2018年中考数学复习函数第13课时二次函数的图像及性质含近9年中考真题试题
2018年各省市中考数学试题分类汇编-二次函数的图象和性质 精品

2018中考数学分类汇编二次函数性质3一、选择题 1.(2018湖北鄂州)二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,下列结论①a 、b 异号;②当x =1和x=3时,函数值相等;③4a +b =0,④当y =4时,x 的取值只能为0.结论正确的个数有( ) 个 A .1 B.2 C.3 D.4【答案】C 2.(2018湖北省咸宁)已知抛物线2y ax bx c =++(a <0)过A (2-,0)、O (0,0)、B (3-,1y )、C (3,2y )四点,则1y 与2y 的大小关系是 A .1y >2y B .1y 2y = C .1y <2yD .不能确定 【答案】A 3.(2018北京) 将二次函数y =x 2-2x +3,化为y =(x -h )2+k 的形式,结果为( ) A .y =(x +1)2+4 B .y =(x -1)2+4 C .y =(x +1)2+2D . y =(x -1)2+2【答案】D4.(2018山东泰安)下列函数:①3y x =-;②21y x =-;③()10y x x=-<;④223y x x =-++,其中y 的值随x 值增大而增大的函数有( ) A 、4个 B 、3个 C 、2个 D 、1个 【答案】B 5.(2018四川乐山).设a 、b 是常数,且b >0,抛物线y=ax 2+bx +a 2-5a -6为下图中四个图象之一,则a 的值为( )A. 6或-1B. -6或1C. 6D. -1【答案】D6.(2018黑龙江哈尔滨)在抛物线42-=x y 上的一个点是( )(A )(4,4) (B )(1,-4) (C )(2,0) (D ).(0,4) 【答案】C 7.(2018江苏徐州)平面直角坐标系中,若平移二次函数y=(x-2009)(x-2018)+4的图象,使其与x 轴交于两点,且此两点的距离为1个单位,则平移方式为 A .向上平移4个单位 B .向下平移4个单位 C .向左平移4个单位 D .向右平移4个单位 【答案】B8.(2018陕西西安)已知抛物线103:2-==x x y C ,将抛物线C 平移得到抛物线C '若两条抛物线C 、C ' 关于直线1=x 对称,则下列平移方法中,正确的是A .将抛物线C 向右平移25个单位 B .将抛物线C 向右平移3个单位C .将抛物线C 向右平移5个单位D .将抛物线C 向右平移6个单位 【答案】C9.(2018 福建三明)抛物线772--=x kx y 的图象和x 轴有交点,则k 的取值范围是( )A .47-≥kB .47-≥k 且0≠kC .47->kD .47->k 且0≠k【答案】B10.(2018 山东东营) 二次函数2y ax bx c =++的图象如图所示,则一次函数ac bx y -=与反比例函数xcb a y +-=在同一坐标系内的图象大致为( )【答案】B11.12.13.14.15.16.17.18.19.20. 二、填空题1.(2018江苏扬州)y =2x 2-bx +3的对称轴是直线x =1,则b 的值为__________.xxx【答案】4 2.(2018山东泰安)将y=2x 2-12x-12变为y=a (x-m )2+n 的形式,则m·n= . 【答案】-903.(2018湖北襄樊)将抛物线212y x =-向上平移2个单位,再向右平移1个单位后,得到的抛物线的解析式为____________..【答案】21(1)22x --+或21322x x -++4.(2018江苏 镇江)已知实数y x y x x y x +=-++则满足,033,2的最大值为 . 【答案】45.6.7.8.9.10.11.12.13.14.15.16.17.18.19.20 三、解答题 1.(2018湖北鄂州)如图,在直角坐标系中,A (-1,0),B (0,2),一动点P 沿过B 点且垂直于AB 的射线BM 运动,P 点的运动速度为每秒1个单位长度,射线BM 与x 轴交与点C . (1)求点C 的坐标.(2)求过点A 、B 、C 三点的抛物线的解析式.(3)若P 点开始运动时,Q 点也同时从C 出发,以P 点相同的速度沿x 轴负方向向点A 运动,t 秒后,以P 、Q 、C 为顶点的三角形为等腰三角形.(点P 到点C 时停止运动,点Q 也同时停止运动)求t 的值. (4)在(2)(3)的条件下,当CQ =CP 时,求直线OP 与抛物线的交点坐标.【答案】(1)点C 的坐标是(4,0);(2)设过点A 、B 、C 三点的抛物线的解析式为y =ax 2+bx +c (a ≠0),将点A 、B 、C 三点的坐标代入得:020164a b c ca b c=-+⎧⎪=⎨⎪=++⎩解得12322a b c ⎧=-⎪⎪⎪=⎨⎪=⎪⎪⎩,∴抛物线的解析式是:y = 12-x 2+32x +2. (3)设P 、Q 的运动时间为t 秒,则BP =t ,CQ =t .以P 、Q 、C 为顶点的三角形为等腰三角形,可分三种情况讨论.①若CQ =PC ,如图所示,则PC = CQ =BP =t .∴有2t =BC =t ②若PQ =QC ,如图所示,过点Q 作DQ ⊥BC 交CB 于点D ,则有CD =PD .由△ABC ∽△QDC ,可得出PD =CD =5,∴5t =,解得t =4011-.③若PQ =PC ,如图所示,过点P 作PE ⊥AC 交AC 于点E ,则EC =QE PC ,∴12t t ),解得t =(4)当CQ =PC 时,由(3)知t P 的坐标是(2,1),∴直线OP 的解析式是:y =12x ,因而有12x =12-x 2+32x +2,即x 2-2x -4=0,解得x =1直线OP 与抛物线的交点坐标为()和(. 2.(2018湖北省咸宁)已知二次函数2y x bx c =+-的图象与x 轴两交点的坐标分别为(m ,0),(3m -,0)(0m ≠).(1)证明243c b =;(2)若该函数图象的对称轴为直线1x =,试求二次函数的最小值.【答案】(1)证明:依题意,m ,3m -是一元二次方程20x bx c +-=的两根.根据一元二次方程根与系数的关系,得(3)m m b +-=-,(3)m m c ⨯-=-. ∴2b m =,23c m =. ∴224312c b m ==. (2)解:依题意,12b -=,∴2b =-.由(1)得2233(2)344c b ==⨯-=.∴2223(1)4y x x x =--=--.∴二次函数的最小值为4-.3.(2018湖北恩施自治州) 如图,在平面直角坐标系中,二次函数c bx x y ++=2的图象与x 轴交于A 、B 两点, A 点在原点的左侧,B 点的坐标为(3,0),与y 轴交于C (0,-3)点,点P 是直线BC 下方的抛物线上一动点. (1)求这个二次函数的表达式.(2)连结PO 、PC ,并把△POC 沿CO 翻折,得到四边形POP /C , 那么是否存在点P ,使四边形POP /C 为菱形?若存在,请求出此时点P 的坐标;若不存在,请说明理由.(3)当点P 运动到什么位置时,四边形 ABPC 的面积最大并求出此时P 点的坐标和四边形ABPC 的最大面积.【答案】解:(1)将B 、C 两点的坐标代入得⎩⎨⎧-==+303c c b解得:⎩⎨⎧-=-=32c b所以二次函数的表达式为:322--=x x y(2)存在点P ,使四边形POP /C 为菱形.设P 点坐标为(x ,322--x x ), PP /交CO 于E若四边形POP /C 是菱形,则有PC =PO .连结PP / 则PE ⊥CO 于E ,∴OE=EC =23∴y =23-.∴322--x x =23-解得1x =2102+,2x =2102-(不合题意,舍去) ∴P 点的坐标为(2102+,23-)…………………………8分 (3)过点P 作y 轴的平行线与BC 交于点Q ,与OB 交于点F ,设P (x ,322--x x ),易得,直线BC 的解析式为3-=x y则Q 点的坐标为(x ,x -3). EB QP OE QP OC AB S S S S CPQ BPQ ABC ABPC ⋅+⋅+⋅=++=∆∆∆212121四边形3)3(2134212⨯+-+⨯⨯=x x =87523232+⎪⎭⎫ ⎝⎛--x当23=x 时,四边形ABPC 的面积最大 此时P 点的坐标为⎪⎭⎫⎝⎛-415,23,四边形ABPC 的面积875的最大值为. 4.(2018北京)在平面直角坐标系xOy 中,抛物线23454122+-++--=m x x mx m y 与x 轴的交点分别为原点O 和点A ,点B (2,n )在这条抛物线上. (1)求B 点的坐标;(2)点P 在线段OA 上,从O 点出发向A 点运动,过P 点作x 轴的垂线,与直线OB 交与点E ,延长PE 到点D ,使得ED =PE ,以PD 为斜边,在PD 右侧做等等腰直角三角形PCD (当P 点运动时,C 点、D 点也随之运动). ① 当等腰直角三角形PCD 的顶点C 落在此抛物线上时,求OP 的长; ② 若P 点从O 点出发向A 点作匀速运动,速度为每秒1个单位,同时线段OA 上另一个点Q 从A 点出发向O 点作匀速运动,速度为每秒2个单位(当Q 点到达O 点时停止运动,P 点也同时停止运动).过Q 点做x 轴的垂线,与直线AB 交与点F ,延长QF 到点M ,使得FM =QF ,以QM 为斜边,在QM 的左侧作等腰直角三角形QMN (当Q 点运动时,M 点、NP 点运动到t 直线上,求此刻t 的值.【答案】解:(1)∵抛物线23454122+-++--=m m x mx m y 经过原点, ∴m 2—3m +2=0. 解的m 1=1,m 2=2. 由题意知m ≠1. ∴m =2,∴抛物线的解析式为x x y 25412+-=∵点B (2,n )在抛物线x x y 25412+-=,n=4.∴B 点的坐标为(2,4)(2)①设直线OB 的解析式为y =k 1x 求得直线OB 的解析式y =2x(第24题)∵A 点是抛物线与x 轴的一个交点, 可求得A 点的坐标为(10,0),设P 点的坐标为(a ,0),则E 点的坐标为(a ,2a ). 根据题意做等腰直角三角形PCD ,如图1.可求得点C 的坐标为(3a ,2a ), 有C 点在抛物线上,得2a =-41x (3a )2+25x 3a .