及答案
2001年高考全国卷理科数学试题及答案

普通高等学校招生全国统一考试数 学(理工农医类)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分。
第I 卷1至2页。
第II 卷3至9页。
共150分。
考试时间120分钟。
第I 卷(选择题 60分)注意事项:1. 答第I 卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写 在答题卡上。
2. 每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需 改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上。
3.考试结束,监考人将本试卷和答题卡一并收回。
参考公式:三角函数的积化和差公式()()[]βαβαβα-++=sin sin 21cos sin ()()[]βαβαβα--+=sin sin 21sin cos()()[]βαβαβα-++=cos cos 21cos cos()()[]βαβαβα--+-=cos cos 21sin sin正棱台、圆台的侧面积公式()l c c S +'=21台侧 其中c '、c 分别表示上、下底面周长,l 表示斜高或母线长台体的体积公式()h S S S S V +'+'=31台体 其中S '、S 分别表示上、下底面积,h 表示高一、 选择题:本大题共12小题;第每小题5分,共60分。
在每小题给出的 四个选项中,只有一项是符合题目要求的。
(1) 若0cos sin >θθ,则θ在(A )第一、二象限 (B )第一、三象限 (C )第一、四象限 (D )第二、四象限 (2)过点()()1,11,1--B A 、且圆心在直线02=-+y x 上的圆的方程是 (A )()()41322=++-y x (B )()()41322=-++y x(C )()()41122=-+-y x (D )()()41122=+++y x(3)设{}n a 是递增等差数列,前三项的和为12,前三项的积为48,则它的首项是(A )1 (B )2 (C )4 (D )6(4)若定义在区间()01,-内的函数()()1log 2+=x x f a 满足0)(>x f ,则a 的取值范围是 (A )(0,21) (B )(0,21] (C )(21,+∞) (D )(0,+∞) (5)极坐标方程)4sin(2πθρ+=的图形是(A ) (B ) (C ) (D )(6)函数)0(1cos ≤≤-+=x x y π的反函数是(A ))20)(1arccos(≤≤--=x x y (B ))20)(1arccos(≤≤--=x x y π (C ))20)(1arccos(≤≤-=x x y (D ))20)(1arccos(≤≤-+=x x y π (7)若椭圆经过原点,且焦点为)0,3(),0,1(21F F ,则其离心率为 (A )43 (B )32 (C )21 (D )41 (8)若40πβα<<<,a =+ααcos sin ,b =+ββcos sin ,则(A )b a < (B )b a > (C )1<ab (D )2>ab(9)在正三棱柱111C B A ABC -中,若12BB AB =,则1AB 与B C 1所成的角的大小为(A )60° (B )90° (C )105° (D )75° (10)设)()(x g x f 、都是单调函数,有如下四个命题: ○1若)(x f 单调递增,)(x g 单调递增,则)()(x g x f -单调递增; ○2若)(x f 单调递增,)(x g 单调递减,则)()(x g x f -单调递增; ○3若)(x f 单调递减,)(x g 单调递增,则)()(x g x f -单调递减; ○4若)(x f 单调递减,)(x g 单调递减,则)()(x g x f -单调递减; 其中,正确的命题是(A )○1○3 (B )○1○4 (C ) ○2○3 (D )○2○4(11)一间民房的屋顶有如图三种不同的盖法:○1单向倾斜;○2双向倾斜;○3四向倾斜.记三种盖法屋顶面积分别为321P P P 、、.①② ③若屋顶斜面与水平面所成的角都是α,则(A )123P P P >>(B )123P P P =>(C )123P P P >=(D )123P P P ==(12)如图,小圆圈表示网络的结点,结点之间的连线表示它们有网线相联。
2001年安徽省高考数学试卷(理)

夹角)是 (
)
第 1 页(共 15 页)
A . 30
B . 45
C. 60
10.( 5 分)若 b 为实数,且 a
b
a
2 ,则 3
b
3 的最小值为 (
A .18
B.6
C. 2 3
11.(5 分)如图是正方体的平面展开图.在这个正方体中,
① BM 与 ED 平行;
② CN 与 BE 是异面直线;
③ CN 与 BM 成 60 角;
1.( 5 分)集合 M { 1 , 2, 3,4, 5} 的子集个数是 (
)
A .32
B .31
C. 16
【解答】 解: 含有 n 个元素的集合的子集共有: 2n 个,
集合 M {1 , 2, 3, 4, 5} 的子集个数 25 32 .
D. 15
故选: A .
x
2.( 5 分)若 f (x) a (a 0 且 a 1) 对于任意实数 x 、 y 都有 (
)
A . f (xy) f (x) ( y)
B. f ( xy) f ( x) ( y)
C. f ( x y) f (x) f ( y)
D. f ( x y) f ( x) f ( y)
3.( 5 分)
lim
n
C2nn C2nn 1 2
(
)
A .0
B.2
1 C. 5 分)函数 y
1 x( x, 1) 的反函数是 (
D .第四象限
AB . 2
A
B, B
A.
