知识点253 平行线的判定填空题

合集下载

5.2.2平行线的判定__习题课

5.2.2平行线的判定__习题课
1 3 5 6 2 B 7 E F
4
A
(变式)如图所示,已知∠1=∠2,BD平分 ∠ABC,可推出哪两条线段平行?写出推理过 程,如要推出另两条线段平行,则应将以上两 条件之一作如何改变?
A 2 4 D
1
B
3
C
3.如图,已知∠1=∠2=40°,⑴问,能根据 ∠1=∠2,得到AB∥CD吗?为什么?⑵如果又 有AE⊥AC,CF⊥AC,那么此时能确定 AB∥CD吗?为什么?能确定AE∥CF吗?为什 么?⑶由AE∥CF,你能得到什么结论吗?
G A 1 B
E C
H 2 F
D
4.一辆汽车在笔直的高速公路上行驶,两次拐 弯后仍在原来的方向上平行前进,那么,这两 次拐弯的角度可能是 ( ) A.第一次向右拐80°,第二次向左拐100° B.第一次向左拐80°,第二次向右拐80° C.第一次向左拐80°,第二次向右拐100° D.第一次向右拐80°,第二次向右拐80°
a a1 a2 a3

2 3
7.如图所示,∵∠ADE=∠DEF(已知) ∴AD∥ ( ) 又 ∵∠EFC+∠C=180°(已知) ∴EF∥ ( ) ∴ ∥ ( )
A E D F
B
C
(变式)如图所示,依据图形找出能使 AD∥BC成立的条件(至少6个)。
G A F D
K
B
C
H
8.如图,∠1=∠C,∠2+∠C=180°, AB与EF平行吗?为什么?
A 3
G 8 5 C 2 哪两条直线平行。 ⑴如果∠1=∠2,那么根据 可得 。 ⑵如果∠3=∠4,那么根据 可得 。 ⑶如果∠6=∠7,那么根据 可得 。 ⑷如果∠DAB+∠ADC=180°,那么根据 可 得 。 ⑸如果∠CBE=∠DAB,那么根据 可得 。 ⑹如果∠ABC+∠BCD=180°,那么根据 可 得 。 D C

专题10.2平行线的判定-重难点题型(举一反三)(沪科版)(原卷版)

专题10.2平行线的判定-重难点题型(举一反三)(沪科版)(原卷版)

专题10.2 平行线的判定重难点题型【沪科版】【题型1 平行公理及其推论】【例1】(2021•滨州模拟)如图:PC∥AB,QC∥AB,则点P、C、Q在一条直线上.理由是:.【变式11】(2021春•祁阳县期末)在同一平面内,有8条互不重合的直线,l1,l2,l3…l8,若l1⊥l2,l2∥l3,l3⊥l4,l4∥l5…以此类推,则l1和l8的位置关系是()A.平行B.垂直C.平行或垂直D.无法确定【变式12】(2021春•高安市校级月考)下列说法中:①同位角相等;②过一个点有且只有一条直线与已知直线垂直;③两直线相交成的四个角中相邻两角的角平分线互相垂直;④三条直线两两相交,总有三个交点;⑤若a∥b,b∥c,则a∥c;⑥若a⊥b,b⊥c,则a⊥c.其中正确的说法是.【变式13】(2021秋•浦东新区期中)如图,已知∠1=∠B,∠2=∠E,请你说明AB∥DE的理由.【题型2 同位角相等,两直线平行】【例2】(2021春•浦东新区月考)如图,已知∠A=∠EGC,∠A=∠D,说明AC∥DF.解:∵∠A=∠EGC又∵∠A=∠D∴=()∴DF∥AC.【变式21】(2021春•邹平县校级月考)已知如图所示,∠1=∠2,∠C=∠D,你能推断BD∥CE吗?试说明你的理由.【变式22】(2021春•江阴市校级月考)如图,∠1=75°,∠2=105°,AB与ED平行吗?为什么?【变式23】(2021春•盂县期中)小明到工厂参加社会实践活动时,发现工人师傅测量一块木板两边AB与CD是否平行时,将直角尺(∠MFN=90°)如图放置:MF交AB于点E,NF交CD于点G,测得∠1=140°,∠2=50°.小明马上用所学数学知识帮师傅进行了证明.请你写出规范的证明过程.【题型3 内错角相等,两直线平行】【例3】(2021春•青浦区期中)推理填空:已知:如图AB⊥BC于B,CD⊥BC于C,∠1=∠2,求证:BE∥CF.证明:∵AB⊥BC于B,CO⊥BC于C(已知)∴∠1+∠3=90°,∠2+∠4=90°∴∠1与∠3互余,∠2与∠4互余又∵∠1=∠2 (),∴=()∴BE∥CF().【变式31】(2021秋•城东区校级期中)如图,∠B=45°,∠A+15°=∠1,∠ACD=60°.求证:AB∥CD.【变式32】(2021春•阳谷县期中)将一副直角三角尺拼成如图所示的图形,过点C作CF平分∠DCE交DE于点F,试判断CF与AB是否平行,并说明理由.【变式33】(2021春•沂源县期末)已知,如图∠1和∠D 互余,CF ⊥DF ,问AB 与CD 平行吗?为什么?【题型4 同旁内角互补,两直线平行】【例4】(2021春•新津县校级月考)如图,直线AB 与直线EF 相交于点M ,直线CD 与直线EF 相交于点N ;∠1是它的补角的2倍,∠2的余角是∠2的12,那么AB ∥CD 吗?为什么?【变式41】(2021春•牡丹区期末)如图,已知AC ,BC 分别平分∠QAB ,∠ABN ,且∠1与∠2互余,求证:PQ ∥MN .【变式42】(2021春•长汀县期中)已知:如图,点E、C、D三点共线,∠DCM=35°,∠B=70°,CN 平分∠BCE,CM⊥CN,问:AB与CD有什么位置关系?请写出推理过程.【变式43】(2021秋•胶州市期末)已知:如图,BE,DF分别平分∠ABD和∠BDC,且BE⊥DF.求证:AB∥CD.【题型5 角平分线与平行线的判定】【例5】(2021秋•温州月考)已知:如图,∠ACD=2∠B,CE平分∠ACD.求证:CE∥AB.【变式51】(2021春•丹阳市期末)已知:如图,AD是△ABC的角平分线,点E在BC上,点F在CA的延长线上,EF交AB于点G,且∠AGF=∠F.求证:EF∥AD.【变式52】(2021春•岳池县月考)如图,OC是∠AOB的平分线,且∠1=∠2,试说明EF∥OB吗?【变式53】(2021春•廉江市期末)完成下面的证明如图,BE平分∠ABD,DE平分∠BDC,且∠α+∠β=90°,求证:AB∥CD.完成推理过程BE平分∠ABD(已知),∴∠ABD=2∠α().∵DE平分∠BDC(已知),∴∠BDC=2∠β()∴∠ABD+∠BDC=2∠α+2∠β=2(∠α+∠β)()∵∠α+∠β=90°(已知),∴∠ABD+∠BDC=180°().∴AB∥CD().【题型6 平行线的判定的综合应用】【例6】(2021春•江苏校级期中)数学活动课上,同学们正在讨论一道习题:为了说明地图中的四望亭路与文昌中路是互相平行的,王老师已经在地图上量得∠1=90°,你能通过度量图中已标出的其他的角来验证这个结论吗?说出你的理由.同学甲:度量∠2的度数,若∠2=90°,满足∠1+∠2=180°,根据同旁内角互补,两直线平行,就可以验证这个结论;同学乙:度量∠3的度数,若满足∠3=∠1=90°,根据同位角相等,两直线平行,就可以验证这个结论;同学丙:度量∠5的度数,若满足∠5=∠1=90°,根据内错角相等,两直线平行,就可以验证这个结论;同学丁:度量∠4的度数,若∠4=90°,也能验证这个结论.请你说明同学丁的理由.【变式61】(2021春•钦南区校级月考)王老师在广场上练习驾驶汽车,他第一次向左拐65°后,第二次要怎样拐才能使行驶路线与原来平行?.【变式62】(2021秋•余姚市期中)木条a、b、c如图用螺丝固定在木板α上且∠ABM=50°,∠DEM=70°,将木条a、木条b、木条c看作是在同一平面α内的三条直线AC、DF、MN,若使直线AC、直线DF达到平行的位置关系,则下列描述错误的是()A.木条b、c固定不动,木条a绕点B顺时针旋转20°B.木条b、c固定不动,木条a绕点B逆时针旋转160°C.木条a、c固定不动,木条b绕点E逆时针旋转20°D.木条a、c固定不动,木条b绕点E顺时针旋转110°【变式63】(2021春•南京期中)如图,在△AOB和△COD中,∠AOB=∠COD=90°,∠B=50°,∠C =60°,点D在边OA上,将图中的△COD绕点O按每秒20°的速度沿顺时针方向旋转一周,在旋转的过程中,在第t秒时,边CD恰好与边AB平行,则t的值为.。

