偶联剂改性

合集下载

硅烷偶联剂KH550_改性白炭黑及其在环氧树脂中的应用

硅烷偶联剂KH550_改性白炭黑及其在环氧树脂中的应用

硅烷偶联剂KH550改性白炭黑及其在环氧树脂中的应用赵志明,李文琼,靳朝辉,于朝生(东北林业大学化学化工与资源利用学院,东北林业大学森林植物生态学教育部重点实验室,黑龙江哈尔滨150040)摘要:利用硅烷偶联剂KH550对白炭黑纳米粉体进行表面接枝改性,并制备改性白炭黑(mSiO 2)/环氧树脂(EP )浇铸体,利用傅里叶变换红外光谱(FTIR )、X 射线衍射(XRD )、粒度分析、拉伸性能测试、热重分析(TG )、扫描电镜(SEM )等手段对改性前后的白炭黑粒、mSiO 2/EP 浇铸体进行表征分析,探究了KH550对白炭黑的改性效果以及mSiO 2用量对浇铸体力学性能、耐热性和结构的影响。

结果表明:以异丙醇作为分散剂,当KH550质量分数为20%,反应温度为90℃,反应时间为5h ,在醇、水混合溶剂中可以实现KH550对白炭黑的表面改性;当改性白炭黑用量为8%(wt.)时,浇铸体综合性能最好,拉伸强度为41.29MPa ,较纯EP 提升了95.2%;其最大分解速率时的温度为377℃,较纯EP 提升了14℃。

关键词:KH550;白炭黑;改性;环氧树脂;拉伸强度中图分类号:TQ 127.2Study on Surface Modifi cation of Silica with KH550 and Its Application in Epoxy ResinZHAO Zhi-ming, LI Wen-qiong, JIN Zhao-hui, YU Chao-sheng( College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University; Key Laboratory of ForestPlant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, Heilongjiang, China )Abstract: The silane coupling agent KH550 was used to modify the silica by surface grafting and to prepare modifi ed silica (mSiO 2)/epoxy resin (EP) casts. The silica pellets and mSiO 2/EP casts before and after modification were characterised by means of Fourier transform infrared spectroscopy (FTIR), X-ray diff raction (XRD), particle size analysis, tensile properties testing, thermogravimetric analysis (TG) and scanning electron microscopy (SEM). The eff ect of KH550 on the modifi cation of silica and the eff ect of mSiO 2 dosage on the mechanical properties, heat resistance and structure of the cast body were investigated. The results show that the surface modifi cation of silica by KH550 can be achieved in a mixed solvent of alcohol and water when the mass fraction of KH550 is 20%, the reaction temperature is 90°C and the reaction time is 5h, using isopropanol as the dispersant. Furthermore, the mechanical properties and thermal stability of the mSiO 2/EP composites were improved by the KH550 modifi cation. When the amount of mSiO 2 was 8% (wt.), the tensile strength of the mSiO 2/EP composite exhibited 41.29MPa, which resulted in an increase of tensile strength by 95.2%, and a maximum decomposition rate temperature of 377°C, which is 14°C higher than that of pure EP materials.Key words: KH550; silica; modifi cation; EP; tensile strength 作者简介:赵志明,硕士研究生,主要从事功能材料研究工作。

硅烷偶联剂和交联剂在复合材料表面改性中的应用与控制

硅烷偶联剂和交联剂在复合材料表面改性中的应用与控制

硅烷偶联剂和交联剂在复合材料表面改性中的应用与控制摘要:复合材料作为一种广泛应用于各个领域的先进材料,其表面性能的改善对于提高材料的力学性能和耐久性具有重要意义。