即49a 2— 211a =0解得 a 1=922,a 2=0(舍去)∴OP =922②依题意作等腰直角三角形QMN . 设直线AB 的解析式y =k 2x +b由点A (10 ,0),点B (2,4),求得直线AB 的解析式为y =-21x +5 当P 点运动到t 秒时,两个等腰直角三角形分别有一条边恰好落在同一条直线上,有以下三种情况:第一种情况:CD 与NQ 在同一条直线上,如图2所示,可证△DPQ 为等腰直角三角形.此时QP 、OP 、AQ 的长可依次表示为t 、4t 、2t 个单位. ∴PQ = DP = 4t ∴t +4t +2t =10∴t=710 第二种情况:PC 与MN 在同一条直线上,如图3所示.可证△PQM 为等腰直角三角形.此时OP 、AQ 的长依次表示为t 、2t 个单位, ∴OQ = 10 - 2t ∵F 点在直线AB 上 ∴FQ =t ∵MQ =2t ∴PQ =MQ =CQ =2t ∴t +2t +2t =10 ∴t =2.第三种情况:点P 、Q 重合时,PD 、QM 在同一条直线上,如图4所示,此时OP 、AQ 的长依次表示为t 、2t 个单位.∴t +2t=10∴t =310综上,符合题意的值分别为710,2,310. 5.(2018云南红河哈尼族彝族自治州)二次函数2x y 的图像如图8所示,请将此图像向右平移1个单位,再向下平移2个单位.(1)画出经过两次平移后所得到的图像,并写出函数的解析式. (2)求经过两次平移后的图像与x 轴的交点坐标,指出当x 满足什么条件时,函数值大于0?【答案】解:画图如图所示: 依题意得:2)1(2--=x y =2122-+-x x =122--x x∴平移后图像的解析式为:122--x x (2)当y=0时,122--x x =0 2)1(2=-x 21±=-x212121+=-=x x ,∴平移后的图像与x 轴交与两点,坐标分别为(21-,0)和(21+,0) 由图可知,当x<21-或x>21+时,二次函数2)1(2--=x y 的函数值大于0. 6.(2018云南楚雄)已知:如图,抛物线2y ax bx c =++与x 轴相交于两点A (1,0),B (3,0).与y 轴相较于点C (0,3).(1)求抛物线的函数关系式;(2)若点D (7,2m )是抛物线2y ax bx c =++上一点,请求出m 的值,并求处此时△ABD 的面积.【答案】解:(1)由题意可知09303a b c a b c c ++=⎧⎪++=⎨⎪=⎩ 解得143a b c =⎧⎪=-⎨⎪=⎩所以抛物线的函数关系式为243y x x =-+. (2)把D (7,2m )代人函数解析式243y x x =-+中,得2775()43224m =-⨯+=. 所以155(31)244ABD S ∆=⨯-⨯=.7.(2018湖北随州)已知抛物线2(0)y ax bx c a =++≠顶点为C (1,1)且过原点O.过抛物线上一点P (x ,y )向直线54y =作垂线,垂足为M ,连FM (如图). (1)求字母a ,b ,c 的值;(2)在直线x =1上有一点3(1,)4F ,求以PM 为底边的等腰三角形PFM 的P 点的坐标,并证明此时△PFM 为正三角形;(3)对抛物线上任意一点P ,是否总存在一点N (1,t ),使PM =PN 恒成立,若存在请求出t 值,若不存在请说明理由.【答案】(1)a =-1,b =2,c =0(2)过P 作直线x=1的垂线,可求P 的纵坐标为14,横坐标为1+此时,MP =MF =PF =1,故△MPF 为正三角形.(3)不存在.因为当t <54,x <1时,PM 与PN 不可能相等,同理,当t >54,x>1时,PM 与PN 不可能相等. 8.(2018河南)在平面直角坐标系中,已知抛物线经过A(4,0),B(0,一4),C(2,0)三点.(1)求抛物线的解析式;(2)若点M 为第三象限内抛物线上一动点,点M 的横坐标为m ,△AMB 的面积为S.求S 关于m 的函数关系式,并求出S 的最大值;(3)若点P 是抛物线上的动点,点Q 是直线y=-x 上的动点,判断有几个位置能使以点P 、Q 、B 、0为顶点的四边形为平行四边形,直接写出相应的点Q 的坐标.【答案】(1)设抛物线的解析式为y =ax 2+bx +c (a ≠0),则有1640,4,420.a b c c a b c -+=⎧⎪=-⎨⎪++=⎩解得1,21,4.a b c ⎧=⎪⎪=⎨⎪=-⎪⎩ ∴抛物线的解析式y =12x 2+x ﹣4(2)过点M 作MD ⊥x 轴于点D .设M 点的坐标为(m ,n ).则AD =m +4,MD =﹣n ,n =12m 2+m -4 .∴S = S △AMD +S 梯形DMBO -S △ABO= 12( m +4) (﹣n )+12(﹣n +4) (﹣m ) -12³4³4= ﹣2n -2m -8= ﹣2(12m 2+m -4) -2m -8= ﹣m 2-4m (-4< m < 0)∴S 最大值 = 4(3)满足题意的Q 点的坐标有四个,分别是:(-4 ,4 ),(4 ,-4), (-2+2-,(-2-2+9.(2018四川乐山)如图(13.1),抛物线y =x2+bx+c 与x 轴交于A ,B 两点,与y 轴交于点C(0,2),连接AC ,若tan ∠OAC =2. (1)求抛物线对应的二次函数的解析式;(2)在抛物线的对称轴l 上是否存在点P ,使∠APC =90°,若存在,求出点P 的坐标;若不存在,请说明理由;(3)如图(13.2)所示,连接BC ,M 是线段BC 上(不与B 、C 重合)的一个动点,过点M 作直线l ′∥l ,交抛物线于点N ,连接CN 、BN ,设点M 的横坐标为t .当t 为何值时,△BCN 的面积最大?最大面积为多少?【答案】解:(1)∵抛物线y=x 2+bx +c 过点C(0,2). ∴x=2 又∵tan ∠OAC=OCOA=2, ∴OA=1,即A(1,0). 又∵点A 在抛物线y=x 2+bx +2上. ∴0=12+b ³1+2,b=-3 ∴抛物线对应的二次函数的解析式为y=x 2-3x +2 (2)存在过点C 作对称轴l 的垂线,垂足为D,如图所示, ∴x=-332212b a -=-=⨯.∴AE=OE-OA=32-1=12,∵∠APC=90°, ∴tan ∠PAE= tan ∠CPD ∴PE CD EA DP =,即12PE 322PE =-,解得PE=12或PE=32, ∴点P 的坐标为(32,12)或(32,32)。
2018中考数学真题复习 二次函数中考真题大题系列加详解(PDF版)

二次函数中考真题系列1.如图,矩形OABC 的两边在坐标轴上,点A 的坐标为(10,0),抛物线y=ax2+bx+4 过点B,C 两点,且与x 轴的一个交点为D(﹣2,0),点P 是线段CB 上的动点,设CP=t(0<t<10).(1)请直接写出B、C 两点的坐标及抛物线的解析式;(2)过点P 作PE⊥BC,交抛物线于点E,连接BE,当t 为何值时,∠PBE 和Rt △OCD 中的一个角相等??(3)点Q 是x 轴上的动点,过点P 作PM∥BQ,交CQ 于点M,作PN∥CQ,交BQ 于点N,当四边形PMQN 为正方形时,求t 的值为.2.如图①,抛物线y=ax2+bx+3(a≠0)与x 轴交于点A(﹣1,0),B(3,0),与y 轴交于点C,连接BC.(1)求抛物线的表达式;(2)抛物线上是否存在点M,使得△MBC 的面积与△OBC 的面积相等,若存在,请直接写出点M 的坐标;若不存在,请说明理由;(3)点D(2,m)在第一象限的抛物线上,连接BD.在对称轴左侧的抛物线上是否存在一点P,满足∠PBC=∠DBC?如果存在,请求出点P 的坐标;如果不存在,请说明理由.3.抛物线y=﹣x+3 与x 轴交于A、B 两点,与y 轴交于点C,连接BC.(1)如图1,求直线BC 的表达式;(2)如图1,点P 是抛物线上位于第一象限内的一点,连接PC,PB,当△PCB 面积最大时,一动点Q 从点P 从出发,沿适当路径运动到y 轴上的某个点G 再沿适当路径运动到x 轴上的某个点H 处,最后到达线段BC 的中点F 处停止.求当△PCB 面积最大时,点P 的坐标及点Q 在整个运动过程中经过的最短路径的长;(3)如图2,在(2)的条件下,当△PCB 面积最大时,把抛物线y=﹣x+3 向右平移使它的图象经过点P,得到新抛物线y',在新抛物线y'上是否存在点E,使△ECB 的面积等于△PCB 的面积.若存在,请求出点E 的坐标;若不存在,请说明理由.4.如图,直线l:y=﹣x+1 与x 轴、y 轴分别交于点B、C,经过B、C 两点的抛物线y=x2+bx+c 与x 轴的另一个交点为A.(1)求该抛物线的解析式;(2)若点P 在直线l 下方的抛物线上,过点P 作PD∥x 轴交l 于点D,PE∥y 轴交l 于点E,求PD+PE 的最大值;(3)设F 为直线l 上的点,以A、B、P、F 为顶点的四边形能否构成平行四边形?若能,求出点F 的坐标;若不能,请说明理由.。
2018年中考数学真题分类汇编第二期专题13二次函数试题含解析