2
2
sin A cos B , sin B cos A
cos B sin A 0 , sin B cos A 0
2001高考数学全国卷及答案理

2001年普通高等学校招生全国统一考试数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页.第Ⅱ卷3至8页.共150分.考试时间120分钟.第Ⅰ卷(选择题共60分)注意事项:1. 答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上.2. 每小题选出答案后,用铅笔把答题卡上对应答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上.3. 考试结束,监考人将本试卷和答题卡一并收回.参考公式:一.选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的(1) 若siniθcosθ>0,则θ在( )(A) 第一、二象限(B) 第一、三象限(C) 第一、四象限(D) 第二、四象限(2) 过点A (1,-1)、B (-1,1)且圆心在直线x+y-2 = 0上的圆的方程是( )(A) (x-3) 2+(y+1) 2 = 4 (B) (x+3) 2+(y-1) 2 = 4(C) (x-1) 2+(y-1) 2 = 4 (D) (x+1) 2+(y+1) 2 = 4(3) 设{a n }是递增等差数列,前三项的和为12,前三项的积为48,则它的首项是( )(A) 1(B) 2(C) 4(D) 6(4) 若定义在区间(-1,0)的函数f (x ) = log 2a (x +1)满足f (x )>0,则a 的取值范围是( )(A)(210,)(B)⎥⎦⎤⎝⎛210,(C) (21,+∞) (D) (0,+∞)(5) 极坐标方程)4sin(2πθρ+=的图形是 ( )(6) 函数y = cos x +1(-π≤x ≤0)的反函数是 ( )(A) y =-arc cos (x -1)(0≤x ≤2) (B) y = π-arc cos (x -1)(0≤x ≤2) (C) y = arc cos (x -1)(0≤x ≤2)(D) y = π+arc cos (x -1)(0≤x ≤2)(7) 若椭圆经过原点,且焦点为F 1 (1,0) F 2 (3,0),则其离心率为 ( )(A)43(B)32 (C)21 (D) 41(8) 若0<α<β<4π,sin α+cos α = α,sin β+cos β= b ,则 ( )(A) a <b(B) a >b(C) ab <1(D) ab >2(9) 在正三棱柱ABC -A 1B 1C 1中,若12BB AB =,则AB 1 与C 1B 所成的角的大小为( )(A) 60°(B) 90°(C) 105°(D) 75°(10) 设f (x )、g (x )都是单调函数,有如下四个命题:① 若f (x )单调递增,g (x )单调递增,则f (x )-g (x )单调递增; ② 若f (x )单调递增,g (x )单调递减,则f (x )-g (x )单调递增; ③ 若f (x )单调递减,g (x )单调递增,则f (x )-g (x )单调递减; ④ 若f (x )单调递减,g (x )单调递减,则f (x )-g (x )单调递减. 其中,正确的命题是( )(A) ①③ (B) ①④ (C) ②③ (D) ②④(11) 一间民房的屋顶有如图三种不同的盖法:①单向倾斜;②双向倾斜;③四向倾斜.记三种盖法屋顶面积分别为P 1、P 2、P 3.若屋顶斜面与水平面所成的角都是α,则 ( ) (A) P 3>P 2>P 1(B) P 3>P 2 = P 1(C) P 3 = P 2>P 1(D) P 3 = P 2 = P 1(12) 如图,小圆圈表示网络的结点,结点之间的连线表示它们有网线相联.连线标注的数字表示该段网线单位时间内可以通过的最大信息量.现从结点A 向结点B 传递信息,信息可以分开沿不同的路线同时传递.则单位时间内传递的最大信息量为( )(A) 26 (B) 24(C) 20(D) 19第Ⅱ卷(非选择题共90分)注意事项:1.第Ⅱ卷共6页,用钢笔或圆珠笔直接答在试题卷中.2.答卷前将密封线内的项目填写清楚.二.填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.(13)若一个圆锥的轴截面是等边三角形,其面积为3,则这个圆锥的侧面积是 (14)双曲线116922=-yx的两个焦点为F 1、F 2,点P 在双曲线上.若PF 1⊥PF 2,则点P到x 轴的距离为(15)设{a n }是公比为q 的等比数列,S n 是它的前n 项和.若{S n }是等差数列,则 q =(16)圆周上有2n 个等分点(n >1),以其中三个点为顶点的直角三角形的个数为三.解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤.(17) (本小题满分12分)如图,在底面是直角梯形的四棱锥S —ABCD 中,∠ABC = 90°,SA ⊥面ABCD ,SA = AB = BC = 1,21=AD .(Ⅰ)求四棱锥S —ABCD 的体积;(Ⅱ)求面SCD 与面SBA 所成的二面角的正切值. (18) (本小题满分12分) 已知复数z 1 = i (1-i ) 3. (Ⅰ)求arg z 1及1z ;(Ⅱ)当复数z 满足1z =1,求1z z -的最大值. (19) (本小题满分12分)设抛物线y 2 =2px (p >0)的焦点为F ,经过点F 的直线交抛物线于A 、B 两点,点C 在抛物线的准线上,且BC ∥x 轴.证明直线AC 经过原点O .(20) (本小题满分12分)已知i ,m ,n 是正整数,且1<i ≤m <n .(Ⅰ)证明in i i m i P m P n <;(Ⅱ)证明(1+m ) n > (1+n ) m . (21) (本小题满分12分)从社会效益和经济效益出发,某地投入资金进行生态环境建设,并以此发展旅游产业.根据规划,本年度投入800万元,以后每年投入将比上年减少51.本年度当地旅游业收入估计为400万元,由于该项建设对旅游业的促进作用,预计今后的旅游业收入每年会比上年增加41.(Ⅰ)设n 年内(本年度为第一年)总投入为a n 万元,旅游业总收入为b n 万元.写出a n ,b n的表达式;(Ⅱ)至少经过几年旅游业的总收入才能超过总投入? (22) (本小题满分14分)设f (x ) 是定义在R 上的偶函数,其图像关于直线x = 1对称.对任意x 1,x 2∈[0,21]都有f (x 1+x 2) = f (x 1) · f (x 2).且f (1) = a >0. (Ⅰ)求f (21) 及f (41);(Ⅱ)证明f (x ) 是周期函数; (Ⅲ)记a n = f (2n +n21),求()n n a ln lim ∞→.2001年普通高等学校招生全国统一考试数学试题参考解答及评分标准说明:一. 本解答指出了每题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生物解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.二. 对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定部分的给分,但不得超过该部分正确解答得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.三. 解答右端所注分数,表示考生正确做到这一步应得的累加分数. 四. 只给整数分数.选择题和填空题不给中间分.一.选择题:本题考查基本知识和基本运算.每小题5分,满分60分.(1)B (2)C (3)B (4)A (5)C (6)A (7)C (8)A (9)B (10)C (11)D (12)D二.填空题:本题考查基本知识和基本运算.每小题4分,满分16分.(13)2π (14)516 (15)1 (16)2n (n -1)三.解答题:(17)本小题考查线面关系和棱锥体积计算,以及空间想象能力和逻辑推理能力.