硅烷偶联剂和交联剂作为两种常见的表面改性剂,在复合材料中得到了广泛的应用。

本文将介绍硅烷偶联剂和交联剂的定义、分类和性质,并探讨其在复合材料表面改性中的应用与控制方法。

1. 引言复合材料在航空航天、汽车制造、建筑材料等领域具有广泛的应用。

然而,复合材料表面的活性是限制其应用的一个重要因素。

为了改善复合材料表面的性能,人们引入了硅烷偶联剂和交联剂来进行表面改性。

2. 硅烷偶联剂的应用2.1 定义与分类硅烷偶联剂是一种含有硅元素的有机化合物,常见的硅烷偶联剂有氨基硅烷、甲基硅烷等。

根据硅烷偶联剂的功能不同,可以将其分为耐热硅烷偶联剂、附着力硅烷偶联剂等。

2.2 性质与机理硅烷偶联剂具有疏水性和耐热性,能够在复合材料表面形成化学键,提高材料的附着力和表面活性。

硅烷偶联剂可以通过水解缩合反应将有机基团与无机团结合在一起,形成有机硅键。

2.3 应用案例硅烷偶联剂在复合材料表面改性中得到了广泛的应用。

以玻璃纤维增强复合材料为例,通过将硅烷偶联剂涂覆在纤维表面,能够提高纤维和基体之间的结合强度,增加复合材料的力学性能。

3. 交联剂的应用3.1 定义与分类交联剂是一种能够形成交联网络结构的化合物,常见的交联剂有环氧树脂、聚氨酯等。

根据交联方式的不同,交联剂可以分为热交联剂和辐射交联剂等。

3.2 性质与机理交联剂具有良好的耐热性和耐化学性,在复合材料表面形成交联网络结构,提高材料的力学性能和耐久性。

交联剂通过引发剂的作用,将交联剂中的官能团与材料表面的官能团发生反应,形成交联键。

3.3 应用案例交联剂在复合材料表面改性中也得到了广泛的应用。

例如,在聚合物基复合材料中,通过添加交联剂,能够提高材料的热稳定性和阻燃性能,延长材料的使用寿命。

4. 控制方法硅烷偶联剂和交联剂在复合材料表面改性中的应用需要合理控制,以确保其在材料表面的分布均匀性和效果稳定性。

三种偶联剂改性CaCO3的影响因素及效果评定

三种偶联剂改性CaCO3的影响因素及效果评定
较 严重 , 用 KH1 0 1钛 酸 酯 偶 联 剂 改 性 后 的 碳 酸 钙 团聚 现 象得 到 明显 改善 。
关键 词 : 碳酸钙 ; 硅 炕 偶联 剂 ; 钛酸酯偶联剂 ; 改性
中 图分 类 号 : T B 3 2 1
文献标志码 : A
文章 编 号 : 1 6 7 4 — 3 6 4 4 ( 2 0 1 3 ) 0 1 — 0 0 6 4 — 0 5
碳 酸 钙作 为重 要 的无 机 粒 子 填料 之 一 , 因其
优异 的性 能被 广 泛 用 于涂 料 、 橡胶、 塑料、 造 纸 等 领域 口 ] 。 现 今 使 用 的 碳 酸 钙 多 为 粒 径 很 小 的 超

堕 —
高 速 搅 拌 l混 合 液 l
细碳 酸 钙 , 其表 面 能 很 高, 粒 子 之 间 易 聚 集 成 团_ _ 5 ] , 表面 性能 与有 机大分 子材 料有 较大 的差 异 ,
改性, 通 过对 改性 碳 酸 钙 活 化指 数 影 响 因素 的 分
图 1 偶 联 剂 改 性 碳 酸 钙 流 程 图
Fi g . 1 Fl o w di a g r a m o f Ca C03 mo d i f i e d b y c o u pl i n g a g e n t
采用 J S M一 6 4 8 0扫 描 电镜 ( 日本 J E OL公 司 )
C a C O。 ( 1 0 0 0~ 1 0 0 n m) , 钛 酸 酯 偶 联 剂
KH1 0 1 ,硅 烷 偶 联 剂 KH1 5 l ,硅 烷 偶 联 剂
KH5 7 0 , 环己酮, 丙酮 , 以 上试 剂 均 为 分 析 纯 ; 液
三种 偶 联 剂 改性 C a C O 3 的影 响 因素及 效 果评 定

无机粉体的硅烷偶联剂改性

无机粉体的硅烷偶联剂改性

无机粉体的硅烷偶联剂改性硅烷偶联剂是一类具有特殊结构的低分子有机硅化合物,其通式为RSiX3,式中R代表与聚合物分子有亲和力或反应能力的活性官能团,如氧基、硫基、乙烯基、环氧基、酰胺基、氨丙基等;X代表能够水解的烷氧基,如卤素、烷氧基、酰氧基等。