知识点255 平行线的判定与性质填空题

知识点255  平行线的判定与性质填空题

填空题19、(2011•朝阳)如图,已知∠1=∠2=∠3=65°,则∠4的度数为115°.考点:平行线的判定与性质。

专题:计算题。

分析:根据平行线的判定与性质,可得∠3=∠5=65°,又根据邻补角可得∠5+∠4=180°,即可得出∠4的度数;解答:解:∵∠1=∠2,∴AB∥CD,∴∠3=∠5,又∠1=∠2=∠3=65°,∴∠5=65°又∠5+∠4=180°,∴∠4=115°;故答案为:115°.点评:本题主要考查了平行线的判定与性质,解答此题的关键是注意平行线的性质和判定定理的综合运用.20、(2010•南宁)如图所示,直线a,b被c,d所截,且c⊥a,c⊥b,∠1=70°,则∠2=70度.考点:平行线的判定与性质;对顶角、邻补角;垂线。

专题:计算题。

分析:因为c⊥a,c⊥b,所以可求a∥b,则∠1=∠3,又因为∠2=∠3,故∠2=∠1.解答:解:∵c⊥a,c⊥b,∴∠A=∠B,∴a∥b,∴∠1=∠3,∵∠2=∠3,∴∠2=∠1=70°.点评:此题把平行线的判定和性质结合求解.正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键.21、(2010•杭州)如图,已知∠1=∠2=∠3=62°,则∠4=118度.考点:平行线的判定与性质;对顶角、邻补角。

专题:计算题。

分析:因为∠1=∠2=∠3=62°,所以可知两直线a、b平行,由同旁内角互补求得∠4结果.解答:解:∵∠1=∠3,∴两直线a、b平行;∴∠2=∠5=62°,∵∠4与∠5互补,∴∠4=180°﹣62°=118°.点评:本题考查平行线的判定与性质,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键.22、(2008•湘潭)如图,已知∠1=70°,∠2=70°,∠3=60°,则∠4=60度.考点:平行线的判定与性质。

平行线的性质知识点及练习题

平行线的性质知识点及练习题

平行线的性质知识点及练习题(总3页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除平行线的性质知识点及练习题1、平行线的性质:性质1:两直线平行,同位角相等;性质2:两直线平行,内错角相等;性质3:两直线平行,同旁内角互补。

几何符号语言:∵AB ∥CD∴∠1=∠2(两直线平行,内错角相等)∵AB ∥CD∴∠3=∠2(两直线平行,同位角相等)∵AB ∥CD∴∠4+∠2=180°(两直线平行,同旁内角互补)2、两条平行线的距离如图,直线AB ∥CD ,EF ⊥AB 于E ,EF ⊥CD 于F ,则称线段EF 的长度为两平行线AB 与CD 间的距离。