满分12分.解:(Ⅰ)直角梯形ABCD 的面积是 M 底面()43125.0121=⨯+=⋅+=AB AD BC , ……2分∴ 四棱锥S —ABCD 的体积是⨯⨯=SA V 31 M 底面43131⨯⨯=41=. ……4分(Ⅱ)延长BA 、CD 相交于点E ,连结SE 则SE 是所求二面角的棱. ……6分 ∵ AD ∥BC ,BC = 2AD ,∴ EA = AB = SA ,∴ SE ⊥SB ,∵ SA ⊥面ABCD ,得SEB ⊥面EBC ,EB 是交线, 又BC ⊥EB ,∴ BC ⊥面SEB , 故SB 是CS 在面SEB 上的射影, ∴ CS ⊥SE ,所以∠BSC 是所求二面角的平面角. ……10分 ∵ 22AB SASB +=2=,BC =1,BC ⊥SB ,∴ tan ∠BSC =22=SBBC .即所求二面角的正切值为22. ……12分(18)本小题考查复数基本性质和基本运算,以及分析问题和解决问题的能力.满分12分.解:(Ⅰ)z 1 = i (1-i ) 3 = 2-2i , 将z 1化为三角形式,得⎪⎭⎫ ⎝⎛+=47sin 47cos 221ππi z ,∴ 47arg 1π=z ,221=z . ……6分(Ⅱ)设z = cos α+i sin α,则z -z 1 = ( cos α-2)+(sin α+2) i , ()()22212sin 2cos ++-=-ααz zsin 249+=(4πα-), ……9分当sin(4πα-) = 1时,21z z -取得最大值249+.从而得到1z z -的最大值为122+. ……12分 (19)本小题考查抛物线的概念和性质,直线的方程和性质,运算能力和逻辑推理能力.满分12分.证明一:因为抛物线y 2 =2px (p >0)的焦点为F (2p ,0),所以经过点F 的直线的方程可设为2p my x +=; ……4分代入抛物线方程得y 2 -2pmy -p 2 = 0,若记A (x 1,y 1),B (x 2,y 2),则y 1,y 2是该方程的两个根,所以y 1y 2 = -p 2. ……8分因为BC ∥x 轴,且点c 在准线x = -2p 上,所以点c 的坐标为(-2p ,y 2),故直线CO的斜率为111222x y y p p y k ==-=.即k 也是直线OA 的斜率,所以直线AC 经过原点O . ……12分证明二:如图,记x 轴与抛物线准线l 的交点为E ,过A 作AD ⊥l ,D 是垂足.则 AD ∥FE ∥BC . ……2分连结AC ,与EF 相交于点N ,则ABBF AC CN AD EN ==,,ABAF BCNF =……6分根据抛物线的几何性质,AD AF =,BC BF =, ……8分∴ NFABBCAF ABBFAD EN =⋅=⋅=,即点N 是EF 的中点,与抛物线的顶点O 重合,所以直线AC 经过原点O . ……12分 (20)本小题考查排列、组合、二项式定理、不等式的基本知识和逻辑推理能力.满分12分.(Ⅰ)证明: 对于1<i ≤m 有im p = m ·…·(m -i +1),⋅-⋅=mm mm mp iim 1…mi m 1+-⋅,同理⋅-⋅=nn nn np iin 1…ni n 1+-⋅, ……4分由于 m <n ,对整数k = 1,2…,i -1,有mk m nk n ->-,所以iim i in mp np >,即im i i n i p n p m >. ……6分(Ⅱ)证明由二项式定理有()in ni i nC m m∑==+1,()im mi i mC n n ∑==+01,……8分由 (Ⅰ)知i n i p m >im i p n (1<i ≤m <n =,而 !i p C im im =,!i p C in in =, ……10分所以, im i i n i C n C m >(1<i ≤m <n =.因此,∑∑==>mi im i m i in iC n C m 22.又 10000==m n C n C m ,mn nCmCmn==11,()n i m Cm i ni ≤<>0.∴∑∑==>mi im i n i in i C n C m 0.即 (1+m )n >(1+n )m . ……12分 (21)本小题主要考查建立函数关系式、数列求和、不等式等基础知识;考查综合运用数学知识解决实际问题的能力.满分12分.解:(Ⅰ)第1年投入为800万元,第2年投入为800×(1-51)万元,……,第n 年投入为800×(1-51)n-1万元.所以,n 年内的总投入为a n = 800+800×(1-51)+…+800×(1-51)n-1∑=--⨯=nk k 11)511(800= 4000×[1-(54)n ]; ……3分第1年旅游业收入为400万元,第2年旅游业收入为400×(1+41)万元,……,第n 年旅游业收入为400×(1+41)n-1万元.所以,n 年内的旅游业总收入为b n = 400+400×(1+41)+…+400×(1+41)n-1∑=-⨯=nk k 11)45(400= 1600×[ (54)n -1]. ……6分(Ⅱ)设至少经过n 年旅游业的总收入才能超过总投入,由此b n -a n >0,即 1600×[(45)n -1]-4000×[1-(54)n ]>0.化简得 5×(54)n +2×(54)n -7>0, ……9分设=x (54)n ,代入上式得5x 2-7x +2>0,解此不等式,得52<x ,x >1(舍去). 即 (54)n <52,由此得 n ≥5.答:至少经过5年旅游业的总收入才能超过总投入. ……12分 (22)本小题主要考查函数的概念、图像,函数的奇偶性和周期性以及数列极限等基础知识;考查运算能力和逻辑思维能力.满分14分.(Ⅰ)解:因为对x 1,x 2∈[0,21],都有f (x 1+x 2) = f (x 1) · f (x 2),所以=)(x f f (2x ) · f (2x )≥0,x ∈[0,1].∵ =)1(f f (2121+) = f (21) · f (21) = [f (21)]2,f (21)=f (4141+) = f (41) · f (41) = [f (41)]2. ……3分0)1(>=a f ,∴ f (21)21a =,f (41)41a =. ……6分(Ⅱ)证明:依题设y = f (x )关于直线x = 1对称, 故 f (x ) = f (1+1-x ),即f (x ) = f (2-x ),x ∈R . ……8分 又由f (x )是偶函数知f (-x ) = f (x ) ,x ∈R , ∴ f (-x ) = f (2-x ) ,x ∈R , 将上式中-x 以x 代换,得f (x ) = f (x +2),x ∈R .这表明f (x )是R 上的周期函数,且2是它的一个周期. ……10分 (Ⅲ)解:由(Ⅰ)知f (x )≥0,x ∈[0,1].∵ f (21)= f (n ·n 21) = f (n 21+(n -1)·n 21) = f (n 21) · f ((n -1)·n 21)= f (n 21) · f (n 21) · … ·f (n 21)= [ f (n 21)]n ,f (21) = 21a ,∴ f (n 21) = n a21.∵ f (x )的一个周期是2,∴ f (2n +n 21) = f (n 21),因此a n = n a 21, ……12分 ∴ ()∞→∞→=n n n a lim ln lim (a n ln 21) = 0. ……14分。
2001年普通高等学校春季招生考试(北京、内蒙古、安徽卷)数 学(文史类)