二次函数一.选择题1. (2018·湖北随州·3分)如图所示,已知二次函数y=ax2+bx+c的图象与x轴交于A.B两点,与y轴交于点C对称轴为直线x=1.直线y=﹣x+c与抛物线y=ax2+bx+c交于C.D两点,D点在x轴下方且横坐标小于3,则下列结论:①2a+b+c>0;②a﹣b+c<0;③x(ax+b)≤a+b;④a<﹣1.其中正确的有()A.4个B.3个C.2个D.1个【分析】利用抛物线与y轴的交点位置得到c>0,利用对称轴方程得到b=﹣2a,则2a+b+c=c>0,于是可对①进行判断;利用抛物线的对称性得到抛物线与x轴的另一个交点在点(﹣1,0)右侧,则当x=﹣1时,y <0,于是可对②进行判断;根据二次函数的性质得到x=1时,二次函数有最大值,则ax2+bx+c≤a+b+c,于是可对③进行判断;由于直线y=﹣x+c与抛物线y=ax2+bx+c交于C.D两点,D点在x轴下方且横坐标小于3,利用函数图象得x=3时,一次函数值比二次函数值大,即9a+3b+c<﹣3+c,然后把b=﹣2a代入解a的不等式,则可对④进行判断.【解答】解:∵抛物线与y轴的交点在x轴上方,∴c>0,∵抛物线的对称轴为直线x=﹣=1,∴b=﹣2a,∴2a+b+c=2a﹣2a+c=c>0,所以①正确;∵抛物线与x轴的一个交点在点(3,0)左侧,而抛物线的对称轴为直线x=1,∴抛物线与x轴的另一个交点在点(﹣1,0)右侧,∴当x=﹣1时,y<0,∴a﹣b+c<0,所以②正确;∵x=1时,二次函数有最大值,∴ax2+bx+c≤a+b+c,∴ax2+bx≤a+b,所以③正确;∵直线y=﹣x+c与抛物线y=ax2+bx+c交于C.D两点,D点在x轴下方且横坐标小于3,∴x=3时,一次函数值比二次函数值大,即9a+3b+c<﹣3+c,而b=﹣2a,∴9a﹣6a<﹣3,解得a<﹣1,所以④正确.故选:A.【点评】本题考查了二次函数与不等式(组):利用两个函数图象在直角坐标系中的上下位置关系求自变量的取值范围,可作图利用交点直观求解.也考查了二次函数图象与系数的关系.2. (2018·湖北襄阳·3分)已知二次函数y=x2﹣x+m﹣1的图象与x轴有交点,则m的取值范围是()A.m≤5 B.m≥2 C.m<5 D.m>2【分析】根据已知抛物线与x轴有交点得出不等式,求出不等式的解集即可.【解答】解:∵二次函数y=x2﹣x+m﹣1的图象与x轴有交点,∴△=(﹣1)2﹣4×1×(m﹣1)≥0,解得:m≤5,故选:A.【点评】本题考查了抛物线与x轴的交点,能根据题意得出关于m的不等式是解此题的关键.3.(2018•山东东营市•3分)如图所示,已知△ABC中,BC=12,BC边上的高h=6,D为BC上一点,EF∥BC,交AB于点E,交AC于点F,设点E到边BC的距离为x.则△DEF的面积y关于x的函数图象大致为()A.B.C.D.【分析】可过点A向BC作AH⊥BC于点H,所以根据相似三角形的性质可求出EF,进而求出函数关系式,由此即可求出答案.【解答】解:过点A向BC作AH⊥BC于点H,所以根据相似比可知:=,即EF=2(6﹣x)所以y=×2(6﹣x)x=﹣x2+6x.(0<x<6)该函数图象是抛物线的一部分,故选:D.【点评】此题考查根据几何图形的性质确定函数的图象和函数图象的读图能力.要能根据几何图形和图形上的数据分析得出所对应的函数的类型和所需要的条件,结合实际意义画出正确的图象.4.(2018•山东烟台市•3分)如图,二次函数y=ax2+bx+c的图象与x轴交于点A(﹣1,0),B(3,0).下列结论:①2a﹣b=0;②(a+c)2<b2;③当﹣1<x<3时,y<0;④当a=1时,将抛物线先向上平移2个单位,再向右平移1个单位,得到抛物线y=(x﹣2)2﹣2.其中正确的是()A.①③ B.②③ C.②④ D.③④【分析】根据二次函数图象与系数之间的关系即可求出答案.【解答】解:①图象与x轴交于点A(﹣1,0),B(3,0),∴二次函数的图象的对称轴为x==1∴=1∴2a+b=0,故①错误;②令x=﹣1,∴y=a﹣b+c=0,∴a+c=b,∴(a+c)2=b2,故②错误;③由图可知:当﹣1<x<3时,y<0,故③正确;④当a=1时,∴y=(x+1)(x﹣3)=(x﹣1)2﹣4将抛物线先向上平移2个单位,再向右平移1个单位,得到抛物线y=(x﹣1﹣1)2﹣4+2=(x﹣2)2﹣2,故④正确;故选:D.【点评】本题考查二次函数图象的性质,解题的关键是熟知二次函数的图象与系数之间的关系,本题属于中等题型.5.(2018•上海•4分)下列对二次函数y=x2﹣x的图象的描述,正确的是()A.开口向下 B.对称轴是y轴C.经过原点 D.在对称轴右侧部分是下降的【分析】A.由a=1>0,可得出抛物线开口向上,选项A不正确;B.根据二次函数的性质可得出抛物线的对称轴为直线x=,选项B不正确;C.代入x=0求出y值,由此可得出抛物线经过原点,选项C正确;D.由a=1>0及抛物线对称轴为直线x=,利用二次函数的性质,可得出当x>时,y随x值的增大而增大,选项D不正确.综上即可得出结论.【解答】解:A.∵a=1>0,∴抛物线开口向上,选项A不正确;B.∵﹣=,∴抛物线的对称轴为直线x=,选项B不正确;C.当x=0时,y=x2﹣x=0,∴抛物线经过原点,选项C正确;D.∵a>0,抛物线的对称轴为直线x=,∴当x>时,y随x值的增大而增大,选项D不正确.故选:C.【点评】本题考查了二次函数的性质以及二次函数的图象,利用二次函数的性质逐一分析四个选项的正误是解题的关键.6.(2018•达州•3分)如图,二次函数y=ax2+bx+c的图象与x轴交于点A(﹣1,0),与y轴的交点B在(0,2)与(0,3)之间(不包括这两点),对称轴为直线x=2.下列结论:①abc<0;②9a+3b+c>0;③若点M(,y1),点N(,y2)是函数图象上的两点,则y1<y2;④﹣<a<﹣.其中正确结论有()A.1个B.2个C.3个D.4个【分析】根据二次函数的图象与系数的关系即可求出答案.【解答】解:①由开口可知:a<0,∴对称轴x=>0,∴b>0,由抛物线与y轴的交点可知:c>0,∴abc<0,故①正确;②∵抛物线与x轴交于点A(﹣1,0),对称轴为x=2,∴抛物线与x轴的另外一个交点为(5,0),∴x=3时,y>0,∴9a+3b+c>0,故②正确;③由于<2,且(,y2)关于直线x=2的对称点的坐标为(,y2),∵,∴y1<y2,故③正确,④∵=2,∴b=﹣4a,∵x=﹣1,y=0,∴a﹣b+c=0,∴c=﹣5a,∵2<c<3,∴2<﹣5a<3,∴﹣<a<﹣,故④正确故选:D.【点评】本题考查二次函数的图象与性质,解题的关键是熟练运用图象与系数的关系,本题属于中等题型.7.(2018•遂宁•4分)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则以下结论同时成立的是()A.B.C.D.【分析】利用抛物线开口方向得到a>0,利用抛物线的对称轴在直线x=1的右侧得到b<0,b<﹣2a,即b+2a <0,利用抛物线与y轴交点在x轴下方得到c<0,也可判断abc>0,利用抛物线与x轴有2个交点可判断b2﹣4ac>0,利用x=1可判断a+b+c<0,利用上述结论可对各选项进行判断.【解答】解:∵抛物线开口向上,∴a>0,∵抛物线的对称轴在直线x=1的右侧,∴x=﹣>1,∴b<0,b<﹣2a,即b+2a<0,∵抛物线与y轴交点在x轴下方,∴c<0,∴abc>0,∵抛物线与x轴有2个交点,∴△=b2﹣4ac>0,∵x=1时,y<0,∴a+b+c<0.故选:C.【点评】本题考查了二次函数图象与系数的关系:二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a 与b同号时,对称轴在y轴左;当a与b异号时,对称轴在y轴右.常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c).抛物线与x轴交点个数由判别式确定:△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.8. (2018•资阳•3分)已知二次函数y=ax2+bx+c的图象如图所示,OA=OC,则由抛物线的特征写出如下含有A.B.c三个字母的等式或不等式:①=﹣1;②ac+b+1=0;③abc>0;④a﹣b+c>0.其中正确的个数是()A.4个B.3个C.2个D.1个【分析】此题可根据二次函数的性质,结合其图象可知:a>0,﹣1<c<0,b<0,再对各结论进行判断.【解答】解:①=﹣1,抛物线顶点纵坐标为﹣1,正确;②ac+b+1=0,设C(0,c),则OC=|c|,∵OA=OC=|c|,∴A(c,0)代入抛物线得ac2+bc+c=0,又c≠0,∴ac+b+1=0,故正确;③abc>0,从图象中易知a>0,b<0,c<0,故正确;④a﹣b+c>0,当x=﹣1时y=a﹣b+c,由图象知(﹣1,a﹣b+c)在第二象限,∴a﹣b+c>0,故正确.故选:A.【点评】本题考查了二次函数的性质,重点是学会由函数图象得到函数的性质.9. (2018•杭州•3分)四位同学在研究函数(b,c是常数)时,甲发现当时,函数有最小值;乙发现是方程的一个根;丙发现函数的最小值为3;丁发现当时,.已知这四位同学中只有一位发现的结论是错误的,则该同学是()A. 甲B.乙 C. 丙 D. 丁【答案】B【考点】二次函数图象与系数的关系,二次函数的最值【解析】【解答】解:根据题意得:抛物线的顶点坐标为:(1,3)且图像经过(2,4)设抛物线的解析式为:y=a(x-1)2+3∴a+3=4解之:a=1∴抛物线的解析式为:y=(x-1)2+3=x2-2x+4当x=-1时,y=7,∴乙说法错误故答案为:B【分析】根据甲和丙的说法,可知抛物线的顶点坐标,再根据丁的说法,可知抛物线经过点(2,4),因此设函数解析式为顶点式,就可求出函数解析式,再对乙的说法作出判断,即可得出答案。
2018年 九年级数学 上册 二次函数 图像性质(含答案)

2018年九年级数学上册二次函数图像性质一、选择题:1.对于y=ax2+bx+c,有以下四种说法,其中正确的是( )A.当b=0时,二次函数是y=ax2+cB.当c=0时,二次函数是y=ax2+bxC.当a=0时,一次函数是y=bx+cD.以上说法都不对2.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列说法错误的是()A.图象关于直线x=1对称B.函数y=ax2+bx+c(a≠0)的最小值是-4C.-1和3是方程ax2+bx+c=0(a≠0)的两个根D.当x<1时,y随x的增大而增大3.二次函数y=-x2+bx+c的图象如图所示:若点A(x1,y1),B(x2,y2)在此函数图象上,且x1<x2<1,则y1与y2的大小关系是( )A.y1≤y2B.y1<y2C.y1≥y2D.y1>y24.若二次函数y=x2+bx+5配方后为y=(x-2)2+k,则b,k的值分别为( )A.0,5B.0,1C.-4,5D.-4,15.抛物线y=﹣x2+4x﹣4的对称轴是()A.x=﹣2 B.x=2 C.x=4 D.x=﹣46.二次函数y=a(x+k)2+k(a≠0),无论k取何值,其图象的顶点都在( )A.直线y=x上B.直线y=-x上C.x轴上D.y轴上7.已知一个直角三角形两直角边的和为10,设其中一条直角边为x,则直角三角形的面积y与x之间的函数关系式是( )A.y=-0.5x2+5xB.y=-x2+10xC.y=0.5x2+5xD.y=x2+10x8.抛物线y=2(x+3)2+1的顶点坐标是()A.(3,1)B.(3,﹣1)C.(﹣3,1)D.(﹣3,﹣1)9.二次函数y=ax2+bx+c上部分点的坐标满足下表:A.(-3,-3)B.(-2,-2)C.(-1, -3)D.(0,-6)10.二次函数y=x2+2x-7的函数值是8,那么对应的x的值是( )A.5B.3C.3或-5D.-3或511.二次函数y=x2+2x-3的开口方向、顶点坐标分别是()A.开口向上,顶点坐标为(-1,-4)B.开口向下,顶点坐标为(1,4)C.开口向上,顶点坐标为(1,4)D.开口向下,顶点坐标为(-1,﹣4)12.点P1(-1,y1),P2(3,y2),P3(5,y3)均在二次函数y=-x2+2x+c的图象上,则y1,y2,y3的大小关系是( )A.y3>y2>y1B.y3>y1=y2C.y1>y2>y3D.y1=y2>y3二、填空题:13.二次函数y=x2-3x+2的图像与x轴的交点坐标是 ,与y轴的交点坐标为14.抛物线y=-4x2+8x-3的开口方向向,对称轴是,最高点的坐标是,函数值得最大值是。