注意:直线AB ∥CD ,在直线AB 上任取一点G ,过点G 作CD 的垂线段GH ,则垂线段GH 的长度也就是直线AB 与CD 间的距离。

3、命题:⑴命题的概念:判断一件事情的语句,叫做命题。

⑵命题的组成每个命题都是题设、结论两部分组成。

题设是已知事项;结论是由已知事项推出的事项。

命题常写成“如果……,那么……”的形式。

具有这种形式的命题中,用“如果”开始的部分是题设,用“那么”开始的部分是结论。

有些命题,没有写成“如果……,那么……”的形式,题设和结论不明显。

对于这样的命题,要经过分析才能找出题设和结论,也可以将它们改写成“如果……,那么……”的形式。

注意:命题的题设(条件)部分,有时也可用“已知……”或者“若……”等形式表述;命题的结论部分,有时也可用“求证……”或“则……”等形式表述。

4、平行线的性质与判定①平行线的性质与判定是互逆的关系同位角相等;内错角相等;同旁内角互补。

其中,由角的相等或互补(数量关系)的条件,得到两条直线平行(位置关系)这是平行线的判定;由典型例题:已知∠1=∠B ,求证:∠2=∠C证明:∵∠1=∠B (已知)∴DE ∥BC (同位角相等,两直线平行) ∴∠2=∠C (两直线平行,同位角相等)注意,在了DE ∥BC ,不需要再写一次了,得到了DE ∥BC 典型例题:如图,AB ∥DF ,DE ∥BC ,∠1=65° 求∠2、∠3的度数A B C D EF 1 2 3 4 A EG B C FH D A D F B E C1 2 3解答:∵DE ∥BC (已知)∴∠2=∠1=65°(两直线平行,内错角相等)∵AB ∥DF (已知)∴AB ∥DF (已知)∴∠3+∠2=180°(两直线平行,同旁内角互补)∴∠3=180°-∠2=180°-65°=115°平行线的性质练习题一、选择题:(每小题3分,共12分)1、如图1所示,AB ∥CD,则与∠1相等的角(∠1除外)共有( )个 个 个 个 D C B A 1ED C BA O F E D C BA (1) (2) (3) (4)2、如图2所示,已知DE ∥BC,CD 是∠ACB 的平分线,∠B=72°,∠ACB=40°,•那么∠BDC 等于( )° ° ° °3、下列说法:①两条直线平行,同旁内角互补;②同位角相等,两直线平行;•③内错角相等,两直线平行;④垂直于同一直线的两直线平行,其中是平行线的性质的是( )A.①B.②和③C.④D.①和④4、如图3所示,CD ∥AB,OE 平分∠AOD,OF ⊥OE,∠D=50°,则∠BOF 为( )° ° ° °二、填空题:(每小题3分,共12分)5、如图4所示,n m //,∠2=50°,那么∠1= °,∠3= °,∠4= °6、把命题“邻补角的平分线互相垂直”改写成“如果……,那么……。

人教版七年级数学下册《5.2.2平行线的判定》同步练习(含答案)

人教版七年级数学下册《5.2.2平行线的判定》同步练习(含答案)

5.2.2平行线的判定关键问答①由平行线的定义来判定平行线,在什么地方不便操作?②平行线的判定方法有哪些?1.①图5-2-10是我们学过的用直尺和三角尺画平行线的方法示意图,画图原理是()图5-2-10A.同位角相等,两直线平行B.内错角相等,两直线平行C.同旁内角互补,两直线平行D.如果两条直线都和第三条直线平行,那么这两条直线平行2.②用两块相同的三角尺按如图5-2-11所示的方式作平行线AB和CD,能解释其中道理的依据是()图5-2-11A.内错角相等,两直线平行B.同位角相等,两直线平行C.同旁内角互补,两直线平行D.平行于同一直线的两直线平行3.如图5-2-12,工人师傅在工程施工中,需在同一平面内弯制一个变形管道ABCD,使其拐角∠ABC=150°,∠BCD=30°,则()图5-2-12A.AB∥BC B.BC∥CD C.AB∥CD D.AB与CD相交命题点1同位角相等,两直线平行[热度:94%]4.如图5-2-13,直线a与直线b相交于点A,与直线c相交于点B,∠1=120°,∠2=45°.若使直线b与直线c平行,则可将直线b绕点A逆时针旋转()图5-2-13A.15°B.30°C.45°D.60°5.③已知∠1=∠2,下列能判定AB∥CD的是()图5-2-14方法点拨③先判断∠1,∠2是由哪两条直线被哪条直线所截得到的,再确定两角位于被截直线之间还是同旁,在截线同侧还是异侧.6.一学员在广场上练习驾驶汽车,两次拐弯后,行驶的方向与原来的方向相同,这两次拐弯的角度可能是()A.第一次向左拐30°,第二次向右拐30°B.第一次向右拐50°,第二次向左拐130°C.第一次向右拐50°,第二次向右拐130°D.第一次向左拐50°,第二次向左拐130°7.如图5-2-15,PE⊥MN,QF⊥MN,∠1=∠2,直线AB与CD平行吗?为什么?图5-2-15命题点2内错角相等,两直线平行[热度:94%]8.④如图5-2-16,已知∠1=∠2,那么()图5-2-16A.AB∥CD,根据内错角相等,两直线平行B.AD∥BC,根据内错角相等,两直线平行C.AB∥CD,根据同位角相等,两直线平行D.AD∥BC,根据同位角相等,两直线平行解题突破④分析∠1,∠2是由哪两条直线被哪条直线所截得到的,是一对什么位置关系的角.9.⑤如图5-2-17,点A在直线DE上,当∠BAC=________°时,DE∥BC.图5-2-17方法点拨⑤求角时,先看能否将其转化成已知角的和与差,这时的标志是其与已知角有公共顶点和公共边;再看所求角与已知角是不是同位角、内错角或同旁内角.10.如图5-2-18,已知AB⊥BC,DC⊥BC,∠1=∠2,直线BE,CF平行吗?为什么?图5-2-1811.如图5-2-19,∠1=60°,∠2=60°,∠3=100°.要使AB∥EF,∠4应为多少度?说明理由.图5-2-19命题点3同旁内角互补,两直线平行[热度:94%]12.⑥如图5-2-20,AE平分∠BAC,CE平分∠ACD,不能判定AB∥CD的条件是()图5-2-20A.∠1=∠2 B.∠1+∠2=90°C.∠3+∠4=90°D.∠2+∠3=90°方法点拨⑥对于复杂图形,可以采用去掉与条件无关的直线的方法,使图形变得简单,从而使问题难度减小.13.⑦如图5-2-21,∠ABD=90°,∠BDC=90°,∠1+∠2=180°,CD与EF平行吗?为什么?图5-2-21方法点拨⑦准确识别同位角、内错角、同旁内角是判断哪两条直线平行的关键.一般地,“F”形中有同位角,“Z”形中有内错角,“U”形中有同旁内角.每一对角的公共边所在的直线是截线,另外两边所在的直线是被截线,即需判定平行的两条直线.命题点4平行线判定方法的选用[热度:96%]14.如图5-2-22,已知AB⊥BC,∠1+∠2=90°,∠2=∠3,BE与DF平行吗?为什么?图5-2-2215.⑧小明到工厂进行社会实践活动时,发现工人师傅生产了一种如图5-2-23所示的零件,要求AB∥CD,∠BAE=35°,∠AED=90°.小明发现工人师傅只是量出∠BAE=35°,∠AED=90°后,又量了∠EDC=55°,就说AB与CD肯定是平行的.你知道原因吗?图5-2-23方法点拨⑧(1)判定两直线平行,通常找这两条直线被第三条直线所截得的同位角、内错角、同旁内角的数量关系;(2)若找到的“截线”是折线,通常过折线的拐点再作一条直线,把图形转化成多个两直线被第三条直线所截的图形,再用(1)解决.典题讲评与答案详析1.A 2.A 3.C4.A[解析]∵∠1=120°,∴∠1的邻补角为60°.当直线b与直线c平行时,∵∠2=45°,∴∠1的邻补角为45°,∴可将直线b绕点A逆时针旋转15°.故选A.5.D[解析] 在四个选项中,只有选项D满足“同位角相等,两直线平行”.6.A[解析] 此题可看作平行线性质的实际应用,解决该题单纯从文字方面去分析,很难判断出结果,但是结合题意画出各选项的示意图后,结果也就一目了然了.各选项的示意图如下:虽然有的图形符合了两直线平行,但行驶方向与原来的方向不相同.两次拐弯的方向与角度决定了行驶方向与原来的方向是否相同.对照上面示意图,发现A选项是正确的.7.解:AB∥CD.理由如下:∵PE⊥MN,QF⊥MN(已知),∴∠MEP=∠MFQ=90°(垂直的定义).又∵∠1=∠2(已知),∴∠MEP-∠1=∠MFQ-∠2(等式的性质),即∠MEB=∠MFD,∴AB∥CD(同位角相等,两直线平行).8.B[解析]∠1,∠2是直线AD,BC被直线AC所截得到的内错角,由内错角相等,两直线平行,可知AD∥BC.故选B.9.5710.解:BE∥CF.理由如下:因为AB⊥BC,DC⊥BC,所以∠ABC=∠BCD=90°.又因为∠1=∠2,所以∠ABC-∠1=∠BCD-∠2,即∠EBC=∠BCF,所以BE∥CF(内错角相等,两直线平行).11.解:∠4应为100°.理由如下:∵∠1=∠2,∴AB∥CD(内错角相等,两直线平行).∵∠4=∠3=100°,∴EF∥CD(内错角相等,两直线平行),∴AB∥EF(平行于同一直线的两条直线平行).12.A[解析]AE平分∠BAC,CE平分∠ACD,选项A中,由∠1=∠2,可得∠BAC=∠ACD,而∠BAC,∠ACD是一对同旁内角,显然不能判定AB∥CD.13.解:CD∥EF.理由如下:∵∠ABD=90°,∠BDC=90°,∴∠ABD+∠BDC=180°,∴AB∥CD(同旁内角互补,两直线平行).又∵∠1+∠2=180°,∴AB∥EF(同旁内角互补,两直线平行),∴CD∥EF(平行于同一条直线的两直线平行).14.解:BE∥DF.理由如下:∵AB⊥BC,∴∠ABC=90°,即∠3+∠EBC=90°.又∵∠1+∠2=90°,且∠2=∠3,∴∠1=∠EBC,∴BE∥DF.15.解:以E为顶点,AE为一边,在∠AED的内部作∠AEM=∠BAE=35°,∴AB∥EM(内错角相等,两直线平行).又∵∠AED=90°,∴∠DEM=∠EDC=55°,∴CD∥EM(内错角相等,两直线平行),∴AB∥CD(平行于同一条直线的两直线平行).【关键问答】①要确定同一平面内两直线不相交,比较困难,因此不便操作.②方法1:同位角相等,两直线平行;方法2:内错角相等,两直线平行;方法3:同旁内角互补,两直线平行.。