绝密★启用前2001年普通高等学校春季招生考试(北京、内蒙古、安徽卷)数 学(文史类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页.第Ⅱ卷3至8页.共150分.考试时间120分钟.第Ⅰ卷(选择题 共60分)注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上.2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用像皮擦干净后,再选涂其它答案,不能答在试题卷上.3.考试结束,监考人将本试卷和答题卡一并收回.参考公式: 正棱台、圆台的侧面积公式 三角函数的积化和差公式)]sin()[sin(21cos sin βαβαβα-++= l c c S )'(21+=台侧)]sin()[sin(21sin cos βαβαβα--+= 其中'c 、c 分别表示上、下底面周长,l 表示斜高或母线长)]cos()[cos(21cos cos βαβαβα-++= 球体的体积公式 334R V π=球)]cos()[cos(21sin sin β-α-β+α-=βα 其中R 表示球的半径一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)集体{}5,4,3,2,1=M 的子集个数是(A )32(B )31 (C )16 (D )15(2)函数)10()(≠>=a a a x f x且对于任意的实数y x ,都有 (A ))()()(y f x f xy f = (B ))()()(y f x f xy f +=(C ))()()(y f x f y x f =+(D ))()()(y f x f y x f +=+(3)=++∞→1222lim n n nn n C C(A )0 (B )2 (C )21 (D )41 (4)函数)1(1≤--=x x y 的反函数是 (A ))01(12≤≤--=x x y (B ))10(12≤≤-=x x y(C ))0(12≤-=x x y(D ))10(12≤≤-=x x y(5)已知1F 、2F 是椭圆191622=+y x 的两焦点,过点2F 的直线交椭圆于点A 、B ,若5||=AB ,则=+||||11BF AF(A )11(B )10(C )9(D )16(6)设动点P 在直线1=x 上,O 为坐标原点.以OP 为直角边、点O 为直角顶点作等腰OPQ Rt ∆,则动点Q 的轨迹是 (A )圆(B )两条平行直线 (C )抛物线 (D )双曲线(7)已知x x f 26log )(=,那么)8(f 等于(A )34(B )8 (C )18 (D )21 (8)若A 、B 是锐角ABC ∆的两个内角,则点)cos sin ,sin (cos A B A B P --在(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限(9)如果圆锥的侧面展开图是半圆,那么这个圆锥的顶角(圆锥轴截面中两条母线的夹角)是 (A )︒30 (B )︒45 (C )︒60 (D )︒90(10)若b a ,为实数,且2=+b a ,则ba 33+的最小值是(A )18 (B )6(C )32 (D )432(11)右图是正方体的平面展开图.在这个正方体...中, ①ED BM 与平行②CN 与BE 是异面直线 ③CN 与BM 成︒60角 ④DM 与BN 垂直以上四个命题中,正确命题的序号是 (A )①②③ (B )②④(C )③④ (D )②③④(12)根据市场调查结果,预测某种家用商品从年初开始的n 个月内累积的需求量n S (万件)近似地满足)12,,2,1)(521(902 =--=n n n nS n 按此预测,在本年度内,需求量超过1.5万件的月份是 (A )5月、6月 (B )6月、7月 (C )7月、8月 (D )8月、9月绝密★启用前2001年普通高等学校春季招生考试(北京、内蒙古、安徽卷)数 学(文史类) 第Ⅱ卷(非选择题共90分)注意事项: 1.第Ⅱ卷共6页,用钢笔或圆珠笔直接答在试题卷中.(13(14)椭圆4422=+y x 长轴上一个顶点为A ,以A 为直角顶点作一个内接于椭圆的等腰直角三角形,该三角形的面积是_______________. (15)已知αγβα(1sin sin sin 222=++、β、γ均为锐角),那么γβαcos cos cos 的最大值等于____________________.(16)已知m 、n 是直线, α、β、γ是平面,给出下列命题:① 若m n m ⊥=⋂⊥,,βαβα,则βα⊥⊥n n 或;②若α∥β,γβγα⋂=⋂,m ,则m ∥n ;③若m 不垂直于α,则m 不可能垂直于α内的无数条直线; ④若m =⋂βα,n ∥m ,且βα⊄⊄n n ,,则n ∥n 且α∥β.其中正确的命题的序号是_______________(注:把你认为正确的命题的序号都.填上) 三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 方程022=++n mx x 有实根,且2、m 、n 为等差数列的前三项.求该等差数列公差d 的取值范围. 设函数)0()(>>+=b a bx x f ,求)(x f 的单调区间,并证明)(x f 在其单调区间上的单调性.已知)1(17≠∈=z C z z 且.(Ⅰ)证明0165432=++++++z z z z z z ;(Ⅱ)设z 的辐角为α,求ααα4cos 2cos cos ++的值.已知VC 是ABC 上的射影,且N 位于ABC ∆的高CD上.AB VC a AB 与,=之间的距离为VC M h ∈,.(Ⅰ)证明∠MDC 是二面角M –AB –C 的平面角; (Ⅱ)当∠MDC =∠CVN 时,证明VC AMB 平面⊥; (Ⅲ)若∠MDC =∠CVN =)20(πθθ<<,求四面体MABC 的体积.万元/辆,出厂价为1.2万元/辆,年销售量为1000辆.本年度为适应市场需求,计划提高产品档次,适度增加投入成本.若每辆车投入成本增加的比例为)10(<<x x ,则出厂价相应提高的比例为0.75x ,同时预计年销售量增加的比例为0.6x .已知年利润=(出厂价–投入成本)⨯年销售量.(Ⅰ)写出本年度预计的年利润y 与投入成本增加的比例x 的关系式;(Ⅱ)为使本年度的年利润比上年有所增加,问投入成本增加的比例x 应在什么范围内?已知抛物线)0(22>=p pxy .过动点M (a ,0)且斜率为1的直线l 与该抛物线交于不同的两点A 、B .(Ⅰ)若a p AB 求,2||≤的取值范围;(Ⅱ)若线段AB 的垂直平分线交AB 于点Q ,交x 轴于点N ,试求MNQ Rt ∆的面积.绝密★启用前2001年普通高等学校春季招生考试(北京、内蒙古、安徽卷)数学试题(文史类)参考解答及评分标准说明:一、本解答指出了每题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.二、对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.三、解答右端所注分数,表示考生正确做到这一步应得的累加分数. 四、只给整数分数.选择题和填空题不给中间分.一、选择题:本题考查基本知识和基本运算.每小题5分,满分60分. (1)A (2)C (3)D (4)C (5)A (6)B (7)D (8)B (9)C (10)B (11)C (12)C 二、填空题:本题考查基本知识和基本运算.每小题4分,满分16分.(13)π242SS (14)2516 (15)692(16)②④三、解答题(17)本小题主要考查等差数列,一元二次方程与不等式的基本知识.考查综合运用数学基础知识的能力.满分12分.解:依题意,有d n d m 22,2+=+=, ……2分由方程有实根,得0242≥⨯-n m ,即 0)22(8)2(2≥+-+d d , ……6分 整理,得012122≥--d d ,……8分解得 346346+≥-≤d d 或, ∴ ),346[]346,(+∞+⋃--∞∈d .……12分(18)本小题主要考查函数的基本性质,考查推理能力.满分12分. 解:函数bx ax x f ++=)(的定义域为),(),(+∞-⋃--∞b b . ),()(b x f --∞在内是减函数),()(+∞-b x f 在内也是减函数.……4分证明),()(+∞-b x f 在内是减函数. 