在进行偶联时,首先X基与水形成硅醇,然后与无机粉体颗粒表面上的羟基反应,形成氢键并缩合成-SiO-M共价键(M表示无机粉体颗粒表面)。

同时,硅烷各分子的硅醇又相互缔合齐聚形成网状结构的膜覆盖在粉体颗粒表面,使无机粉体表面有机化。

1、硅烷偶联剂种类及适用对象(1)硅烷偶联剂种类根据分子结构中R基的不同,硅烷偶联剂可分为氨基硅烷、环氧基硅烷、硫基硅烷、甲基丙烯酰氧基硅烷、乙烯基硅烷、脲基硅烷以及异氰酸酯基硅烷等。

(2)硅烷偶联剂适用对象硅烷偶联剂可用于许多无机粉体,如填料或颜料的表面处理,其中对含硅酸成分较多的石英粉、玻璃纤维、白炭黑等效果最好,对高岭土、水合氧化铝、氧化镁等效果也比较好,对不含游离酸的钛酸钙效果欠佳。

(3)硅微偶联剂选择选择硅烷偶联剂对无机粉体进行表面改性处理时,一定要考虑聚合物基料的种类,也即一定要根据表面改性后无机粉体的应用对象和目的来仔细选择硅烷偶联剂。

2、硅烷偶联剂使用方法及用量(1)硅烷偶联剂使用方法:应用硅烷偶联剂的方法有两种:一种是将硅烷配成水溶液,用它处理无机粉体后再与有机高聚物或树脂基料混合,即预处理方法,该方法表面改性处理效果好,是常用的表面改性方法。

另一种方法是将硅烷与无机粉体(如填料或颜料)及有机高聚物基料混合,即迁移法。

多数硅烷偶联剂在使用之前要配成水溶液,即使其预先水解。

水解时间依硅烷偶联剂的品种和溶液的pH值不同而异,从几分钟到几十分钟不等。

配置时水溶液的pH值一般控制在3-5之间,pH值高于5或低于3将会促进聚合物的生成。

因此,已配置好的、已水解的硅烷偶联剂不能放置太久,否则会自行缩聚而失效。

(2)硅烷偶联剂用量计算:硅烷偶联剂用量与偶联剂的品种及填料的比面积有关,假设为单分子层吸附,可按下式进行计算:硅烷偶联剂用量=(填料质量×填料比表面积)/硅烷偶联剂最小包覆面积硅烷偶联剂最小包覆面积以硅烷偶联剂的品种不同而异。

硅烷偶联剂改性水性聚氨酯胶黏剂

硅烷偶联剂改性水性聚氨酯胶黏剂

硅烷偶联剂改性水性聚氨酯胶黏剂张大鹏何立凡王海侨李效玉( 北京化工大学碳纤维与功能高分子教育部重点实验室,北京 100029)摘要: 以聚已二酸-1,4-丁二醇酯( PBA2000) 、甲苯二异氰酸酯( TDI) 、二羟甲基丙酸( DMPA) 和一缩二乙二醇( DEG) 为原料合成了一种聚氨酯预聚体,通过在预聚体中引入可室温交联的硅烷偶联剂,制备得到了一种单组份自交联的水性聚氨酯胶黏剂。

探讨了硅烷偶联剂加入方式,用量对乳液及胶膜性能的影响。

结果表明: 当硅烷偶联剂用量为预聚体质量分数的 1. 5%时,胶黏剂对塑料薄膜 PET/CPP 的粘接强度显著提高,由改性前的 1. 3 N/15mm 增大至 1. 7 N /15 mm; 复合薄膜经过沸水煮后,T 剥离强度由 1. 0 N /15 mm 变为 1. 5 N /15 mm。

关键词: 水性聚氨酯; 复合薄膜; 硅烷偶联剂; 自交联中图分类号: TQ433. 4引言水性聚氨酯胶黏剂以其对各种薄膜广泛的适应性,胶膜优异的柔韧性,耐化学品性等特点而备受人们关注[1 -2]。