平行线的判定(含答案)

平行线的判定(含答案)

1.2平行线的判定⑴【要点预习】1•平行线的判定1.两条直线被第三条直线所截,如果______________ 相等,那么这两条直线平行.简单地说,________ 相等,两直线平行.2•平行线的判定1的特殊情形:在同一平面内,____________ 于同一条直线的两条直线互相平行.【课前热身】1. ____________________________________ 两条平行线被第三条直线所截,共有对同位角.答案:42. _________________________________________ 街道两侧路灯的柱子的位置关系是.答案:平行3. 如图1,直线AB、CD被直线EF所截,如果/ 1 =Z 2,则__________ .理由是(_______________________________________ ).答案:AB // CD 同位角相等,两直线平行4. _____________________________________________________ 在同一平面内,若a b,a c,则a与c的位置关系是 ____________________________________________ .答案:a // c图2【讲练互动】【例1】如图2,直线AB, CD被直线EF, GH所截,下列结论:(1)若/仁/ 2,贝U AB // CD ;2)若/ 仁/2,贝U EF// GH;3)若/ 1 = / 3,贝U AB // CD ;(4)若/仁/3,则EF // GH.其中正确的是............................. ( )A. (1)(3)B. (1)(4)C.⑵⑶D.⑵⑷【解析】/ 1与/ 2是直线EF, GH被AB所截得到的同位角;/ 1与/ 3是AB,CD被EF所截形成的同位角【答案】C【变式训练】1. ................................................................................................. 如图3所示,如果/ D= / EFC,那么 ..................................... (图3A. AD // BCB.EF // BCC.AB // DCD.AD // EF【答案】D【例2】如图4,直线a,b 被直线c 所截,且/ 2+ / 3= 1800,则a // b 吗?请说明理由【分析】只要说明同位角/ 仁/3即可. 【解】•••/ 2+ / 3=180o, / 1 + / 2=180o,1 = / 3,二 a / b.【绿色通道】利用转化思想是解决平行线问题主要方法•【变式训练】 2.如图5,已知直线 EF 和AB, CD 分别相交于 K, H,且EG丄 AB, / CHF=60o, / E=30o,试说明 AB // CD.【解】•/ EG 丄 AB, ••• / EGK=90o. •/ / E=30o, /• / EKG =60o.•••/ CHF=60o, / CHF = / EHD , EHD =60o. •••/ EKG= / EHD, • AB // CD.【例3】如图6,在海上有两个观测所 A 和B,且观测所B 在A 的正东方向•若在A 观测所测得船M 的航行方向是北偏东 50o,在B 观测所得船N 的航行方向也是 北偏东50o,问船M 的航向AM 与船N 的航向BN 是否平行.请说明 理由• 【解】AM 与BN 平行.•••/ MAC= / NBC=50o, • AM // BN.【变式训练】3. 一辆货车在仓库装满货物准备运往超市,驶出仓库门口后开始向东行驶,途中向右 拐了 50o 角,接着向前行驶,走了一段路程后,又向左拐了 50o 角,如图所示•此时汽车和原来的行驶方向相同吗?你的根据是什么?【解】相同•理由如下:•••/ AOB= / A /O /B /=50o, • OA // oH, 即汽车和原来的行驶方向相同 .【同步测控】基础自测1•如图 8,若/ ADE= / ABC,贝U图4东A. DE // BFD. / A =Z ABEA. DE // BFB. DC // BFC. DE // BCD. DC //BC2•如图8,若/ ACD= / F 则B. DC // BFC. DE // BCD. DC // BCA. / C =Z ABEB. /A =Z EBDC. / C =Z ABC4. ______________________________________ 如图10,若/ 1=52o ,问应使/ C= _____________________________________ 度时,能使直线 AB / CD.5. 如果11丄12 , |3丄|2,贝廿11 ________ 13.理由是 ________________________________6. _____________________________________________ 如图11,请你填写一个适当的条件: _____________________________________ ,使AD // BC .7.如图12,若/ 1 + Z 2=180o ,则11// 12.试说明理由(填空) 解:•••/ 2+Z 3= ______________ (平角的意义), 又•••/ 1 + Z 2=180o ( ______________ ),•••/ 仁 _______ ( ______________________________ ), 丨1 / 12 ( _______________________________ ).8. 如图13,已知△ ABC 及AC 上一点 D.过D 作DE // BC,交AB 于点E;作DF // AB,交BC 于点F.9. 如图14,/ ABC =Z DEC , BP 平分/ ABC , EF 平分/ DEC ,试找出图中的各组平行线3.如图9,能判定 图9图11EB // AC 的条件是图1411|2那么DE 与AB 是否平行?请说明理由图1610. 如图 15,在厶 ABC 中,点 D, E 分别在 AC, BC 上•已知/ C=30o, / CDE=115o, / B=35o,能力提升11./ 1与/ 2是两条直线被第三条直线所截的同位角,若/1= 500,则/ 2为……( )A. 50 °B. 130 °C. 50。