取21,x x ),(+∞-∈b ,且21x x <,那么 b x ax b x a x x f x f ++-++=-221121)()())(())((2112b x b x x x b a ++--=,……6分∵ 0))((,0,02112>++>->-b x b x x x b a , ∴ 0)()(21>-x f x f , 即),()(+∞-b x f 在内是减函数.……9分 同理可证),()(b x f --∞在内是减函数.……12分(19)本小题考查复数的基本概念和运算.满分12分. 解:(Ⅰ)由 )1(65432z z z z z z z ++++++ 765432z z z z z z z ++++++=654321z z z z z z ++++++=,得0)1)(1(65432=++++++-z z z z z z z . ……4分因为 1≠z ,所以 0165432=++++++z z z z z z . ……6分(Ⅱ)因为1||,17==z z 可知,所以 1=⋅z z ,而17=z ,所以16=⋅z z , z z =6,同理3452,z z z z ==, 65342z z z z z z ++=++.由(Ⅰ)知 165342-=+++++z z z z z z , 即 14242-=+++++z z z z z z , 所以 42z z z ++的实部为21-, ……8分而z 的辐角为α时,复数42z z z ++的实部为 ααα4cos 2cos cos ++,所以 214c o s 2c o s c o s-=++ααα ……12分(20)本小题考查运用直线与直线、直线与平面的基本性质证明线面关系的能力.满分12分. (Ⅰ)证明:由已知,A B C AB CD N ABC VN AB CD 平面平面⊂∈⊥⊥,,,, ∴AB VN ⊥.∴VNC AB 平面⊥.……2分又V 、M 、N 、D 都在VNC 所在平面内,所以,DM 与VN 必相交,且CD AB DM AB ⊥⊥,,∴∠MDC 为二面角C AB M --的平面角. ……4分(Ⅱ)证明:由已知,∠MDC =∠CVN ,在DMC VNC ∆∆与中, ∠NCV =∠MCD , 又∵∠VNC =︒90,∴∠DMC =∠VNC =︒90. 故有VC AB VC DM ⊥⊥又,, ……6分 ∴AMB VC 平面⊥.……8分(Ⅲ)解:由(Ⅰ)、(Ⅱ),VC M AB D VC MD AB MD ∈∈⊥⊥,,,且,∴h MD =.又∵∠θ=MDC . 在MDC Rt ∆中,θtg h CM ⋅=.……10分ABM C MABC V V -=三棱锥四面体ah tg h S CM ABM213131⋅⋅=⋅=∆θθtg ah 261=. ……12分(21)本小题主要考查建立函数关系、运用不等式的性质和解法等数学知识解决实际问题的能力.满分12分.解:(Ⅰ)由题意得)10)(6.01(1000)]1(1)75.01(2.1[<<+⨯+⨯-+⨯=x x x x y ,……4分 整理得 )10(20020602<<++-=x x x y .……6分(Ⅱ)要保证本年度的利润比上年度有所增加,必须 ⎩⎨⎧<<>⨯--.10,01000)12.1(x y即 ⎩⎨⎧<<>+-.10,020602x x x……9分解不等式得 310<<x . 答:为保证本年度的年利润比上年度有所增加,投入成本增加的比例x 应满足33.00<<x . ……12分 (22)本小题考查直线与抛物线的基本概念及位置关系,考查运用解析几何的方法解决数学问题的能力.满分14分.解:(Ⅰ)直线l 的方程为:a x y -=,将 px y a x y 22=-=代入, 得 0)(222=++-a x p a x .……2分设直线l 与抛物线两个不同交点的坐标为),(11y x A 、),(22y x B ,则 ⎪⎩⎪⎨⎧=+=+>-+.),(2,04)(42212122a x x p a x x a p a……4分又a x y a x y -=-=2211,, ∴ 221221)()(||y y x x AB -+-= ]4)[(221221x x x x -+=)2(8a p p +=.……6分∵ 0)2(8,2||0>+≤<a p p p AB , ∴ p a p p 2)2(80≤+<. 解得 42pa p -≤<-. ……8分(Ⅱ)设),(33y x Q ,由中点坐标公式,得p a x x x +=+=2213, p a x a x y y y =-+-=+=2)()(221213.……10分∴ 22222)0()(||p p a p a QM =-+-+=. 又 MNQ ∆为等腰直角三角形, ∴ 22||21p QM S MNQ ==∆. ……14分。
2001年安徽数学试题(理)

2001年全国高考数学试题(理)一、选择题:本大题12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)若0cos sin >θθ,则θ在(A )第一、二象限 (B )第一、三象限 (C )第一、四象限 (D )第二、四象限(2)过点)1,1(-A 、)1,1(-B 且圆心在直线02=-+y x 上的圆的方程是(A )4)1()3(22=++-y x (B )4)1()3(22=-++y x(C )4)1()1(22=-+-y x (D )4)1()1(22=+++y x(3)设}{n a 是递增等差数列,前三项的和为12,前三项的积为48,则它的首项是(A )1 (B )2 (C )4 (D )6(4)若定义在区间)0,1(-内函数)1(log )(2+=x x f a 满足0)(>x f ,则a 的取值范围是(A ))21,0( (B )]21,0( (C )),21(+∞ (D )),0(+∞(5)极坐标方程)4sin(2πθρ+=的图形是(6)函数)0(1cos ≤≤-+=x x y π的反函数是(A ))1arccos(--=x y (20≤≤x ) (B ) )1arccos(--=x y π(20≤≤x )(C ))1arccos(-=x y (20≤≤x ) (D ))1arccos(-+=x y π(20≤≤x )(7)若椭圆经过原点,且焦点为)0,1(1F ,)0,3(2F ,则其离心率为(A )43 (B )32 (C )21 (D )41 (8)若40πβα<<<,a =+ααcos sin ,b =+ββcos sin ,则(A )b a < (B )b a > (C )1<ab (D )2>ab(9)在正三棱柱111C B A ABC -中,12BB AB =,则1AB 与B C 1所成角的大小为(A )︒60 (B )︒90 (C )︒105 (D )︒75(10)设)(x f 、)(x g 都是单调函数,有如下四个命题:①若)(x f 单调递增,)(x g 单调递增,则)()(x g x f -单调递增;②若)(x f 单调递增,)(x g 单调递减,则)()(x g x f -单调递增;③若)(x f 单调递减,)(x g 单调递增,则)()(x g x f -单调递减;④若)(x f 单调递减,)(x g 单调递减,则)()(x g x f -单调递减;其中,正确的命题是(A )①② (B )①④ (C )②③ (D )②④(11)一间民房的屋顶有如图三种不同的盖法:①单向倾斜;②双向倾斜;③四向倾斜,记三种盖法屋顶面积分别为1P 、2P 、3P若屋顶斜面与水平面所成的角都是α,则(A )123P P P >> (B )123P P P => (C )123P P P >= (D )123P P P ==(12)如图,小圆圈表示网络的结点,结点之间的连线肤表示它们有网线相联.连线标注的数字表示该段网线单位时间内可以通过的最大信息量.现从结点A 向结点B 传递信息,信息可以分开沿不同的路线同时传递.则单位时间内传递的最大信息量为(A )26 (B )24(C )20 (D )19二、填空题:本大题共4个小题,每小题4分,共16分.把答案填空在题中横线上.(13)若一个圆锥的轴截面是等边三角形,其面积为3,则这个圆锥的侧面积是 .(14)双曲线116922=-y x 的两个焦点为1F 、2F ,点P 在双曲线上.若21PF PF ⊥,则迠P 到x 轴的距离为 .(15)设}{n a 是公比为q 的等比数列,n S 是它的前n 项和.若}{n S 是等差数列,则q =(16)圆周上有n 2个等分点(1>n ),以其中三个点为顶点的直角三角形的个数为三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤.(17)(本小题满分12分)如图,在底面是直角梯形的四棱锥ABCD S -中,︒=∠90ABC ,⊥SA 面ABCD ,1===BC AB SA ,21=AD . (1)求四棱锥ABCD S -的体积;(2)求面SCD 与面SBA 所成的二面角的正切值.(18)(本小题满分12分)已知复数31)1(i i z -=.(1)求1arg z 及||1z ;(2)当复数z 满足1||=z ,求||1z z -的最大值.(19)(本小题12分)设抛物线px y 22=(0>p )的焦点F ,经过点F 的直线交抛物线于A 、B 两点。