2018数学中考专题之二次函数解析式(含答案)

中考专题之二次函数的解析式二次函数是初中数学中考题的一个重要内容,而熟练地求出二次函数的解析式是解决其他二次函数问题的重要保证。
二次函数的定义:二次函数的解析式有三种基本形式:1、一般式:)0(2≠++=a c bx ax y 。
2、顶点式:y=a(x -h)2+k (a ≠0),其中点(h ,k)为顶点,对称轴为直线x=h 。
3、交点式(两根式):y=a(x -x 1)(x -x 2) (a ≠0),其中x 1,x 2是抛物线与x 轴的交点的横坐标。
求二次函数的解析式一般用待定系数法,但要根据不同条件,设出恰当的解析式:1、若给出抛物线上任意三点,通常可设一般式。
2、若给出抛物线的顶点坐标或对称轴或最值,通常可设顶点式。
3、若给出抛物线与x 轴的交点或对称轴或与x 轴的交点距离,通常可设交点式。
常见题型:一、根据定义求值例1、若1222)(--+=m m x m m y 是二次函数,则m=_____________提醒:一定要注意二次项系数不为0。
二、开放性例2、经过点A (0,3)的抛物线解析式为____________________提示:这种题目,最好设最简单的解析式2ax y =三、平移型例3:将253212++=x x y 的图象是由221x y =怎样平移得到的? 提示:这类平衡问题,由于平移时,抛物线上任何一点平移的方向距离都相同,所以解决这类问题一般观察特殊点(比如顶点),根据特殊点的平移情况来判断平移情况。
四、压轴题中求解析式举例例4、抛物线过过A(-2,0)、B (-3,3)及原点O ,求抛物线的解析式。
分析:此三点不是特殊点,所以用待定系数法直接代入即可。
例5、已知)0(12≠++=a bx ax y 过点A (0,21-)、B (2,0),求函数解析式。
分析:此解析式含两个未知系数,所以将两个点代入得到二元一次方程组可求出解析式;但同时,我们观察出,这两个点比较特殊,是与x 轴的两个交点,所以可以采用交点式求解。
【2018中考数学真题+分类汇编】三期13二次函数试题含解析3105【2018数学中考真题分项汇编系列】

二次函数一.选择题1.(2018·四川省攀枝花·3分)抛物线y=x2﹣2x+2的顶点坐标为()A.(1,1)B.(﹣1,1)C.(1,3)D.(﹣1,3)解:∵y=x2﹣2x+2=(x﹣1)2+1,∴顶点坐标为(1,1).故选A.2.(2018·辽宁省阜新市)如图,抛物线y=ax2+bx+c交x轴于点(﹣1,0)和(4,0),那么下列说法正确的是()A.ac>0 B.b2﹣4ac<0C.对称轴是直线x=2.5 D.b>0【解答】解:A.∵抛物线开口向下,∴a<0.∵抛物线与y轴交在正半轴上,∴c>0,∴ac<0,故此选项错误;B.∵抛物线与x轴有2个交点,∴b2﹣4ac>0,故此选项错误;C.∵抛物线y=ax2+bx+c交x轴于点(﹣1,0)和(4,0),∴对称轴是直线x=1.5,故此选项错误;D.∵a<0,抛物线对称轴在y轴右侧,∴a,b异号,∴b>0,故此选项正确.故选D.3.(2018·辽宁省抚顺市)(3.00分)已知抛物线y=ax2+bx+c(0<2a≤b)与x轴最多有一个交点.以下四个结论:①abc>0;②该抛物线的对称轴在x=﹣1的右侧;③关于x的方程ax2+bx+c+1=0无实数根;④≥2.其中,正确结论的个数为()A.1个B.2个C.3个D.4个【分析】根据抛物线的系数与图象的关系即可求出答案.【解答】解:①∵抛物线y=ax2+bx+c(0<2a≤b)与x轴最多有一个交点,∴抛物线与y轴交于正半轴,∴c>0,∴abc>0.故正确;②∵0<2a≤b,∴>1,∴﹣<﹣1,∴该抛物线的对称轴在x=﹣1的左侧.故错误;③由题意可知:对于任意的x,都有y=ax2+bx+c≥0,∴ax2+bx+c+1≥1>0,即该方程无解,故正确;④∵抛物线y=ax2+bx+c(0<2a≤b)与x轴最多有一个交点,∴当x=﹣1时,y>0,∴a﹣b+c>0,∴a+b+c≥2b,∵b>0,∴≥2.故正确.综上所述,正确的结论有3个.故选:C.【点评】本题考查二次函数的图象与性质,解题的关键是熟练运用二次函数的图象与系数的关系,本题属于中等题型.4. (2018•乐山•3分)二次函数y=x2+(a﹣2)x+3的图象与一次函数y=x(1≤x≤2)的图象有且仅有一个交点,则实数a的取值范围是()A.a=3±2B.﹣1≤a<2C.a=3或﹣≤a<2 D.a=3﹣2或﹣1≤a<﹣解:由题意可知:方程x2+(a﹣2)x+3=x在1≤x≤2上只有一个解,即x2+(a﹣3)x+3=0在1≤x≤2上只有一个解,当△=0时,即(a﹣3)2﹣12=0a=3±2当a=3+2时,此时x=﹣,不满足题意,当a=3﹣2时,此时x=,满足题意,当△>0时,令y=x2+(a﹣3)x+3,令x=1,y=a+1,令x=2,y=2a+1(a+1)(2a+1)≤0解得:﹣1≤a≤,当a=﹣1时,此时x=1或3,满足题意;当a=﹣时,此时x=2或x=,不满足题意.综上所述:a=3﹣2或﹣1≤a<.故选D.5. (2018•广安•3分)抛物线y=(x﹣2)2﹣1可以由抛物线y=x2平移而得到,下列平移正确的是()A.先向左平移2个单位长度,然后向上平移1个单位长度B.先向左平移2个单位长度,然后向下平移1个单位长度C.先向右平移2个单位长度,然后向上平移1个单位长度D.先向右平移2个单位长度,然后向下平移1个单位长度【分析】抛物线平移问题可以以平移前后两个解析式的顶点坐标为基准研究.【解答】解:抛物线y=x2顶点为(0,0),抛物线y=(x﹣2)2﹣1的顶点为(2,﹣1),则抛物线y=x2向右平移2个单位,向下平移1个单位得到抛物线y=(x﹣2)2﹣1的图象.故选:D.【点评】本题考查二次函数图象平移问题,解答时最简单方法是确定平移前后的抛物线顶点,从而确定平移方向.6. (2018•莱芜•3分)函数y=ax2+2ax+m(a<0)的图象过点(2,0),则使函数值y<0成立的x的取值范围是()A.x<﹣4或x>2 B.﹣4<x<2 C.x<0或x>2 D.0<x<2【分析】先求出抛物线的对称轴方程,再利用抛物线的对称性得到抛物线与x轴的另一个交点坐标为(﹣4,0),然后利用函数图象写出抛物线在x轴下方所对应的自变量的范围即可.【解答】解:抛物线y=ax2+2ax+m得对称轴为直线x=﹣=﹣1,而抛物线与x轴的一个交点坐标为(2,0),∴抛物线与x轴的另一个交点坐标为(﹣4,0),∵a<0,∴抛物线开口向下,∴当x<﹣4或x>2时,y<0.故选:A.【点评】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a ≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.7. (2018•陕西•3分)对于抛物线y=ax2+(2a-1)x+a-3,当x=1时,y>0,则这条抛物线的顶点一定在A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】C【解析】【分析】先由题意得到关于a的不等式,解不等式求出a的取值范围,然后再确定抛物线的顶点坐标的取值范围,据此即可得出答案.【详解】由题意得:a+(2a-1)+a-3>0,解得:a>1,∴2a-1>0,∴<0,,∴抛物线的顶点在第三象限,故选C.【点睛】本题考查了抛物线的顶点坐标公式,熟知抛物线的顶点坐标公式是解题的关键.二.填空题1. (2018·广西贺州·3分)某种商品每件进价为20元,调查表明:在某段时间内若以每件x元(20≤x≤30,且x为整数)出售,可卖出(30﹣x)件,若使利润最大,则每件商品的售价应为元.【解答】解:设利润为w元,则w=(x﹣20)(30﹣x)=﹣(x﹣25)2+25,∵20≤x≤30,∴当x=25时,二次函数有最大值25,故答案是:25.2.(2018·辽宁省沈阳市)(3.00分)如图,一块矩形土地ABCD由篱笆围着,并且由一条与CD边平行的篱笆EF分开.已知篱笆的总长为900m(篱笆的厚度忽略不计),当AB= 150 m时,矩形土地ABCD的面积最大.【分析】根据题意可以用相应的代数式表示出矩形绿地的面积;即可解答本题.【解答】解:(1)设AB=xm,则BC=(900﹣3x),由题意可得,S=AB×BC=x×(900﹣3x)=﹣(x2﹣300x)=﹣(x﹣150)2+33750∴当x=150时,S取得最大值,此时,S=33750,∴AB=150m,故答案为:150.【点评】本题考查二次函数的应用,解答本题的关键是明确题意,列出相应的函数关系式,利用二次函数的顶点式求函数的最值.3. (2018•广安•3分)已知二次函数y=ax2+bx+c的图象如图所示,对称轴为直线x=1,则下列结论正确的有②③.①abc>0②方程ax2+bx+c=0的两个根是x1=﹣1,x2=3③2a+b=0④当x>0时,y随x的增大而减小【分析】由函数图象可得抛物线开口向下,得到a<0,又对称轴在y轴右侧,可得b>0,根据抛物线与y轴的交点在y轴正半轴,得到c>0,进而得到abc<0,结论①错误;由抛物线与x轴的交点为(3,0)及对称轴为x=1,利用对称性得到抛物线与x轴另一个交点为(﹣1,0),进而得到方程ax2+bx+c=0的两根分别为﹣1和3,结论②正确;由抛物线的对称轴为x=1,利用对称轴公式得到2a+b=0,结论③正确;由抛物线的对称轴为直线x=1,得到对称轴右边y随x的增大而减小,对称轴左边y随x的增大而增大,故x大于0小于1时,y随x的增大而增大,结论④错误.【解答】解:∵抛物线开口向下,∴a<0,∵对称轴在y轴右侧,∴>0,∴b>0,∵抛物线与y轴的交点在y轴正半轴,∴c>0,∴abc<0,故①错误;∵抛物线与x轴的一个交点为(3,0),又对称轴为直线x=1,∴抛物线与x轴的另一个交点为(﹣1,0),∴方程ax2+bx+c=0的两根是x1=﹣1,x2=3,故②正确;∵对称轴为直线x=1,∴=1,即2a+b=0,故③正确;∵由函数图象可得:当0<x<1时,y随x的增大而增大;当x>1时,y随x的增大而减小,故④错误;故答案为②③.