大多数水性聚氨酯胶膜遇水易溶胀,耐水性及耐热性不佳,限制了其使用场合[3 -4]。

提高聚氨酯的交联度是改善以上缺点的一个有效途径。

Lewandowski 等[5]向聚氨酯分子链中引入了硅烷衍生物,通过控制硅烷衍生物用量来控制交联结构的密度,适度的交联可以改善胶膜的耐水性和耐热性。

也有文献[6 -8]报导,将有机硅( 一般为端基或侧基带有活性基团的聚硅氧烷) 引入到聚氨酯分子链上可以有效地改善胶膜的耐水性和耐热性,但由于有机硅与聚氨酯相容性差,导致了胶膜力学性能的降低。

而使用小分子的硅烷偶联剂改性水性聚氨酯[9 -10]可以增加相容性,同时改善了聚氨酯胶膜的耐水性、耐热性。

此种交联体系在水性涂料以及双组分的水性胶黏剂中已经得到了广泛的应用[11]。

本文选用 3-氨基丙基三乙氧基硅烷( KH-550)对聚氨酯预聚体进行改性制备出单组份的水性聚氨酯乳液,将此体系引入到复合薄膜用胶黏剂领域。

硅烷偶联剂改性

硅烷偶联剂改性

改性剂用量对沉降体积的影响改性剂用量与沉降体积的关系曲线,见图1。

从图1可看出,沉降体积随着改性剂用量的增加而增加,但是提高幅度不是很大。

在实际应用中真正起到改性作用的是少量的改性剂所形成的单分子层,因此过多的增加改性剂的用量是不必要的,不仅会在粒子间搭桥导致絮凝,使稳定性变差,而且还增加不必要的经济付出。

实验所选择的硅烷偶联剂的用量在1%~2%。

2.2 改性时间对沉降体积的影响实验结果见图2。

从图2可看出,当改性时间为10min时,沉降体积达到极大值,然后随着改性时间的增加,沉降体积缓慢下降。

在改性时间为30min 和60min时,均保持在一个相对稳定的水平。

但是改性时间为40min时出现异常,沉降体积大幅度下降。

硅烷偶联剂对高岭土进行表面改性,理论上以化学键合作用为主,改性效果不会出现较大的变化,出现异常的原因还有待进一步的研究。

2.3 改性温度对沉降体积的影响采用硅烷偶联剂作为改性剂时,为了保证较好的改性效果,需要确定适宜的表面改性温度。

改性温度对沉降体积的影响,见图3。

从图3可看出,沉降体积随改性温度的增加而增加。

当温度升高至90℃时,沉降体积达到最大值14.4ml。

继续提高温度,则沉降体积下降。

因此,改性剂对高岭土的最佳改性温度为90℃。

沉降性能分析称取2g改性前后的纳米高岭土,置于50ml液体石蜡中,磁力搅拌10min,倒入刻度试管,静置观察沉降性能。

纳米高岭土在液体石蜡中的沉降体积随时间的变化关系,见图4。

从图4可看出,未经改性的纳米高岭土由于表面具有亲水性,在有机相中倾向于团聚,大粒子沉降较快,小粒子被沉降较快的大粒子所夹带,所以在开始的时间内沉降很快,沉降速度随时间增加逐渐减慢;而高岭土经过改性处理后,表面呈现亲有机性,在有机相中倾向于分散均匀,所以在开始的时间内沉降速度较未改性高岭土慢。

随着沉降时间的增加,沉降体积均达到平衡。

未改性高岭土的平衡沉降体积为13.4ml,而经过硅烷偶联剂改性处理后,样品的平衡沉降体积为21.3ml。

硅烷偶联剂改性纳米二氧化硅(1)

硅烷偶联剂改性纳米二氧化硅(1)

硅烷偶联剂改性纳米二氧化硅概述现代材料表面改性技术是一门由多种学科发展而来的技术组合,其发展经历了很长,很复杂的过程。

表面改性技术通过对基体材料表面采用化学的、物理的方法改变材料或工件表面的化学成分或组织结构以提高机器零件或材料性能。

它包括化学热处理(渗氮、渗碳、渗金属等)、表面涂层(低压等离子喷涂、低压电弧喷涂)、激光重熔复合等薄膜镀层(物理气相沉积、化学气相沉积等)和非金属涂层技术等。

这些用以强化零件或材料表面的技术,赋予零件耐高温、防腐蚀、耐磨损、抗疲劳、防辐射、导电、导磁等各种新的特性,使原来在高速、高温、高压、重载、腐蚀介质环境下工作的零件提高了可靠性、延长了使用寿命,具有很大的经济意义和推广价值。