2001年春季高考数学试题(北京、内蒙古、安徽理)

绝密★启用前2001年普通高等学校春季招生考试(北京、内蒙古、安徽卷)数 学(理工农医类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页.第Ⅱ卷3至8页.共150分.考试时间120分钟.第Ⅰ卷(选择题 共60分)注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上.2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上.3.考试结束,监考人将本试卷和答题卡一并收回.参考公式: 正棱台、圆台的侧面积公式 三角函数的积化和差公式)]sin()[sin(21cos sin β-α+β+α=βα l c c S )'(21+=台侧)]sin()[sin(21sin cos β-α-β+α=βα 其中'c 、c 分别表示上、下底面周长,l 表示斜高或母线长)]cos()[cos(21cos cos β-α+β+α=βα 球体的体积公式 334R V π=球)]cos()[cos(21sin sin β-α-β+α-=βα 其中R 表示球的半径一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)集体{}5,4,3,2,1=M 的子集个数是(A )32(B )31 (C )16 (D )15(2)函数)10()(≠>=a a a x f x且对于任意的实数y x ,都有 (A ))()()(y f x f xy f = (B ))()()(y f x f xy f +=(C ))()()(y f x f y x f =+(D ))()()(y f x f y x f +=+(3)=++∞→1222lim n n nn n C C(A )0 (B )2 (C )21 (D )41 (4)函数)1(1≤--=x x y 的反函数是 (A ))01(12≤≤--=x x y (B ))10(12≤≤-=x x y(C ))0(12≤-=x x y(D ))10(12≤≤-=x x y(5)极坐标系中,圆θ+θ=ρsin 3cos 4的圆心的坐标是(A ))53arcsin ,25((B ))54arcsin ,5((C ))53arcsin ,5((D ))54arcsin ,25((6)设动点P 在直线1=x 上,O 为坐标原点.以OP 为直角边、点O 为直角顶点作等腰OPQ Rt ∆,则动点Q 的轨迹是(A )圆(B )两条平行直线(C )抛物线(D )双曲线(7)已知x x f 26log )(=,那么)8(f 等于(A )34(B )8 (C )18 (D )21 (8)若A 、B 是锐角ABC ∆的两个内角,则点)cos sin ,sin (cos A B A B P --在(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限 (9)如果圆锥的侧面展开图是半圆,那么这个圆锥的顶角(圆锥轴截面中两条母线的夹角)是 (A )︒30 (B )︒45 (C )︒60 (D )︒90(10)若实数b a ,满足2=+b a ,则ba 33+的最小值是(A )18 (B )6(C )32 (D )432(11)右图是正方体的平面展开图.在这个正方体...中, ①ED BM 与平行②CN 与BE 是异面直线 ③CN 与BM 成︒60角 ④DM 与BN 垂直以上四个命题中,正确命题的序号是 (A )①②③ (B )②④(C )③④ (D )②③④(12)根据市场调查结果,预测某种家用商品从年初开始的n 个月内累积的需求量n S (万件)近似地满足)12,,2,1)(521(902 =--=n n n nS n 按此预测,在本年度内,需求量超过1.5万件的月份是 (A )5月、6月 (B )6月、7月 (C )7月、8月 (D )8月、9月绝密★启用前2001年普通高等学校春季招生考试(北京、内蒙古、安徽卷)数 学(理工农医类) 第Ⅱ卷(非选择题共90分)注意事项:1.第Ⅱ卷共6页,用钢笔或圆珠笔直接答在试题卷中.(13(14)椭圆4422=+y x 长轴上一个顶点为A ,以A 为直角顶点作一个内接于椭圆的等腰直角三角形,该三角形的面积是_______________.(15)已知α=γ+β+α(1sin sin sin 222、β、γ均为锐角),那么γβαcos cos cos 的最大值等于____________________.(16)已知m 、n 是直线, α、β、γ是平面,给出下列命题:①若m n m ⊥=⋂⊥,,βαβα,则βα⊥⊥n n 或;②若α∥β,n m =γ⋂β=γ⋂α,,则m ∥n ;③若m 不垂直于α,则m 不可能垂直于α内的无数条直线; ④若m =⋂βα,n ∥m ,且βα⊄⊄n n ,,则n ∥n 且α∥β.其中正确的命题的序号是_______________(注:把你认为正确的命题的序号都.填上) 三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 设函数)0()(>>+=b a bx x x f ,求)(x f 的单调区间,并证明)(x f 在其单调区间上的单调性. 已知)1(17≠∈=z C z z 且.(Ⅰ)证明0165432=++++++z z z z z z ;(Ⅱ)设z 的辐角为α,求ααα4cos 2cos cos ++的值.已知VC 是ABC 上的射影,且在ABC∆的高CD 上.AB VC a AB 与,=之间的距离为VC M h ∈点,.(Ⅰ)证明∠MDC 是二面角M –AB –C 的平面角; (Ⅱ)当∠MDC =∠CVN 时,证明VC AMB 平面⊥;(Ⅲ)若∠MDC =∠CVN =20( π<θ<θ,求四面体MABC 的体积.n 3211与2之间插入n 个正数n b b b b ,,,,321 ,使这2+n 个数成等差数列.记n n n n b b b b B a a a a A ++++== 321321,.(Ⅰ)求数列{}n A 和{}n B 的通项;(Ⅱ)当7≥n 时,比较n A 与n B 的大小,并证明你的结论.万元/辆,出厂价为1.2万元/辆,年销售量为1000辆.本年度为适应市场需求,计划提高产品档次,适度增加投入成本.若每辆车投入成本增加的比例为)10(<<x x ,则出厂价相应提高的比例为0.75x ,同时预计年销售量增加的比例为0.6x .已知年利润=(出厂价–投入成本)⨯年销售量.(Ⅰ)写出本年度预计的年利润y 与投入成本增加的比例x 的关系式;(Ⅱ)为使本年度的年利润比上年有所增加,问投入成本增加的比例x 应在什么范围内?已知抛物线)0(22>=p px y .过动点M (a ,0)且斜率为1的直线l 与该抛物线交于不同的两点A 、B ,p AB 2||≤.(Ⅰ)求a 的取值范围;(Ⅱ)若线段AB 的垂直平分线交x 轴于点N ,求NAB Rt ∆面积的最大值.。
【高考数学试题】2001年高考.全国卷.理科数学试题及答案

【高考数学试题】2001年普通高等学校招生全国统一考试数 学(理工农医类)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分。