【点评】此题考查了二次函数图象与系数的关系,以及抛物线与x轴的交点,二次函数y=ax2+bx+c(a≠0),a的符号由抛物线的开口方向决定,c的符号由抛物线与y轴交点的位置确定,b的符号由a及对称轴的位置决定,抛物线的增减性由对称轴与开口方向共同决定,当抛物线开口向上时,对称轴左边y随x的增大而减小,对称轴右边y随x的增大而增大;当抛物线开口向下时,对称轴左边y随x的增大而增大,对称轴右边y随x的增大而减小.此外抛物线解析式中y=0得到一元二次方程的解即为抛物线与x轴交点的横坐标.4.(2018·吉林长春·3分)如图,在平面直角坐标系中,抛物线y=x2+mx交x轴的负半轴于点A.点B是y轴正半轴上一点,点A关于点B的对称点A′恰好落在抛物线上.过点A′作x轴的平行线交抛物线于另一点C.若点A′的横坐标为1,则A′C的长为 3 .【分析】解方程x2+mx=0得A(﹣m,0),再利用对称的性质得到点A的坐标为(﹣1,0),所以抛物线解析式为y=x2+x,再计算自变量为1的函数值得到A′(1,2),接着利用C点的纵坐标为2求出C点的横坐标,然后计算A′C的长.【解答】解:当y=0时,x2+mx=0,解得x1=0,x2=﹣m,则A(﹣m,0),∵点A关于点B的对称点为A′,点A′的横坐标为1,∴点A的坐标为(﹣1,0),∴抛物线解析式为y=x2+x,当x=1时,y=x2+x=2,则A′(1,2),当y=2时,x2+x=2,解得x1=﹣2,x2=1,则C(﹣2,1),∴A′C的长为1﹣(﹣2)=3.故答案为3.【点评】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数图象上点的坐标特征.5.(2018·江苏镇江·2分)已知二次函数y=x2﹣4x+k的图象的顶点在x轴下方,则实数k 的取值范围是k<4 .【解答】解:∵二次函数y=x2﹣4x+k中a=1>0,图象的开口向上,又∵二次函数y=x2﹣4x+k的图象的顶点在x轴下方,∴△=(﹣4)2﹣4×1×k>0,解得:k<4,故答案为:k<4.1. (2018·广西贺州·12分)如图,在平面直角坐标系中,抛物线y=ax2+bx+c交x轴于A.B两点(A在B的左侧),且OA=3,OB=1,与y轴交于C(0,3),抛物线的顶点坐标为D (﹣1,4).(1)求A.B两点的坐标;(2)求抛物线的解析式;(3)过点D作直线DE∥y轴,交x轴于点E,点P是抛物线上B.D两点间的一个动点(点P 不与B.D两点重合),PA.PB与直线DE分别交于点F、G,当点P运动时,EF+EG是否为定值?若是,试求出该定值;若不是,请说明理由.【解答】解:(1)由抛物线y=ax2+bx+c交x轴于A.B两点(A在B的左侧),且OA=3,OB=1,得A点坐标(﹣3,0),B点坐标(1,0);(2)设抛物线的解析式为y=a(x+3)(x﹣1),把C点坐标代入函数解析式,得a(0+3)(0﹣1)=3,解得a=﹣1,抛物线的解析式为y=﹣(x+3)(x﹣1)=﹣x2﹣2x+3;(3)EF+EG=8(或EF+EG是定值),理由如下:过点P作PQ∥y轴交x轴于Q,如图.设P(t,﹣t2﹣2t+3),则PQ=﹣t2﹣2t+3,AQ=3+t,QB=1﹣t,∴△AEF∽△AQP,∴=,∴EF===×(﹣t2﹣2t+3)=2(1﹣t);又∵PQ∥EG,∴△BEG∽△BQP,∴=,∴EG===2(t+3),∴EF+EG=2(1﹣t)+2(t+3)=8.2. (2018·广西梧州·12分)如图,抛物线y=ax2+bx﹣与x轴交于A(1,0)、B(6,0)两点,D是y轴上一点,连接DA,延长DA交抛物线于点E.(1)求此抛物线的解析式;(2)若E点在第一象限,过点E作EF⊥x轴于点F,△ADO与△AEF的面积比为=,求出点E的坐标;(3)若D是y轴上的动点,过D点作与x轴平行的直线交抛物线于M、N两点,是否存在点D,使DA2=DM•DN?若存在,请求出点D的坐标;若不存在,请说明理由.【分析】(1)根据待定系数法,可得函数解析式;(2)根据相似三角形的判定与性质,可得AF的长,根据自变量与函数值的对应关系,可得答案;(3)根据两点间距离,可得AD的长,根据根与系数的关系,可得x1•x2,根据DA2=DM•DN,可得关于n的方程,根据解方程,可得答案.【解答】解:(1)将A(1,0),B(6,0)代入函数解析式,得,解得,抛物线的解析式为y=﹣x2+x﹣;(2)∵EF⊥x轴于点F,∴∠AFE=90°.∵∠AOD=∠AFE=90°,∠OAD=∠FAE,∴△AOD∽△AFE.∵==,∵AO=1,∴AF=3,OF=3+1=4,当x=4时,y=﹣×42+×4﹣=,∴E点坐标是(4,),(3)存在点D,使DA2=DM•DN,理由如下:设D点坐标为(0,n),AD2=1+n2,当y=n时,﹣x2+x﹣=n化简,得﹣3x2+21x﹣18﹣4n=0,设方程的两根为x1,x2,x1•x2=DM=x1,DN=x2,DA2=DM•DN,即1+n2=,化简,得3n2﹣4n﹣15=0,解得n1=,n2=3,∴D点坐标为(0,﹣)或(0,3).【点评】本题考查了二次函数综合题,解(1)的关键是待定系数法;解(2)的关键是利用相似三角形的判定与性质得出AF的长;解(3)的关键是利用根与系数的关系得出x1•x2,又利用了解方程.3. (2018·湖北江汉·10分)绿色生态农场生产并销售某种有机产品,假设生产出的产品能全部售出.如图,线段EF、折线ABCD分别表示该有机产品每千克的销售价y1(元)、生产成本y2(元)与产量x(kg)之间的函数关系.(1)求该产品销售价y1(元)与产量x(kg)之间的函数关系式;(2)直接写出生产成本y2(元)与产量x(kg)之间的函数关系式;(3)当产量为多少时,这种产品获得的利润最大?最大利润为多少?【分析】(1)根据线段EF经过的两点的坐标利用待定系数法确定一次函数的表达式即可;(2)显然,当0≤x≤50时,y2=70;当130≤x≤180时,y2=54;当50<x<130时,设y2与x之间的函数关系式为y2=mx+n,利用待定系数法确定一次函数的表达式即可;(3)利用:总利润=每千克利润×产量,根据x的取值范围列出有关x的二次函数,求得最值比较可得.【解答】解:(1)设y1与x之间的函数关系式为y1=kx+b,∵经过点(0,168)与(180,60),∴,解得:,∴产品销售价y1(元)与产量x(kg)之间的函数关系式为y1=﹣x+168(0≤x≤180);(2)由题意,可得当0≤x≤50时,y2=70;当130≤x≤180时,y2=54;当50<x<130时,设y2与x之间的函数关系式为y2=mx+n,∵直线y2=mx+n经过点(50,70)与(130,54),∴,解得,∴当50<x<130时,y2=﹣x+80.综上所述,生产成本y2(元)与产量x(kg)之间的函数关系式为y2=;(3)设产量为xkg时,获得的利润为W元,①当0≤x≤50时,W=x(﹣x+168﹣70)=﹣(x﹣)2+,∴当x=50时,W的值最大,最大值为3400;②当50<x<130时,W=x[(﹣x+168)﹣(﹣x+80)]=﹣(x﹣110)2+4840,∴当x=110时,W的值最大,最大值为4840;③当130≤x≤180时,W=x(﹣x+168﹣54)=﹣(x﹣95)2+5415,∴当x=130时,W的值最大,最大值为4680.因此当该产品产量为110kg时,获得的利润最大,最大值为4840元.4. (2018·湖北江汉·12分)抛物线y=﹣x2+x﹣1与x轴交于点A,B(点A在点B的左侧),与y轴交于点C,其顶点为D.将抛物线位于直线l:y=t(t<)上方的部分沿直线l向下翻折,抛物线剩余部分与翻折后所得图形组成一个“M”形的新图象.(1)点A,B,D的坐标分别为(,0),(3,0),(,);(2)如图①,抛物线翻折后,点D落在点E处.当点E在△ABC内(含边界)时,求t的取值范围;(3)如图②,当t=0时,若Q是“M”形新图象上一动点,是否存在以CQ为直径的圆与x 轴相切于点P?若存在,求出点P的坐标;若不存在,请说明理由.【分析】(1)利用二次函数图象上点的坐标特征可求出点A.B的坐标,再利用配方法即可找出抛物线的顶点D的坐标;(2)由点D的坐标结合对称找出点E的坐标,根据点B.C的坐标利用待定系数法可求出直线BC的解析式,再利用一次函数图象上点的坐标特征即可得出关于t的一元一次不等式组,解之即可得出t的取值范围;(3)假设存在,设点P的坐标为(m,0),则点Q的横坐标为m,分m<或m>3及≤m≤3两种情况,利用勾股定理找出关于m的一元二次方程,解之即可得出m的值,进而可找出点P的坐标,此题得解.【解答】解:(1)当y=0时,有﹣x2+x﹣1=0,解得:x1=,x2=3,∴点A的坐标为(,0),点B的坐标为(3,0).∵y=﹣x2+x﹣1=﹣(x2﹣x)﹣1=﹣(x﹣)2+,∴点D的坐标为(,).故答案为:(,0);(3,0);(,).(2)∵点E.点D关于直线y=t对称,∴点E的坐标为(,2t﹣).当x=0时,y=﹣x2+x﹣1=﹣1,∴点C的坐标为(0,﹣1).设线段BC所在直线的解析式为y=kx+b,将B(3,0)、C(0,﹣1)代入y=kx+b,,解得:,∴线段BC所在直线的解析式为y=x﹣1.∵点E在△ABC内(含边界),∴,解得:≤t≤.(3)当x<或x>3时,y=﹣x2+x﹣1;当≤x≤3时,y=x2﹣x+1.假设存在,设点P的坐标为(m,0),则点Q的横坐标为m.①当m<或m>3时,点Q的坐标为(m,﹣x2+x﹣1)(如图1),∵以CQ为直径的圆与x轴相切于点P,∴CP⊥PQ,∴CQ2=CP2+PQ2,即m2+(﹣m2+m)2=m2+1+m2+(﹣m2+m﹣1)2,整理,得:m1=,m2=,∴点P的坐标为(,0)或(,0);②当≤m≤3时,点Q的坐标为(m,x2﹣x+1)(如图2),∵以CQ为直径的圆与x轴相切于点P,∴CP⊥PQ,∴CQ2=CP2+PQ2,即m2+(m2﹣m+2)2=m2+1+m2+(m2﹣m+1)2,整理,得:11m2﹣28m+12=0,解得:m3=,m4=2,∴点P的坐标为(,0)或(1,0).