纳米粉体是能够通过表面处理的方法来获得或者保持其特有的纳米粒子的特性,这种表面处理方法工业上称为包膜处理或表面改性处理。

由于对纳米粉体的制造要求不同于常规无机粉体的制造要求,因此表面改性处理主要针对防止纳米粉体团聚,并帮助纳米粒子在应用体系中也以纳米形态存在,这个处理过程通常称为粉体改性处理,使用的表面处理剂称为有机改性剂。

粒子增韧改性聚合物和杂化材料的研究取得了显近年来,用无机纳米SiO2著效果。

由于纳米SiO具有表面界面效应,量子尺寸效应,宏观量子隧道效应和2特殊光、电特性,高磁阻现象以及其在高温下仍具有的高强、高韧、稳定性好等可广泛应用于各个领域,具有广阔的应用前景和巨大的商奇异特性,使纳米SiO2业价值。

但同时由于纳米SiO的粒径小、比表面积大、具有亲水基团(一OH),表2面活性高,稳定性差,使得颗粒之间极易相互团聚在聚合物中不易分散,并且由表面亲水疏油在纳米效应引起的一系列优异特性会被减弱或消失。

同时由于SiO2有机介质中难以浸润和分散,直接填充到材料中,很难发挥其作用,为了避免此现象发生就需要在其颗粒表面进行接枝改性。

常用的改性剂有硅烷偶联剂、钛酸酯偶联剂、超分散剂等。

一、实验目的1)了解表面改性的目的、方法和基本原理。

基于硅烷偶联剂表面改性制备Al2O3

基于硅烷偶联剂表面改性制备Al2O3

CHEMICAL INDUSTRY AND ENGINEERING PROGRESS 2017年第36卷第2期·652·化 工 进 展基于硅烷偶联剂表面改性制备Al 2O 3/PVDF 杂化膜朱子沛,汤旭,何其,董浩,朱良,肖凯军(华南理工大学食品科学与工程学院,广东 广州 510640)摘要:采用硅烷偶联剂(2-氰乙基)三乙氧基硅烷对纳米Al 2O 3粒子进行表面改性,利用热致相变法制备了改性Al 2O 3/PVDF 有机无机杂化膜,研究了改性Al 2O 3的添加量对杂化膜性能的影响。

经(2-氰乙基)三乙氧基硅烷改性后,纳米Al 2O 3粒子的团聚减少,改性后纳米Al 2O 3的平均最小粒径为52.23nm 。

与纯PVDF 膜比较,改性纳米Al 2O 3的添加改善了PVDF 膜的形貌结构,改性Al 2O 3/PVDF 杂化膜形成的球晶明显增加,球晶的密度尺寸缩小,杂化膜中形成了大量连通的界面孔,膜的孔隙率升高,改善了PVDF 膜的力学性能和亲水性,提高了截留率。