第I 卷1至2页。
第II 卷3至9页。
共150分。
考试时间120分钟。
第I 卷(选择题 60分)注意事项:1. 答第I 卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上。
2. 每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上。
3.考试结束,监考人将本试卷和答题卡一并收回。
参考公式:三角函数的积化和差公式()()[]βαβαβα-++=sin sin 21cos sin ()()[]βαβαβα--+=sin sin 21sin cos ()()[]βαβαβα-++=cos cos 21cos cos ()()[]βαβαβα--+-=cos cos 21sin sin 正棱台、圆台的侧面积公式 ()l c c S +'=21台侧 其中c '、c 分别表示上、下底面周长,l 表示斜高或母线长台体的体积公式()h S S S S V +'+'=31台体 其中S '、S 分别表示上、下底面积,h 表示高一、 选择题:本大题共12小题;第每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
(1) 若0cos sin >θθ,则θ在(A )第一、二象限 (B )第一、三象限 (C )第一、四象限 (D )第二、四象限(2)过点()()1,11,1--B A 、且圆心在直线02=-+y x 上的圆的方程是(A )()()41322=++-y x (B )()()41322=-++y x (C )()()41122=-+-y x (D )()()41122=+++y x (3)设{}n a 是递增等差数列,前三项的和为12,前三项的积为48,则它的首项是(A )1 (B )2 (C )4 (D )6(4)若定义在区间()01,-内的函数()()1log 2+=x x f a 满足0)(>x f ,则a 的取值范围是 (A )(0,21) (B )(0,21] (C )(21,+∞) (D )(0,+∞) (5)极坐标方程)4sin(2πθρ+=的图形是(A ) (B ) (C ) (D )(6)函数)0(1cos ≤≤-+=x x y π的反函数是 (A ))20)(1arccos(≤≤--=x x y (B ))20)(1arccos(≤≤--=x x y π(C ))20)(1arccos(≤≤-=x x y (D ))20)(1arccos(≤≤-+=x x y π(7)若椭圆经过原点,且焦点为)0,3(),0,1(21F F ,则其离心率为(A )43 (B )32 (C )21 (D )41 (8)若40πβα<<<,a =+ααcos sin ,b =+ββcos sin ,则 (A )b a < (B )b a > (C )1<ab (D )2>ab(9)在正三棱柱111C B A ABC -中,若12BB AB =,则1AB 与B C 1所成的角的大小为(A )60° (B )90° (C )105° (D )75°(10)设)()(x g x f 、都是单调函数,有如下四个命题:○1若)(x f 单调递增,)(x g 单调递增,则)()(x g x f -单调递增; ○2若)(x f 单调递增,)(x g 单调递减,则)()(x g x f -单调递增; ○3若)(x f 单调递减,)(x g 单调递增,则)()(x g x f -单调递减; ○4若)(x f 单调递减,)(x g 单调递减,则)()(x g x f -单调递减; 其中,正确的命题是(A )○1○3 (B )○1○4 (C ) ○2○3 (D )○2○4(11)一间民房的屋顶有如图三种不同的盖法:○1单向倾斜;○2双向倾斜;○3四向倾斜.记三种盖法屋顶面积分别为321P P P 、、.①② ③若屋顶斜面与水平面所成的角都是α,则 (A )123P P P >>(B )123P P P =>(C )123P P P >=(D )123P P P ==(12)如图,小圆圈表示网络的结点,结点之间的连线表示它们有网线相联。
2001年高考数学试题(全国理)及答案

2001年全国普通高等学校招生全国统一考试数学(理工农医类)一.选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)若0cos sin >θθ,则θ在(A)第一、二象限 (B)第一、三象限 (C)第一、四象限 (D)第二、四象限 (2)过点A(1,-1),B(-1,1)且园心在直线x+y-2=0上的圆珠笔的方程是 (A)(x-3)2+(y+1)2=4 (B)(x+3)2+(y-1)2=4 (C)(x-1)2+(y-1)2=4 (B)(x+1)2+(y+1)2=4(3)设{a n }是递增等差数列,前三项的和为12,前三项的积为48,则它的首项是 (A)1 (B)2 (C)4 (D)6(4)若定义在区间(-1,0)内的函数f (x )= log 2a (x + 1)满足f (x )> 0,则 a 的取值范围是 (A)(0,21) (B) (0,21] (C) (21,+∞) (D) (0,+∞)(5)极坐标方程)4sin 2πθρ+=的图形是(6)函数)0(1cos ≤≤-+=x x y π的反函数是 (A) )20)(1arccos(≤≤--=x x y(B) )20)(1arccos(≤≤--=x x y π(C) )20)(1arccos(≤≤-=x x y (D) )20)(1arccos(≤≤-+=x x y π(7)若椭圆经过原点,且焦点为F 1(1,0),F 2(3,0),则其离心率为 (A)43 (B)32 (C)21 (D)41 (8)若b a =+=+<<<ββααπβαcos sin ,cos sin ,40,则(A)a <b(A)a >b(A)ab <1(D)ab >2(9)在正三棱柱ABC -A 1 B 1C 1中,若AB =2BB 1,则AB 与C 1B 所成的角的大小为 (A)60° (B)90° (C)105° (D)75°(10)设f (x )、g (x )都是单调函数,有如下四个命题:①若f (x )单调速增,g (x )单调速增,则f (x )-g (x ))单调递增; ②若f (x )单调速增,g (x )单调速减,则f (x )-g (x ))单调递增; ③若f (x )单调速减,g (x )单调速增,则f (x )-g (x ))单调递减;④若f (x )单调速减,g (x )单调速减,则f (x )-g (x ))单调递减; 其中,正确的命题是 (A)①③ (B)①④ (C)②③ (D)②④(11)一间民房的屋顶有如图三种不同的盖法:①单向倾斜;②双向倾斜;③四向倾斜.记三种盖法屋顶面积分别为P 1、P 2、P 3.若屋顶斜面与水平面所成的角都是α,则 (A)P 3>P 2>P 1 (B) P 3>P 2=P 1 (C) P 3=P 2>P 1 (D) P 3=P 2=P 1(12)如图,小圆圈表示网络的结点,结点之间的连线表承它们有网线相联.连线标注的数字表示该段网线单位时间内可以通过的最大信息量.现从结点A 向结点B 传递信息,信息可以分开沿不同的 路线同时传递.则单位时间内传递的最大信息量为(A)26; (B)24; (C)20; (D)19二.填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.(13)若一个圆锥的轴截面是等边三角形,其面积为3,则这个圆锥的侧面积是_________.(14)双曲线116922=+y x 的两个焦点为F 1、F 2,点P 在双曲线上.若PF ⊥PF 2,则点P 到x 轴的距离为_________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【高考数学试题】2001年普通高等学校春季招生考试(北京、内蒙古、安徽卷)
数 学(理工农医类)
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页.第Ⅱ卷3至8页.共150分.考试时间120分钟.