综上所述:存在以CQ为直径的圆与x轴相切于点P,点P的坐标为(,0)、(,0)、(1,0)或(,0).5. (2018·湖北荆州·10分)为响应荆州市“创建全国文明城市”号召,某单位不断美化环境,拟在一块矩形空地上修建绿色植物园,其中一边靠墙,可利用的墙长不超过18m,另外三边由36m长的栅栏围成.设矩形ABCD空地中,垂直于墙的边AB=xm,面积为ym2(如图).(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)若矩形空地的面积为160m2,求x的值;(3)若该单位用8600元购买了甲、乙、丙三种绿色植物共400棵(每种植物的单价和每棵栽种的合理用地面积如下表).问丙种植物最多可以购买多少棵?此时,这批植物可以全部栽种到这块空地上吗?请说明理由.【解答】解:(1)y=x(36﹣2x)=﹣2x2+36x.(2)由题意:﹣2x2+36x=160,解得x=10或8.∵x=8时,36﹣16=20<18,不符合题意,∴x的值为10.(3)∵y=﹣2x2+36x=﹣2(x﹣9)2+162,∴x=9时,y有最大值162,设购买了乙种绿色植物a棵,购买了丙种绿色植物b棵,由题意:14(400﹣a﹣b)+16a+28b=8600,∴a+7b=1500,∴b的最大值为214,此时a=2,需要种植的面积=0.4×(400﹣214﹣2)+1×2+0.4×214=162.8>162,∴这批植物不可以全部栽种到这块空地上.6. (2018·湖北十堰·12分)已知抛物线y=x2+bx+c经过点A(﹣2,0),B(0、﹣4)与x轴交于另一点C,连接BC.(1)求抛物线的解析式;(2)如图,P是第一象限内抛物线上一点,且S△PBO=S△PBC,求证:AP∥BC;(3)在抛物线上是否存在点D,直线BD交x轴于点E,使△ABE与以A,B,C,E中的三点为顶点的三角形相似(不重合)?若存在,请求出点D的坐标;若不存在,请说明理由.【分析】(1)利用待定系数法求抛物线的解析式;(2)令y=0求抛物线与x轴的交点C的坐标,作△POB和△PBC的高线,根据面积相等可得OE=CF,证明△OEG≌△CFG,则OG=CG=2,根据三角函数列式可得P的坐标,利用待定系数法求一次函数AP和BC的解析式,k相等则两直线平行;(3)先利用概率的知识分析A,B,C,E中的三点为顶点的三角形,有两个三角形与△ABE 有可能相似,即△ABC和△BCE,①当△ABE与以A,B,C中的三点为顶点的三角形相似,如图2,根据存在公共角∠BAE=∠BAC,可得△ABE∽△ACB,列比例式可得E的坐标,利用待定系数法求直线BE的解析式,与抛物线列方程组可得交点D的坐标;②当△ABE与以B,C.E中的三点为顶点的三角形相似,如图3,同理可得结论.【解答】解:(1)把点A(﹣2,0),B(0、﹣4)代入抛物线y=x2+bx+c中得:,解得:,∴抛物线的解析式为:y=x2﹣x﹣4;(2)当y=0时,x2﹣x﹣4=0,解得:x=﹣2或4,∴C(4,0),如图1,过O作OE⊥BP于E,过C作CF⊥BP于F,设PB交x轴于G,∵S△PBO=S△PBC,∴,∴OE=CF,易得△OEG≌△CFG,∴OG=CG=2,设P(x,x2﹣x﹣4),过P作PM⊥y轴于M,tan∠PBM===,∴BM=2PM,∴4+x2﹣x﹣4=2x,x2﹣6x=0,x1=0(舍),x2=6,∴P(6,8),易得AP的解析式为:y=x+2,BC的解析式为:y=x﹣4,∴AP∥BC;(3)以A,B,C,E中的三点为顶点的三角形有△AB C.△AB E.△AC E.△BCE,四种,其中△ABE 重合,不符合条件,△ACE不能构成三角形,∴当△ABE与以A,B,C,E中的三点为顶点的三角形相似,存在两个三角形:△ABC和△BCE,①当△ABE与以A,B,C中的三点为顶点的三角形相似,如图2,∵∠BAE=∠BAC,∠ABE≠∠ABC,∴∠ABE=∠ACB=45°,∴△ABE∽△ACB,∴,∴,∴AE=,∴E(,0),∵B(0,﹣4),易得BE:y=,则x2﹣x﹣4=x﹣4,x1=0(舍),x2=,∴D(,);②当△ABE与以B,C.E中的三点为顶点的三角形相似,如图3,∵∠BEA=∠BEC,∴当∠ABE=∠BCE时,△ABE∽△BCE,∴==,设BE=2m,CE=4m,Rt△BOE中,由勾股定理得:BE2=OE2+OB2,∴,3m2﹣8m+8=0,(m﹣2)(3m﹣2)=0,m1=2,m2=,∴OE=4m﹣4=12或,∵OE=<2,∠AEB是钝角,此时△ABE与以B,C.E中的三点为顶点的三角形不相似,如图4,∴E(﹣12,0);同理得BE的解析式为:y=﹣x﹣4,﹣x﹣4=x2﹣x﹣4,x=或0(舍)∴D(,﹣);综上,点D的坐标为(,)或(,﹣).【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求二次函数的解析式、一次函数的解析式、相似三角形的性质和判定、一元二次方程、三角形面积以及勾股定理,第3问有难度,确定三角形与△ABE相似并画出图形是关键.7.(2018·四川省攀枝花)如图,对称轴为直线x=1的抛物线y=x2﹣bx+c与x轴交于A(x1,0)、B(x2,0)(x1<x2)两点,与y轴交于C点,且+=﹣.(1)求抛物线的解析式;(2)抛物线顶点为D,直线BD交y轴于E点;①设点P为线段BD上一点(点P不与B.D两点重合),过点P作x轴的垂线与抛物线交于点F,求△BDF面积的最大值;②在线段BD上是否存在点Q,使得∠BDC=∠QCE?若存在,求出点Q的坐标;若不存在,请说明理由.解:(1)∵抛物线对称轴为直线x=1∴﹣∴b=2由一元二次方程根与系数关系:x1+x2=﹣,x1x2=∴+==﹣∴﹣则c=﹣3∴抛物线解析式为:y=x2﹣2x﹣3(2)由(1)点D坐标为(1,﹣4)当y=0时,x2﹣2x﹣3=0解得x1=﹣1,x2=3∴点B坐标为(3,0)①设点F坐标为(a,b)∴△BDF的面积S=×(4﹣b)(a﹣1)+(﹣b)(3﹣a)﹣×2×4整理的S=2a﹣b﹣6∵b=a2﹣2a﹣3∴S=2a﹣(a2﹣2a﹣3)﹣6=﹣a2+4a﹣3∵a=﹣1<0∴当a=2时,S最大=﹣4+8﹣3=1②存在由已知点D坐标为(1,﹣4),点B坐标为(3,0)∴直线BD解析式为:y=2x﹣6则点E坐标为(0,﹣6)连BC.CD,则由勾股定理CB2=(3﹣0)2+(﹣3﹣0)2=18CD2=12+(﹣4+3)2=2BD2=(﹣4)2+(3﹣1)2=20∴CB2+CD2=BD2∴∠BDC=90°∵∠BDC=∠QCE∴∠QCE=90°∴点Q纵坐标为﹣3代入﹣3=2x﹣6∴x=∴存在点Q坐标为(,﹣3)8.(2018·云南省昆明·9分)如图,抛物线y=ax2+bx过点B(1,﹣3),对称轴是直线x=2,且抛物线与x轴的正半轴交于点A.(1)求抛物线的解析式,并根据图象直接写出当y≤0时,自变量x的取值范图;(2)在第二象限内的抛物线上有一点P,当PA⊥BA时,求△PAB的面积.【分析】(1)将函数图象经过的点B坐标代入的函数的解析式中,再和对称轴方程联立求出待定系数a和b;(2)将AB所在直线的解析式求出,利用直线AP与AB垂直的关系求出直线AP的斜率k,再求直线AP的解析式,求直线AP与x轴交点,求点P的坐标,将△PAB的面积构造成长方形去掉三个三角形的面积.【解答】解:(1)由题意得,,解得,∴抛物线的解析式为y=x2﹣2x,令y=0,得x2﹣2x=0,解得x=0或2,结合图象知,A的坐标为(2,0),根据图象开口向上,则y≤0时,自变量x的取值范图是0≤x≤2;(2)设直线AB的解析式为y=mx+n,则,解得,∴y=3x﹣6,设直线AP的解析式为y=kx+c,∵PA⊥BA,∴k=,则有,解得c=,∴,解得或,∴点P的坐标为(),∴△PAB的面积=|﹣|×||﹣×||×﹣×|﹣|×||﹣×|2﹣1|×|0﹣(﹣3)|=.【点评】本题是二次函数综合题,求出函数解析式是解题的关键,特别是利用待定系数法将两条直线表达式解出,利用点的坐标求三角形的面积是关键.9.(2018·云南省曲靖)如图:在平面直角坐标系中,直线l:y=x﹣与x轴交于点A,经过点A的抛物线y=ax2﹣3x+c的对称轴是x=.(1)求抛物线的解析式;(2)平移直线l经过原点O,得到直线m,点P是直线m上任意一点,PB⊥x轴于点B,PC⊥y 轴于点C,若点E在线段OB上,点F在线段OC的延长线上,连接PE,PF,且PE=3PF.求证:PE⊥PF;(3)若(2)中的点P坐标为(6,2),点E是x轴上的点,点F是y轴上的点,当PE⊥PF 时,抛物线上是否存在点Q,使四边形PEQF是矩形?如果存在,请求出点Q的坐标,如果不存在,请说明理由.【解答】解:(1)当y=0时,x﹣=0,解得x=4,即A(4,0),抛物线过点A,对称轴是x=,得,解得,抛物线的解析式为y=x2﹣3x﹣4;(2)∵平移直线l经过原点O,得到直线m,∴直线m的解析式为y=x.∵点P是直线1上任意一点,∴设P(3a,a),则PC=3a,PB=a.又∵PE=3PF,∴=.∴∠FPC=∠EPB.∵∠CPE+∠EPB=90°,∴∠FPC+∠CPE=90°,∴FP⊥PE.(3)如图所示,点E在点B的左侧时,设E(a,0),则BE=6﹣a.∵CF=3BE=18﹣3a,∴OF=20﹣3a.∴F(0,20﹣3a).∵PEQF为矩形,∴=,=,∴Q x+6=0+a,Q y+2=20﹣3a+0,∴Q x=a﹣6,Q y=18﹣3a.将点Q的坐标代入抛物线的解析式得:18﹣3a=(a﹣6)2﹣3(a﹣6)﹣4,解得:a=4或a=8(舍去).∴Q(﹣2,6).如下图所示:当点E在点B的右侧时,设E(a,0),则BE=a﹣6.∵CF=3BE=3a﹣18,∴OF=3a﹣20.∴F(0,20﹣3a).∵PEQF为矩形,∴=,=,∴Q x+6=0+a,Q y+2=20﹣3a+0,∴Q x=a﹣6,Q y=18﹣3a.将点Q的坐标代入抛物线的解析式得:18﹣3a=(a﹣6)2﹣3(a﹣6)﹣4,解得:a=8或a=4(舍去).∴Q(2,﹣6).综上所述,点Q的坐标为(﹣2,6)或(2,﹣6).10.(2018·云南省·8分)已知二次函数y=﹣x2+bx+c的图象经过A(0,3),B(﹣4,﹣)两点.(1)求b,c的值.(2)二次函数y=﹣x2+bx+c的图象与x轴是否有公共点,求公共点的坐标;若没有,请说明情况.【分析】(1)把点A.B的坐标分别代入函数解析式求得B.c的值;(2)利用根的判别式进行判断该函数图象是否与x轴有交点,由题意得到方程﹣x2+x+3=0,通过解该方程求得x的值即为抛物线与x轴交点横坐标.