当纳米粒子添加量达到5%时,膜的截留率提高了7.2%,膜的纯水通量达到了593.95L/(m 2·h),膜强度达到5.0MPa 。

关键词:硅烷偶联剂;表面改性;聚偏氟乙烯;超滤膜中图分类号:TB332 文献标志码:A 文章编号:1000–6613(2017)02–0652–06 DOI :10.16085/j.issn.1000-6613.2017.02.035Preparation of Al 2O 3/PVDF hybrid membrane from surface-modifiedsilane coupling agentZHU Zipei ,TANG Xu ,HE Qi ,DONG Hao ,ZHU Liang ,XIAO Kaijun(College of Food Sciences and Engineering ,South China University of Technology ,Guangzhou 510640,Guangdong ,China )Abstract :Nano-Al 2O 3 was surface-modified by silane coupling agent (2-cyanogen ethyl) triethoxysilane ,with which the modified Al 2O 3/PVDF organic-inorganic hybrid membrane was prepared by thermally induced phase transition. Effect of the dosage of the modified Al 2O 3 on the performance of the hybrid membrane was examined. After modified by (2-cyanogen ethyl) triethoxysilane ,the number of nano-Al 2O 3 particle clusters was reduced ,and the averaged minimum size of nano-Al 2O 3 particles decreased to 52.23nm.The addition of modified nano-Al 2O 3 improved the morphology of hybrid membrane ,compared with the pure PVDF membrane ,the spherulite density increased and the spherulite size of hybrid membrane became smaller ,and a lot of holes through the interface were formed ,resulting in the increased membrane porosity. The hydrophilicity ,mechanical properties and rejection of PVDF membrane were improved greatly with the addition of modified Al 2O 3. When the amount of Al 2O 3 was more than 5%,the rejection of the film increased by 7.2%,and the pure water flux of the modified Al 2O 3/PVDF membrane was 593.95L/(m 2·h),and mechanical strength of hybrid membrane reached 5.0MPa. Key words :silane coupling agent ;surface modification ;polyvinylidene fluoride (PVDF );ultrafiltration membrane第一作者:朱子沛(1991—)男,硕士研究生。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
降低 的趋势;当偶联剂质量分数约为1. 5 %时,复合材料性能 达到最佳值。
铝酸酯偶联剂
◦ 铝酸酯偶联剂是一种新型偶联剂,其结构与钛酸酯偶联剂 类似,分子中存在两类活性基团,一类可与无机填料表面 作用;另一类可与树脂分子缠结,由此在无机填料与基体 树脂之间产生偶联作用。
◦ 铝酸酯偶联剂在改善制品的物理性能,如提高冲击强度和 热变形温度方面,可与钛酸酯偶联剂相媲美;其成本较低, 价格仅为钛酸酯偶联剂的一半,且具有色浅、无毒、使用 方便等特点,热稳定性能优于钛酸酯偶联剂。
研究了ZnO 体积分数和界面对复合材料力学性能和热 性能的影响规律,为导热复合材料制备过程中基体与填
料配比的选择、合适的填料表面处理方法以及实现力学 性能与热性能的兼顾提供了指导依据。研究结果表明:
当φ(ZnO) < 20 %时,填料的加入有利于全面提高复合