第Ⅰ卷(选择题 共60分)
注意事项:
1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上.
2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上.
3.考试结束,监考人将本试卷和答题卡一并收回.
参考公式: 正棱台、圆台的侧面积公式 三角函数的积化和差公式
)]sin()[sin(2
1
cos sin β-α+β+α=βα l c c S )'(2
1
+=
台侧 )]sin()[sin(2
1
sin cos β-α-β+α=
βα 其中'c 、c 分别表示上、下底面周长,l 表示斜高或母线长
)]cos()[cos(2
1
cos cos β-α+β+α=
βα 球体的体积公式 33
4
R V π=球
)]cos()[cos(2
1
sin sin β-α-β+α-=βα 其中R 表示球的半径
一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.
(1)集合{
}5,4,3,2,1=M 的子集个数是
(A )32
(B )31 (C )16 (D )15
(2)函数)10()(≠>=a a a x f x
且对于任意的实数y x ,都有 (A ))()()(y f x f xy f = (B ))()()(y f x f xy f +=
(C ))()()(y f x f y x f =+
(D ))()()(y f x f y x f +=+
(3)=++∞→1
2
22
lim n n n
n n C C
(A )0 (B )2 (C )
2
1 (D )
4
1 (4)函数)1(1≤--=x x y 的反函数是 (A ))01(12
≤≤--=x x y (B ))10(12
≤≤-=x x y
(C ))0(12≤-=x x y
(D ))10(12
≤≤-=x x y
(5)极坐标系中,圆θ+θ=ρsin 3cos 4的圆心的坐标是
(A ))5
3arcsin ,2
5(
(B ))5
4arcsin ,5(
(C ))5
3arcsin ,5(
(D )
)5
4arcsin ,25( (6)设动点P 在直线1=x 上,O 为坐标原点.以OP 为直角边、点O 为直角顶点作等腰
OPQ Rt ∆,则动点Q 的轨迹是
(A )圆
(B )两条平行直线
(C )抛物线
(D )双曲线
(7)已知x x f 26log )(=,那么)8(f 等于
(A )
3
4 (B )8 (C )18 (D )
2
1 (8)若A 、B 是锐角ABC ∆的两个内角,则点)cos sin ,sin (cos A B A B P --在
(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限 (9)如果圆锥的侧面展开图是半圆,那么这个圆锥的顶角(圆锥轴截面中两条母线的夹角)是 (A )︒30 (B )︒45 (C )︒60 (D )︒90 (10)若实数b a ,满足2=+b a ,则b
a
33+的最小值是
(A )18
(B )6
(C )32
(D )432
(11)右图是正方体的平面展开图.在这个正方体...中, ①ED BM 与平行
②CN 与BE 是异面直线 ③CN 与BM 成︒60角 ④DM 与BN 垂直
以上四个命题中,正确命题的序号是 (A )①②③ (B )②④
(C )③④ (D )②③④
(12)根据市场调查结果,预测某种家用商品从年初开始的n 个月内累积的需求量n S (万件)近似地满足
)12,,2,1)(521(90
2 =--=
n n n n
S n 按此预测,在本年度内,需求量超过1.5万件的月份是 (A )5月、6月 (B )6月、7月 (C )7月、8月
(D )8月、9月
绝密★启用前
2001年普通高等学校春季招生考试(北京、内蒙古、安徽卷)
数 学(理工农医类) 第Ⅱ卷(非选择题共90分)
注意事项: 1.第Ⅱ卷共6页,用钢笔或圆珠笔直接答在试题卷中.
(13(14)椭圆442
2
=+y x 长轴上一个顶点为A ,以A 为直角顶点作一个内接于椭圆的等腰直角三角形,该三角形的面积是_______________.
(15)已知α=γ+β+α(1sin sin sin 222、β、γ均为锐角),那么γβαcos cos cos 的最大值等于____________________.
(16)已知m 、n 是直线, α、β、γ是平面,给出下列命题:
①
若m n m ⊥=⋂⊥,,βαβα,则βα⊥⊥n n 或; ②若α∥β,n m =γ⋂β=γ⋂α,,则m ∥n ;
③若m 不垂直于α,则m 不可能垂直于α内的无数条直线; ④若m =⋂βα,n ∥m ,且βα⊄⊄n n ,,则n ∥n 且α∥β.
其中正确的命题的序号是_______________(注:把你认为正确的命题的序号都.填上) 三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 设函数)0()(>>+=b a b
x x x f ,求)(x f 的单调区间,并证明)(x f 在其单调区间上的单调性.
已知)1(17
≠∈=z C z z 且.
(Ⅰ)证明016
5
4
3
2
=++++++z z z z z z ;
(Ⅱ)设z 的辐角为α,求ααα4cos 2cos cos ++的值.
已知VC 是ABC 上的射影,且在ABC
∆的高CD 上.AB VC a AB 与,=之间的距离为VC M h ∈点,.
(Ⅰ)证明∠MDC 是二面角M –AB –C 的平面角; (Ⅱ)当∠MDC =∠CVN 时,证明VC AMB 平面⊥;
(Ⅲ)若∠MDC =∠CVN =2
0( π<θ<θ,求四面体MABC 的体积.
n 3211与2之间插入n 个正数n b b b b ,,,,321 ,使这2+n 个数成等差数列.记n n n n b b b b B a a a a A ++++== 321321,
.
(Ⅰ)求数列{}n A 和{}n B 的通项;
(Ⅱ)当7≥n 时,比较n A 与n B 的大小,并证明你的结论.。