知识点平行线的判定填空题

知识点平行线的判定填空题

填空题1、(2010•铜仁地区)如图,请填写一个你认为恰当的条件∠CDA=∠DAB或∠FCD=∠FAB或∠BAC+∠ACD=180°,使AB∥CD.考点:平行线的判定。

专题:开放型。

分析:欲证AB∥CD,在图中发现AB、CD被直线AC或AD所截,然后根据平行线的判定方法寻找同位角或内错角或同旁内角就可.解答:解:根据同位角相等,两条直线平行,可以添加∠FCD=∠FAB;根据内错角相等,两条直线平行,可以添加∠CDA=∠DAB;根据同旁内角互补,两条直线平行,可以添加∠BAC+∠ACD=180°.点评:解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角.本题是一道探索性条件开放性题目,能有效地培养“执果索图”的思维方式与能力.2(2010•大田县)如图所示,已知∠C=100°,若增加一个条件,使得AB∥CD,试写出符合要求的一个条件∠BEC=80°等,答案不是唯一.考点:平行线的判定。

专题:开放型。

分析:欲证AB∥CD,在图中发现AB、CD被一直线所截,且已知一同旁内角∠C=100°,故可按同旁内角互补两直线平行补充条件.解答:解:∵∠1=100°,要使AB∥CD,则要∠BEC=180°﹣100°=80°(同旁内角互补两直线平行).点评:解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角.本题是一道探索性条件开放性题目,能有效地培养“执果索图”的思维方式与能力.3、(2009•昆明)如图,B、A、E三点在同一直线上,请你添加一个条件,使AD∥BC.你所添加的条件是∠EAD=∠B或∠DAC=∠C或∠DAB+∠B=180°(不允许添加任何辅助线).考点:平行线的判定。

专题:开放型。

分析:使AD∥BC判别两条直线平行的方法有:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.因而可以添加的条件是∠EAD=∠B或∠DAC=∠C或∠DAB+∠B=180°.解答:可以添加的条件是∠EAD=∠B或∠DAC=∠C或∠DAB+∠B=180°.点评:本题比较容易,考查判定平行线的条件,本题可以从同位角、内错角和同旁内角三个方面去添加条件.4、(2008•永州)如图,直线a、b被直线c所截,若要a∥b,需增加条件∠1=∠4或∠1=∠3或∠1+∠2=180°.(填一个即可)考点:平行线的判定。