材料的力学性能和热性能;NDZ-132偶联剂的加入有助 于改善聚丙烯/ ZnO 复合材料的热性能与力学性能,但 是界面强度过大会使材料呈现脆性,冲击性能略有下降。 加入大分子偶联剂相当于在填料表面增加一个柔性层, 有利于提高材料的冲击性能,但是不利于热能在材料内 部传递。随着NDZ-132偶联剂质量分数的增加,复合材
化学键理论
该理论认为偶联剂含有一种化学官能团,能与玻
璃纤维表面的硅醇基团或其他无机填料表面的分子作 用形成共价键;此外,偶联剂还含有一种别的不同的 官能团与聚合分子键合,以获得良好的界面结合,偶 联剂就起着在无机相与有机相之间相互连接的桥梁似 的作用。
浸润效应和表面能理论
1963年,ZISMAN在回顾与粘合有关的表面化学 和表面能的已知方面的内容时,曾得出结论,在复合 材料的制造中,液态树脂对被粘物的良好浸润是头等 重要的,如果能获的完全的浸润,那么树脂对高能表 面的物理吸附将提供高于有机树脂的内聚强度的粘接 强度。
什么是偶联剂? 偶联剂作用的基本理论有哪些? 偶联剂的分类?
偶联剂是一种同时具有能分别与无机物和有机物
反应的两种性质不同官能团的低分子化合物。其 分子结构最大的特点是分子中含有化学性质不相 同的两个基团,一个基团的性质亲无机物,易于 与无机物表面起化学反应;另一个基团亲有机物, 能与聚合物起化学反应,生成化学键,或者能互 相融合在一起。
分类
◦ 单烷氧基类 含有异丙氧基的产品,这类产品耐水性差,主要适用于干 燥的颜、填料的处理表面处理
螯合型
含有氧乙酸螯合基或乙二醇螯合基的产品,这类产品耐水
性好,适用于高含水量颜料、填料的处理,或在水性涂料 中直接使用。
配位型
是一种在通常的四烷基钛酸酯上附加了亚磷酸酯从而在改 进耐水性的同时,又能产生含磷化合物的功能性产品。
可变形层理论
为了缓和复合材料冷却时由于树脂和填料之间热
收缩率的不同而产生的界面应力,就希望与处理过的 无机物邻接的树脂界面是一个柔曲性的可变形相,这 样复合材料的韧性最大。偶联剂处理过的无机物表面 可能会择优吸收树脂中的某一配合剂,相间区域的不 均衡固化,可能导致一个比偶联剂在聚合物与填料之 间的多分子层厚得多的挠性树脂层。这一层就被称之 为可变形层,该层能松弛界面应力,阻止界面裂缝的 扩展,因而改善了界面的结合强度,提高了复合材料 的机械性能。
联剂,又大大丰富了硅烷偶联剂的品种。近几十年来,随
着玻璃纤维增强塑料的发展,促进了各种偶联剂的研究与
开发。改性氨基硅烷偶联剂、过氧基硅烷偶联剂和叠氮基 硅烷偶联剂的合成与应用就是这一时期的主要成果。
结构和作用机理
◦ 硅烷偶联剂的通式为RnSiX(4-n),式中R为非水解 的、可与高分子聚合物结合的有机官能团。根据高分子聚 合物的不同性质,R应与聚合物分子有较强的亲和力或反 应能力,如甲基、乙烯基、氨基、环氧基、巯基、丙烯酰 氧丙基等。X为可水解基团,遇水溶液、空气中的水分或 无机物表面吸附的水分均可引起分解,与无机物表面有较 好的反应性。典型的X基团有烷氧基、芳氧基、酰基、氯 基等;最常用的则是甲氧基和乙氧基,它们在偶联反应中 分别生成甲醇和乙醇副产物。由于氯硅烷在偶联反应中生 成有腐蚀性的副产物氯化氢,因此要酌情使用。
◦ 硅烷偶联剂是人们研究最早、应用最早的偶联剂。由于其 独特的性能及新产品的不断问世,使其应用领域逐渐扩大,
已成为有机硅工业的重要分支。它是近年来发展较快的一
类有机硅产品,其品种繁多,结构新颖,仅已知结构的产 品就有百余种。1945年前后由美国联碳(UC)和道康宁 (Dow Corning)等公司开发和公布了一系列具有典型结 构的硅烷偶联剂;1955年又由UC公司首次提出了含氨基 的硅烷偶联剂;从1959年开始陆续出现了一系列改性氨 基硅烷偶联剂;20世纪60年代初期出现的含过氧基硅烷 偶联剂和60年代末期出现的具有重氮和叠氮结构的硅烷偶
约束层理论
与可变形层理论相对,约束层理论认为在无机填料
区域内的树脂应具有某种介于无机填料和基质树脂之 间的模量,而偶联剂的功能就在于将聚合物结构“紧 束”在相间区域内。从增强后的复合材料的性能来看, 要获得最大的粘接力和耐水解性能,需要在界面处有 一约束层。至于钛酸酯偶联剂,其在热塑体系中及含 填料的热固性复合物中与有机聚合物的结合,主要以 长链烷基的相溶和相互缠绕为主,并和无机填料形成 共价键。以上假设均从不同的理论侧面反应了偶联剂 的偶联机制。在实际过程中,往往是几种机制共同作 用的结果。
硅烷偶联剂由于在分子中具有这两类化学基团,因此既能与
无机物中的羟基反应,又能与有机物中的长分子链相互作用 起到偶联的功效,其作用机理大致分以下3步:(1)X基水 解为羟基;(2)羟基与无机物表面存在的羟基生成氢键或 脱水成醚键;(3)R基与有机物相结合。
钛酸酯偶联剂
◦ 钛酸酯偶联剂最早出现于20世纪70年代。1974年12月美 国Kenrich石油化学公司报道了一类新型的偶联剂, 它对许多干燥粉体有良好的偶联效果。此后加有钛酸酯偶 联剂的无机物填充聚烯烃复合材料相继问世。目前钛酸酯 偶联剂已成为复合材料不可缺少的原料之一。
相关文档
最新文档