【解答】解:(1)把A(0,3),B(﹣4,﹣)分别代入y=﹣x2+bx+c,得,解得;(2)由(1)可得,该抛物线解析式为:y=﹣x2+x+3.△=()2﹣4×(﹣)×3=>0,所以二次函数y=﹣x2+bx+c的图象与x轴有公共点.∵﹣x2+x+3=0的解为:x1=﹣2,x2=8∴公共点的坐标是(﹣2,0)或(8,0).【点评】考查了抛物线与x轴的交点,二次函数图象上点的坐标特征.注意抛物线解析式与一元二次方程间的转化关系.11.(2018·浙江省台州·12分)某药厂销售部门根据市场调研结果,对该厂生产的一种新型原料药未来两年的销售进行预测,井建立如下模型:设第t个月该原料药的月销售量为P (单位:吨),P与t之间存在如图所示的函数关系,其图象是函数P=(0<t≤8)的图象与线段AB的组合;设第t个月销售该原料药每吨的毛利润为Q(单位:万元),Q与t 之间满足如下关系:Q=(1)当8<t≤24时,求P关于t的函数解析式;(2)设第t个月销售该原料药的月毛利润为w(单位:万元)①求w关于t的函数解析式;②该药厂销售部门分析认为,336≤w≤513是最有利于该原料药可持续生产和销售的月毛利润范围,求此范围所对应的月销售量P的最小值和最大值.【分析】(1)设8<t≤24时,P=kt+b,将A(8,10)、B(24,26)代入求解可得P=t+2;(2)①分0<t≤8.8<t≤12和12<t≤24三种情况,根据月毛利润=月销量×每吨的毛利润可得函数解析式;②求出8<t≤12和12<t≤24时,月毛利润w在满足336≤w≤513条件下t的取值范围,再根据一次函数的性质可得P的最大值与最小值,二者综合可得答案.【解答】解:(1)设8<t≤24时,P=kt+b,将A(8,10)、B(24,26)代入,得:,解得:,∴P=t+2;(2)①当0<t≤8时,w=(2t+8)×=240;当8<t≤12时,w=(2t+8)(t+2)=2t2+12t+16;当12<t≤24时,w=(﹣t+44)(t+2)=﹣t2+42t+88;②当8<t≤12时,w=2t2+12t+16=2(t+3)2﹣2,∴8<t≤12时,w随t的增大而增大,当2(t+3)2﹣2=336时,解题t=10或t=﹣16(舍),当t=12时,w取得最大值,最大值为448,此时月销量P=t+2在t=10时取得最小值12,在t=12时取得最大值14;当12<t≤24时,w=﹣t2+42t+88=﹣(t﹣21)2+529,当t=12时,w取得最小值448,由﹣(t﹣21)2+529=513得t=17或t=25,∴当12<t≤17时,448<w≤513,此时P=t+2的最小值为14,最大值为19;综上,此范围所对应的月销售量P的最小值为12吨,最大值为19吨.【点评】本题主要考查二次函数的应用,掌握待定系数法求函数解析式及根据相等关系列出分段函数的解析式是解题的前提,利用二次函数的性质求得336≤w≤513所对应的t的取值范围是解题的关键.12.(2018·辽宁省盘锦市)鹏鹏童装店销售某款童装,每件售价为60元,每星期可卖100件,为了促销,该店决定降价销售,经市场调查反应:每降价1元,每星期可多卖10件.已知该款童装每件成本30元.设该款童装每件售价x元,每星期的销售量为y件.(1)求y与x之间的函数关系式(不求自变量的取值范围);(2)当每件售价定为多少元时,每星期的销售利润最大,最大利润是多少?(3)①当每件童装售价定为多少元时,该店一星期可获得3910元的利润?②若该店每星期想要获得不低于3910元的利润,则每星期至少要销售该款童装多少件?【解答】解:(1)y=100+10(60﹣x)=﹣10x+700.(2)设每星期利润为W元,W=(x﹣30)(﹣10x+700)=﹣10(x﹣50)2+4000,∴x=50时,W最大值=4000,∴每件售价定为50元时,每星期的销售利润最大,最大利润4000元.(3)①由题意:﹣10(x﹣50)2+4000=3910解得:x=53或47,∴当每件童装售价定为53元或47元时,该店一星期可获得3910元的利润.②由题意:﹣10(x﹣50)2+4000≥3910,解得:47≤x≤53.∵y=100+10(60﹣x)=﹣10x+700.170≤y≤230,∴每星期至少要销售该款童装170件.13.(2018·辽宁省沈阳市)(12.00分)如图,在平面角坐标系中,抛物线C1:y=ax2+bx﹣1经过点A(﹣2,1)和点B(﹣1,﹣1),抛物线C2:y=2x2+x+1,动直线x=t与抛物线C1交于点N,与抛物线C2交于点M.(1)求抛物线C1的表达式;(2)直接用含t的代数式表示线段MN的长;(3)当△AMN是以MN为直角边的等腰直角三角形时,求t的值;(4)在(3)的条件下,设抛物线C1与y轴交于点P,点M在y轴右侧的抛物线C2上,连接AM交y轴于点k,连接KN,在平面内有一点Q,连接KQ和QN,当KQ=1且∠KNQ=∠BNP时,请直接写出点Q的坐标.【分析】(1)应用待定系数法;(2)把x=t带入函数关系式相减;(3)根据图形分别讨论∠ANM=90°、∠AMN=90°时的情况.(4)根据题意画出满足条件图形,可以找到AN为△KNP对称轴,由对称性找到第一个满足条件Q,再通过延长和圆的对称性找到剩余三个点.利用勾股定理进行计算.【解答】解:(1)∵抛物线C1:y=ax2+bx﹣1经过点A(﹣2,1)和点B(﹣1,﹣1)∴解得:∴抛物线C1:解析式为y=x2+x﹣1(2)∵动直线x=t与抛物线C1交于点N,与抛物线C2交于点M∴点N的纵坐标为t2+t﹣1,点M的纵坐标为2t2+t+1∴MN=(2t2+t+1)﹣(t2+t﹣1)=t2+2(3)共分两种情况①当∠ANM=90°,AN=MN时,由已知N(t,t2+t﹣1),A(﹣2,1)∴AN=t﹣(﹣2)=t+2∵MN=t2+2∴t2+2=t+2∴t1=0(舍去),t2=1∴t=1②当∠AMN=90°,AN=MN时,由已知M(t,2t2+t+1),A(﹣2,1)∴AM=t﹣(﹣2)=t+2,∵MN=t2+2∴t2+2=t+2∴t1=0,t2=1(舍去)∴t=0故t的值为1或0(4)由(3)可知t=1时M位于y轴右侧,根据题意画出示意图如图:易得K(0,3),B.O、N三点共线∵A(﹣2,1)N(1,1)P(0,﹣1)∴点K、P关于直线AN对称设⊙K与y轴下方交点为Q2,则其坐标为(0,2)∴Q2与点P关于直线AN对称∴Q2是满足条件∠KNQ=∠BNP.则NQ2延长线与⊙K交点Q1,Q1.Q2关于KN的对称点Q3.Q4也满足∠KNQ=∠BNP.由图形易得Q1(﹣3,3)设点Q3坐标为(a,b),由对称性可知Q3N=NQ1=BN=2由∵⊙K半径为1∴解得,1同理,设点Q4坐标为(a,b),由对称性可知Q4N=NQ2=NO=∴解得,∴满足条件的Q点坐标为:(0,2)、(﹣3,3)、(,)、(,)【点评】本题为代数几何综合题,考查了二次函数基本性质.解答过程中应用了分类讨论、数形结合以及构造数学模型等数学思想.14.(2018·辽宁省盘锦市)如图,已知A(﹣2,0),B(4,0),抛物线y=ax2+bx﹣1过A.B 两点,并与过A点的直线y=﹣x﹣1交于点C.(1)求抛物线解析式及对称轴;(2)在抛物线的对称轴上是否存在一点P,使四边形ACPO的周长最小?若存在,求出点P 的坐标,若不存在,请说明理由;(3)点M为y轴右侧抛物线上一点,过点M作直线AC的垂线,垂足为N.问:是否存在这样的点N,使以点M、N、C为顶点的三角形与△AOC相似,若存在,求出点N的坐标,若不存在,请说明理由.。
2018年中考数学试题分类汇编 知识点18 二次函数概念、性质和图象

知识点18 二次函数概念、性质和图象一、选择题1.(2018山东滨州,10,3分)如图,若二次函数2y ax bx c =++(a ≠0)图象的对称轴为x =1,与y 轴交于点C ,与x 轴交于点A 、点B (-1,0)则①二次函数的最大值为a +b +c ;②a -b +c <0;③b ²-4ac <0;④当y>0时,-1<x <3.其中正确的个数是( ) A .1 B .2 C .3 D .4第10题图【答案】B【解析】由图像可知,当x =1时,函数值取到最大值,最大值为:a +b +c ,故①正确;因为抛物线经过点B (-1,0),所以当x =-1时,y =a -b +c =0,故②错误;因为该函数图象与x 轴有两个交点A 、B ,所以b ²-4ac >0,故③错误;因为点A 与点B 关于直线x =1对称,所以A (3,0),根据图像可知,当y >0时,-1<x <3,故④正确;故选B .【知识点】数形结合、二次函数的图像和性质2. (2018四川泸州,10题,3分)已知二次函数22233y ax ax a =+++(其中x 是自变量),当2x ≥时,y 随x 的增大而增大,且21x -≤≤时,y 的最大值为9,则a 的值为( )A.1或2-B. D.1【答案】D【解析】原函数可化为y=a(x+1)2+3a 2-a+3,对称轴为x=-1,当2x ≥时,y 随x 的增大而增大,所以a>0,抛物线开口向上,因为21x -≤≤时,y 的最大值为9,结合对称轴及增减性可得,当x=1时,y=9,带入可得,a 1=1,a 2=-2,又因为a>0,所以a=1 【知识点】二次函数,增减性3. (2018甘肃白银,10,3)如图是二次函数2(,,y ax bx c a b c =++是常数,0)a ≠图像的一部分,与x 轴的交点A 在点(2,0)和(3,0)之间,对称轴是x =1,对于下列说法:①0ab <,②20a b +=,③30a c +>,④()(a b m am b m +≥+为常数),⑤当13-<x <时,0y >,其中正确的是( )A.①②④B.①②⑤C.②③④D.③④⑤【答案】A【思路分析】由抛物线的图像结合对称轴、与x 轴的交点逐一判断即可。
2018年中考数学试卷精选汇编:二次函数(PDF版含解析)

【分析】分 h<2、2≤h≤5 和 h>5 三种情况考虑:当 h<2 时,根据二次函数的性质可得出关于 h 的一元 二次方程,解之即可得出结论;当 2≤h≤5 时,由此时函数的最大值为 0 与题意不符,可得出该情况不存 在;当 h>5 时,根据二次函数的性质可得出关于 h 的一元二次方程,解之即可得出结论.综上即可得出结 论. 【解答】解:当 h<2 时,有﹣(2﹣h)2=﹣1, 解得:h1=1,h2=3(舍去); 当 2≤h≤5 时,y=﹣(x﹣h)2 的最大值为 0,不符合题意; 当 h>5 时,有﹣(5﹣h)2=﹣1, 解得:h3=4(舍去),h4=6. 综上所述:h 的值为 1 或 6. 故选:B.