平行线的判定练习题及答案

平行线的判定练习题及答案

平行线的判定练习题及答案一、选择题1.下列命题中,不正确的是____ [ ]A.两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行B.两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行C.两条直线被第三条直线所截,那么这两条直线平行 D.如果两条直线都和第三条直线平行,那么这两条直线也互相平行2.如图,可以得到DE∥BC的条件是______ [ ]A.∠ACB=∠BAC B.∠ABC+∠BAE=180° C.∠ACB+∠BAD=180° D.∠ACB=∠BAD3.如图,直线a、b被直线c所截,现给出下列四个条件:∠1=∠2,∠3=∠6,∠4+∠7=180°,∠5+∠8=180°,其中能判定a∥b的条件是_________[ ]A.B. C. D.4.一辆汽车在笔直的公路上行驶,两次拐弯后,行驶的方向与原来的方向相同,这两次拐弯的角度可能是________[ ]A.第一次向右拐40°,第二次向左拐40° B.第一次向右拐50°,第二次向左拐130°C.第一次向右拐50°,第二次向右拐130° D.第一次向左拐50°,第二次向左拐130°5.如图,如果∠1=∠2,那么下面结论正确的是_________.[ ]A.AD∥BC B.AB∥CD C.∠3=∠ D.∠A=∠C6.如图,a∥b,a、b被c所截,得到∠1=∠2的依据是A.两直线平行,同位角相等 B.两直线平行,内错角相等C.同位角相等,两直线平行 D.内错角相等,两直线平行7.同一平面内有四条直线a、b、c、d,若a∥b,a⊥c,b⊥d,则直线c、d的位置关系为A.互相垂直 B.互相平行 C.相交 D.无法确定8.如图,AB∥CD,那么A.∠1=∠B.∠1=∠ C.∠2=∠D.∠1=∠59.如图,在平行四边形ABCD中,下列各式不一定正确的是A.∠1+∠2=180° B.∠2+∠3=180°C.∠3+∠4=180° D.∠2+∠4=180°10.如图,AD∥BC,∠B=30°,DB平分∠ADE,则∠DEC 的度数为A.30° B.60° C.90° D.120°二、填空题11.如图,由下列条件可判定哪两条直线平行,并说明根据.∠1=∠2,________________________.∠A=∠3,________________________.∠ABC+∠C=180°,________________________.12.如果两条直线被第三条直线所截,一组同旁内角的度数之比为3∶2,差为36°,那么这两条直线的位置关系是________.13.同垂直于一条直线的两条直线________.14.如图,直线EF分别交AB、CD于G、H.∠1=60°,∠2=120°,那么直线AB与CD的关系是________,理由是:____________________________________________.15.如图,AB∥EF,BC∥DE,则∠E+∠B的度数为________.三、解答题16.已知:如图,∠1=∠2,且BD平分∠ABC.求证:AB∥CD.17.已知:如图,AD是一条直线,∠1=65°,∠2=115°.求证:BE∥CF.18.已知:如图,∠1=∠2,∠3=100°,∠B=80°.求证:EF∥CD.19.已知:如图,FA⊥AC,EB⊥AC,垂足分别为A、B,且∠BED+∠D=180°.求证:AF∥CD.20.如图,已知∠AMB=∠EBF,∠BCN=∠BDE,求证:∠CAF=∠AFD.21.如图,一条公路修到湖边时,需拐弯绕湖而过,如果第一次拐的角A是120°,第二次拐的角B是150°,第三次拐的角是∠C,这时的道路恰好和第一次拐弯之前的道路平行,问∠C是多少度?说明你的理由.23.如图,若AB∥DE,∠B=135°,∠D=145°,你能求出∠C的度数吗?在AB∥DE的条件下,你能得出∠B、∠C、∠D之间的数量关系吗?并说明理由.24.如图,在折线ABCDEFG中,已知∠1=∠2=∠3=∠4=?∠5,?延长AB、GF交于点M.试探索∠AMG 与∠3的关系,并说明理由.25.已知如图,四边形ABCD中,AB∥CD,BC∥AD,那么∠A与∠C,∠B与∠D的大小关系如何?请说明你的理由.答案:CBDAB ABDDB7.AD∥BC内错角相等,两直线平行AD∥BC同位角相等,两直线平行AB∥DC同旁内角互补,两直线平行.平行.平行10.平行∵∠EHD=180°-∠2=180°-120°=60°,∠1=60°,∴∠1=∠EHD,∴AB∥CD.8.证明:∵∠AMB=∠DMN,又∠ENF=∠AMB,∴∠DMN=∠ENF,∴BD∥CE.∴∠BDE+∠DEC=180°.又∠BDE=∠BCN,∴∠BCN+∠CED=180°,∴BC∥DE,∴∠CAF=∠AFD.点拨:本题重点是考查两直线平行的判定与性质.21.解:∠C=150°.理由:如答图,过点B作BE∥AD,则∠ABE=∠A=120°.∴∠CBE=∠ABC-∠ABE=150°-120°= 30°.∵BE∥AD,CF∥AD,∴BE∥CF.∴∠C+∠CBE=180°.∴∠C=180°-∠CBE=180°-30°=150°.5.2《平行线的判定》检测题一、选择题: 1、下列说法正确的有〔〕①不相交的两条直线是平行线; ②在同一平面内,不相交的两条线段平行③过一点有且只有一条直线与已知直线平行; ④若a∥b,b∥c,则a与c不相交. A.1个 B.2个 C.3个 D.4个2、在同一平面内,两条不重合直线的位置关系可能是〔〕A.平行或相交B.垂直或相交C.垂直或平行D.平行、垂直或相交 .如图1所示,下列条件中,能判断AB∥CD 的是A.∠BAD=∠BCDB.∠1=∠2;C.∠3=∠4D.∠BAC=∠ACD ADAEDAC4.如图2所示,如果∠D=∠EFC,那么A.AD∥BCB.EF∥BCC.AB∥DCD.AD∥EF.如图3所示,能判断AB∥CE的条件是A.∠A=∠ACEB.∠A=∠ECDC.∠B=∠BCAD.∠B=∠ACE .下列说法错误的是A.同位角不一定相等B.内错角都相等C.同旁内角可能相等D.同旁内角互补,两直线平行7.不相邻的两个直角,如果它们有一边在同一直线上,那么另一边相互 A.平行 B.垂直 C.平行或垂直 D.平行或垂直或相交8、在同一平面内的三条直线,若其中有且只有两条直线互相平行,则它们交点的个数是〔〕A、0个B、1个C、2个D、3个二、填空题:1.在同一平面内,直线a,b相交于P,若a∥c,则b与c 的位置关系是______..在同一平面内,若直线a,b,c满足a⊥b,a⊥c,则b与c的位置关系是______.3、如图,光线AB、CD被一个平面镜反射,此时∠1=∠3,∠2=∠4,那么AB和CD的位置关系是,BE和DF的位置关系是 .AECBADE4、如图,AB∥EF,∠ECD=∠E,则CD∥AB.说理如下:∵∠ECD=∠E∴CD∥EF 又AB∥EF∴CD∥AB.5.在同一平面内,直线a,b相交于P,若a∥c,则b与c 的位置关系是______. .在同一平面内,若直线a,b,c满足a⊥b,a⊥c,则b与c的位置关系是______. .如图所示,BE是AB的延长线,量得∠CBE=∠A=∠C.由∠CBE=∠A可以判断______∥______,根据是_________.由∠CBE=∠C可以判断______∥______,根据是_________. 三、训练平台:1、如图所示,已知∠1=∠2,AB平分∠DAB,试说明DC∥AB. C2、如图所示,已知直线EF和AB,CD分别相交于K,H,且EG⊥AB,∠CHF=60,∠E=?30°,试说明AB∥CD.EAC四、解答题:1、如图所示,已知直线a,b,c,d,e,且∠1=∠2,∠3+∠4=180°,则a与c平行吗??为什么?de2abc2、如图所示,请写出能够得到直线AB∥CD的所有直接条件.1、如图所示,过点A画MN∥BC;2、如图所示,过点P画PE∥OA,交OB于点E,过点PC画PH∥OB,交OA于点H; 、如图所示,过点C画CE∥DA,与AB交于点E,过点C画CF∥DB,与AB?的延长线交于点F.B5DADCC参考答案一、1.B.2.A.3. D .D .A .B.A.C二、1.相交 .平等.平行平行4.已知内错角相等,两直线平行已知平行于同一条直线的两直线平行 5.相交 6.互相平行7.AD BC 同位角相等,两直线平行 DC AB ?内错角相等,两直线平行三、1.解:∵AC平分∠DAB,∴∠1=∠CAB, 又∵∠1=∠2, ∴∠CAB=∠2, ∴AB∥CD.2.解:∵EG⊥AB,∠E=30°,∴∠AKF=∠EKG=60°=∠CHF, ∴AB∥CD. 四、1.解:平行.∵∠1=∠2, ∴a∥b,又∵∠3+∠4=180°, ∴b∥c, ∴a∥c.2、∠1=∠6,∠2=∠5,∠3=∠8,∠4=∠7,∠3=∠6,∠4=∠5,∠3+∠5=180°,∠4+∠6=180° 五.略一、填空题:1.如图③ ∵∠1=∠2,∴_______∥________∵∠2=∠3,∴_______∥________2.如图④ ∵∠1=∠2,∴_______∥________∵∠3=∠4,∴_______∥________二、选择题:1.如图⑦,∠D=∠EFC,那么A.AD∥BC B.AB∥CDC.EF∥BC D.AD∥EF2.如图⑧,判定AB∥CE的理由是A.∠B=∠ACE B.∠A=∠ECD C.∠B=∠ACBD.∠A=∠ACE3.如图⑨,下列推理正确的是A.∵∠1=∠3,∴a∥b B.∵∠1=∠2,∴a∥bC.∵∠1=∠2,∴c∥d D.∵∠1=∠3,∴c∥d4.如图,直线a、b被直线c所截,给出下列条件,①∠1=∠2,②∠3=∠6,③∠4+∠7=180°,④∠5+∠8=180°其中能判断a∥b的是A.①③ B.②④C.①③④ D.①②③④三、完成推理,填写推理依据:1.如图⑩ ∵∠B=∠_______,∴ AB∥CD∵∠BGC=∠_______,∴ CD∥EF∵AB∥CD ,CD∥EF,∴AB∥____2.如图⑾ 填空:∵∠2=∠B∴ AB__________∵∠1=∠A∴ __________∵∠1=∠D∴ __________∵_______=∠F∴ AC∥DF3.已知,如图∠1+∠2=180°,填空。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

填空题1、(2010•铜仁地区)如图,请填写一个你认为恰当的条件∠CDA=∠DAB或∠FCD=∠FAB或∠BAC+∠ACD=180°,使AB∥CD.考点:平行线的判定。

专题:开放型。

分析:欲证AB∥CD,在图中发现AB、CD被直线AC或AD所截,然后根据平行线的判定方法寻找同位角或内错角或同旁内角就可.解答:解:根据同位角相等,两条直线平行,可以添加∠FCD=∠FAB;根据内错角相等,两条直线平行,可以添加∠CDA=∠DAB;根据同旁内角互补,两条直线平行,可以添加∠BAC+∠ACD=180°.点评:解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角.本题是一道探索性条件开放性题目,能有效地培养“执果索图”的思维方式与能力.2(2010•大田县)如图所示,已知∠C=100°,若增加一个条件,使得AB∥CD,试写出符合要求的一个条件∠BEC=80°等,答案不是唯一.考点:平行线的判定。

专题:开放型。

分析:欲证AB∥CD,在图中发现AB、CD被一直线所截,且已知一同旁内角∠C=100°,故可按同旁内角互补两直线平行补充条件.解答:解:∵∠1=100°,要使AB∥CD,则要∠BEC=180°﹣100°=80°(同旁内角互补两直线平行).点评:解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角.本题是一道探索性条件开放性题目,能有效地培养“执果索图”的思维方式与能力.3、(2009•昆明)如图,B、A、E三点在同一直线上,请你添加一个条件,使AD∥BC.你所添加的条件是∠EAD=∠B或∠DAC=∠C或∠DAB+∠B=180°(不允许添加任何辅助线).考点:平行线的判定。

专题:开放型。

分析:使AD∥BC判别两条直线平行的方法有:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.因而可以添加的条件是∠EAD=∠B或∠DAC=∠C或∠DAB+∠B=180°.解答:可以添加的条件是∠EAD=∠B或∠DAC=∠C或∠DAB+∠B=180°.点评:本题比较容易,考查判定平行线的条件,本题可以从同位角、内错角和同旁内角三个方面去添加条件.4、(2008•永州)如图,直线a、b被直线c所截,若要a∥b,需增加条件∠1=∠4或∠1=∠3或∠1+∠2=180°.(填一个即可)考点:平行线的判定。

专题:开放型。

分析:要判定a∥b,判别两条直线平行的方法有:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.因而可以添加的条件是∠1=∠4或∠1=∠3或∠1+∠2=180°.解答:解:可以添加的条件是∠1=∠4或∠1=∠3或∠1+∠2=180°.点评:正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,不能遇到相等或互补关系的角就误认为具有平行关系,只有同位角相等、内错角相等、同旁内角互补,才能推出两条被截直线平行.5、(2008•淮安)如图,请填写一个适当的条件:∠ABD=∠D或∠ABE=∠DEC或∠ABE+∠DEB=180°,使得DE∥AB.考点:平行线的判定。

专题:开放型。

分析:要使得DE∥AB,判别两条直线平行的方法有:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.因而可以写出的条件是∠ABD=∠D或∠ABE=∠DEC或∠ABE+∠DEB=180°.解答:可以写出的条件是∠ABD=∠D或∠ABE=∠DEC或∠ABE+∠DEB=180°.点评:正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,不能遇到相等或互补关系的角就误认为具有平行关系,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.6、(2008•防城港)如图,∠1=60°,∠2=60°,则直线a与b的位置关系是平行.考点:平行线的判定;对顶角、邻补角。