二次函数
一、选择题 1. (2018•山东枣庄•3 分)如图是二次函数 y=ax2+bx+c 图象的一部分,且过点 A(3,0),二次函数图象 的对称轴是直线 x=1,下列结论正确的是( )
A.b2<4ac B.ac>0 C.2a﹣b=0 D.a﹣b+c=0 【分析】根据抛物线与 x 轴有两个交点有 b2﹣4ac>0 可对 A 进行判断;由抛物线开口向上得 a>0,由抛物 线与 y 轴的交点在 x 轴下方得 c<0,则可对 B 进行判断;根据抛物线的对称轴是 x=1 对 C 选项进行判断; 根据抛物线的对称性得到抛物线与 x 轴的另一个交点为(﹣1,0),所以 a﹣b+c=0,则可对 D 选项进行判断. 【解答】解:∵抛物线与 x 轴有两个交点, ∴b2﹣4ac>0,即 b2>4ac,所以 A 选项错误; ∵抛物线开口向上, ∴a>0, ∵抛物线与 y 轴的交点在 x 轴下方, ∴c<0, ∴ac<0,所以 B 选项错误; ∵二次函数图象的对称轴是直线 x=1,
【点评】本题考查了二次函数的最值以及二次函数的性质,分 h<2、2≤h≤5 和 h>5 三种情况求出 h 值是 解题的关键.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
16. (2017 丽水 8 题 3 分)将函数 y=x 的图象用下列方法平移后, 所得的图象不经过点 A(1, 4)的方法是(
)
A. 向左平移 1 个单位 C. 向上平移 3 个单位
B. 向右平移 3Biblioteka 个单位 D. 向下平移 1 个单位
17.(2017 绍兴 9 题 4 分)矩形 ABCD 的两条对称轴为坐标轴,点 A 的坐标为(2,1).一张透明纸上画有一个 点和一条抛物线,平移透明纸,使这个点与点 A 重合,此时抛物线的函数表达式为 y=x ,再次平移透明纸, 使这个点与点 C 重合,则该抛物线的函数表达式变为( A. y=x +8x+14 C. y=x +4x+3
2
3.(2014 宁波 12 题 4 分)已知点 A(a-2b,2-4ab)在抛物线 y=x +4x+10 上,则点 A 关于抛物线对称轴的 对称点坐标为( A. (-3,7) ) B. (1,7) C. (-4,10)
2
D. (0,10)
4. (2015 宁波 11 题 4 分)二次函数 y=a(x-4) -4(a≠0)的图象在 2<x<3 这一段位于 x 轴的下方, 在 6<x <7 这一段位于 x 轴的上方,则 a 的值为( A. 1 B. -1 C. 2
)
B.
3或- 3
C. 2 或- 3
D. 2 或 3或-
7 4
2
10.(2017 嘉兴 10 题 3 分)下列关于函数 y=x -6x+10 的四个命题:①当 x=0 时,y 有最小值 10;②n 为 任意实数,x=3+n 时的函数值大于 x=3-n 时的函数值;③若 n>3,且 n 是整数,当 n≤x≤n+1 时,y 的 整数值有(2n-4)个;④若函数图象过点(a,y0)和(b,y0+1),其中 a>0,b>0,则 a<b.其中真命题的序号是 ( ) B. ② C. ③
0),下列结论中,正确的一项是( A. abc<0 C. a-b+c<0
)
B. 2a+b<0 D. 4ac-b <0
2
第 12 题图 13.(2013 义乌 10 题 3 分)如图,抛物线 y=ax +bx+c 与 x 轴交于点 A(-1,0),顶点坐标为(1,n),与 y 2 轴的交点在(0,2)、(0,3)之间(包含端点),则下列结论:①当 x>3 时,y<0;②3a+b>0;③-1≤a≤- ; 3 ④3≤n≤4 中,正确的是( A. ①② B. ③④ ) C. ①④ D. ①③
2
A. ①
D. ④
11. (2015 杭州 13 题 4 分)函数 y=x +2x+1, 当 y=0 时, x=________; 当 1<x<2 时, y 随 x 的增大而________(填 写“增大”或“减小”). 命题点 3 二次函数图象与系数 a、b、c 的关系
2
12. (2013 宁波 10 题 3 分)如图, 二次函数 y=ax +bx+c 的图象开口向上, 对称轴为直线 x=1, 图象经过(3,
第一部分 考点研究
第三单元 第 13 课时 函数
二次函数的图像及性质
浙江近 9 年中考真题精选(2009-2017) 命题点 1 抛物线的对称性及对称轴(杭州 2017.9,台州 2015.7,绍兴 2016.9)
2
1.(2016 衢州 7 题 3 分)二次函数 y=ax +bx+c(a≠0)图象上部分点的坐标(x,y)对应值列表如下:
)
C. 若 m<1,则(m-1)a+b>0 D. 若 m<1,则(m-1)a+b<0 命题点 2 二次函数的增减性及最值(杭州 2015.13)
1 2 15 7.(2012 衢州 10 题 3 分)已知二次函数 y=- x -7x+ ,若自变量 x 分别取 x1,x2,x3,且 0<x1<x2<x 3, 2 2 则对应的函数值 y1,y2,y3 的大小关系正确的是( A. y1>y2>y3 C. y2>y3>y1 B. y1<y2<y3 D. y2<y3<y1
2
)
8.(2016 舟山 10 题 3 分)二次函数 y=-(x-1) +5,当 m≤x≤n 且 mn<0 时,y 的最小值为 2m,最大值为 2n,则 m+n 的值为( 5 2 ) 3 2 1 2
2 2
A.
B. 2
C.
D.
9. (2014 嘉兴 10 题 4 分)当-2≤x≤1 时, 二次函数 y=-(x-m) +m +1 有最大值 4, 则实数 m 的值为( 7 A. - 4
x y
则该函数图象的对称轴是( A. 直线 x=-3 C. 直线 x=-1 )
… …
-3 -3
-2 -2
-1 -3
0 -6
1 -11
… …
B. 直线 x=-2 D. 直线 x=0
2
2.(2015 台州 7 题 4 分)设二次函数 y=(x-3) -4 图象的对称轴为直线 l,若点 M 在直线 l 上,则点 M 的坐 标可能是( A. (1,0) ) B. (3,0) C. (-3,0) D. (0,-4)
2
第 13 题图 命题点 4 二次函数解析式的确定(杭州 2014.15,绍兴 2015 .21)
2
14.(2014 杭州 15 题 4 分)设抛物线 y=ax +bx+c(a≠0)过 A(0,2),B(4,3),C 三点,其中点 C 在直线 x =2 上,且点 C 到抛物线的对称轴的距离等于 1,则抛物线的函数解析式为__________. 15.(2015 绍兴 21 题 10 分)如果抛物线 y=ax +bx+c 过定点 M(1,1),则称此抛物线为定点抛物线. (1)张老师在投影屏幕上出示了一个题目:请你写出一条定点抛物线的一个解析式.小敏写出了一个答案:y =2x +3x-4,请你写出一个不同于小敏的答案; (2)张老师又在投影屏幕上出示了一个思考题: 已知定点抛物线 y=-x +2bx+c+1, 求该抛物线顶点纵坐标 的值最小时的解析式,请你解答. 命题点 5 二次函数图象的平移及旋转(杭州 2015.20,绍兴 3 考)
2
)
D. -2
5.(2016 绍兴 9 题 4 分)抛物线 y=x +bx+c(其中 b,c 是常数)过点 A(2,6),且抛物线的对称轴与线段 y =0(1≤x≤3)有交点,则 c 的值不可能是( A. 4 B. 6 C. 8 ) D. 10
2
6.(2017 杭州 9 题 3 分)设直线 x=1 是函数 y=ax +bx+c(a,b,c 是实数,且 a<0)的图象的对称轴( A. 若 m>1,则(m-1)a+b>0 B. 若 m>1,则(m-1)a+b<0