分析:由对顶角相等得出∠2=∠3,结合已知得出∠1=∠3,从而可应用同位角相等,两直线平行判定位置关系.解答:解:∵∠3=∠2=60°(对顶角相等),又∵∠1=60°,∴∠1=∠3,∴a∥b.点评:本题是考查平行线的判定的基础题,比较容易,稍作转化即可.7、(2007•佳木斯)如图,请你填写一个适当的条件:∠FAD=∠FBC或∠DAB+∠ABC=180°或∠ADB=∠DBC,使AD∥BC.考点:平行线的判定。

专题:开放型。

分析:要使AD∥BC,根据平行线的判定方法,同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行;因而添加的条件可以是:∠FAD=∠FBC或∠DAB+∠ABC=180°或∠ADB=∠DBC.解答:解:∠FAD=∠FBC或∠DAB+∠ABC=180°或∠ADB=∠DBC.点评:正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,不能遇到相等或互补关系的角就误认为具有平行关系,只有同位角相等、内错角相等、同旁内角互补,才能推出两条被截直线平行.8、(2006•徐州)如图,请在括号内填上正确的理由:因为∠DAC=∠C(已知),所以AD∥BC内错角相等,两直线平行.考点:平行线的判定。

分析:因为∠DAC=∠C,是关于直线AD,BC的内错角,如果内错角相等,则两直线平行.解答:AD∥BC(内错角相等,两直线平行).点评:本题考查平行线的判定条件内错角相等,两直线平行.9、(2005•湘潭)如图,如果∠1=∠2,那么a∥b.考点:平行线的判定。

专题:开放型。

分析:判别两条直线平行的方法有:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.因而∠1=∠2或∠3=∠1,或∠2+∠4=180°都可以得到a∥b.解答:解:如果∠1=∠2,那么a∥b.点评:在几何中,如果用一个字母表示一条直线,只能用小写字母表示,如果用大写字母表示,则必须用两个字母表示.10、(2003•台州)如图,直线a、b与直线c相交,形成∠1、∠2、…,∠8共八个角,请你填上你认为适当的一个条件:(1)从“同位角相等,两直线平行”考虑,可填∠1=∠5,∠2=∠6,∠3=∠7,∠4=∠8中的任意一个条件;(2)从“内错角相等,两直线平行”考虑,可填∠3=∠6,∠4=∠5中的任意一个;(3)从“同旁内角互补,两直线平行”考虑,可填∠3+∠5=180°,∠4+∠6=180°中的一个条件.(4)从其他方面考虑,也可填∠1=∠8,∠2=∠7,∠1+∠7=180°,∠2+∠8=180°,∠4+∠7=180,∠3+∠8=180°,∠2+∠5=180°,∠1+∠6=180°中的任意一个条件,使a∥b.考点:平行线的判定。

专题:开放型。

分析:欲证a∥b,在图中发现a、b被一直线所截,可根据同位角相等、内错角相等、同旁内角互补两直线平行进行判定.解答:解:(1)从“同位角相等,两直线平行”考虑,可填∠1=∠5,∠2=∠6,∠3=∠7,∠4=∠8中的任意一个条件;(2)从“内错角相等,两直线平行”考虑,可填∠3=∠6,∠4=∠5中的任意一个;(3)从“同旁内角互补,两直线平行”考虑,可填∠3+∠5=180°,∠4+∠6=180°中的一个条件.(4)从其他方面考虑,也可填∠1=∠8,∠2=∠7,∠1+∠7=180°,∠2+∠8=180°,∠4+∠7=180,∠3+∠8=180°,∠2+∠5=180°,∠1+∠6=180°中的任意一个条件.点评:解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角.本题是一道探索性条件开放性题目,能有效地培养“执果索图”的思维方式与能力.11、(1999•黄冈)设a,b,l为平面内三条不同直线.①若a∥b,l⊥a,则l与b的位置关系是垂直;②若l⊥a,l⊥b,则a与b的位置关系是平行;③若a∥b,l∥a,则l与b的位置关系是平行.考点:平行线的判定;垂线。

分析:根据垂线及平行线的判定作答.解答:解:①根据如果一条直线和两条平行线中的一条垂直,那么它和另一条平行线也垂直,知l⊥b;②根据垂直于同一条直线的两直线平行,知a∥b;③根据平行于同一条直线的两直线平行,知l∥b.点评:本题主要考查了垂线及平行线的判定.12、如图,四边形ABCD中,BD为对角线,请你添加一个适当的条件∠ABD=∠BDC,使得AB∥CD成立.考点:平行线的判定。

专题:开放型。

分析:要使得AB∥CD成立,首先围绕截线找内错角,∠ABD与∠BDC是关于AB,CD的内错角,如果,∠ABD=∠BDC则满足内错角相等,两直线平行.解答:解:∵∠ABD=∠BDC,∴AB∥CD(内错角相等,两直线平行).点评:解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角.13、如图,要得到AB∥CD,只需要添加一个条件,这个条件可以是∠2=∠4(不唯一).(填一个你认为正确的条件即可)考点:平行线的判定。

专题:开放型。

分析:由图可知:直线AB、CD同时被直线AC所截,∠2与∠4是一对内错角,利用内错角相等,判断两直线平行.解答:解:∵∠2=∠4,∴AB∥CD(内错角相等,两直线平行).点评:本题考查了“内错角相等,两直线平行”这一判定定理.14、我们可以用直尺和三角尺画平行线,如图,在这一过程中,所用到的判断两直线平行的方法是同位角相等,两直线平行.考点:平行线的判定。

分析:由已知可知∠DPF=∠BMF,从而得出同位角相等,两直线平行.解答:解:∵∠DPF=∠BMF,∴AB∥CD(同位角相等,两直线平行).点评:正确理解题目的含义,是解决本题的关键.15、如图,BC平分∠DBA,∠1=∠2,填空:因为BC平分∠DBA,所以∠1=∠CBA,所以∠2=∠CBA,所以AB∥CD.考点:平行线的判定;角平分线的定义。

分析:由角平分线的性质可知∠1=∠CBA,由内错角相等,两直线平行可知AB∥CD.解答:解:∵BC平分∠DBA,∴∠1=∠CBA,又∵∠1=∠2,∴∠2=∠CBA,∴AB∥CD(内错角相等,两直线平行).点评:此题主要考查了角平分线的性质及内错角相等,两直线平行的判定定理.16、如图是由五个同样的三角形组成的图案,三角形的三个角分别为36°,72°,72°,则图中共有5对平行线.考点:平行线的判定。

相关文档
最新文档