数量关系计算公式方面3
数量关系重点公式及例题讲解

数量关系重点公式及例题讲解数量关系重点公式:重点公式1、弃9验算法利用被9除所得余数的性质,对四则运算的结果进行检验的一种方法,叫“弃9验算法”。
用此方法验算,首先要找出一个数的“弃9数”,即把一个数的各个数位上的数字相加,如果和大于9或等于9都要减去9,直至剩下的一个小于9的数,我们把这个数称为原数的“弃9数”。
对于加减乘运算,可利用原数的弃九数替代进行运算,结果弃九数与原数运算后的弃九数相等注:1.弃九法不适合除法2.当一个数的几个数码相同,但0的个数不同,或数字顺序颠倒,或小数点的位置不同时,它的弃9数却是相等的。
这样就导致弃9数虽相同,而数的实际大小却不相同的情况,这一点要特别注意重点公式2、传球问题重点公式N个人传M次球,记X=N-1^M/N,则与X最接近的整数为传给“非自己的某人”的方法数,与X第二接近的整数便是传给自己的方法数重点公式3、整体消去法在较复杂的计算中,可以将近似的数化为相同,从而作为一个整体消去重点公式4、裂项公式1/nn-k =1/k 1/n-k-1/n重点公式5、平方数列求和公式1^2+2^2+3^2…+n^2=1/6 nn+12n+1重点公式6、立方数列求和公式1^3+2^3+3^3…+n^3=[1/2 nn+1 ]^2重点公式7、行程问题1分别从两地同时出发的多次相遇问题中,第N次相遇时,每人走过的路程等于他们第一次相遇时各自所走路程的2n-1倍2A.B距离为S,从A到B速度为V_1,从B回到A速度为V_2,则全程平均速度V= 〖2V〗_1 V_2/V_1+V_2 ,3沿途数车问题:同方向相邻两车的发车时间间隔×车速=同方向相邻两车的间隔4环形运动问题:异向而行,则相邻两次相遇间所走的路程和为周长同向而行,则相邻两次相遇间所走的路程差为周长5自动扶梯问题能看到的级数=人速+扶梯速×顺行运动所需时间能看到的级数=人速-扶梯速×逆行运动所需时间6错车问题对方车长为路程和,是相遇问题路程和=速度和×时间7队伍行走问题V_1为传令兵速度,V_2为队伍速度,L为队伍长度,则从队尾到队首的时间为:L/V_1-V_2从队首到队尾的时间为:L/V_1+V_2重点公式8、比赛场次问题N为参赛选手数,淘汰赛仅需决出冠亚军比赛场次=N-1,淘汰赛需决出前四名比赛场次=N,单循环赛比赛场次=_N^2,双循环赛比赛场次=A_N^2重点公式9、植树问题两端植树:距离/间隔+1 = 棵数一端植树环形植树:距离/间隔= 棵数俩端均不植树:距离/间隔-1=棵数双边植树:距离/间隔-1*2=棵数重点公式10、方阵问题最为层每边人数为N方阵总人数=N^2最外层总人数=N-1×4相邻两层总人数差=8行数和列数>3去掉一行一列则少2N-1人空心方阵总人数=最外层每边人数-层数×层数×4重点公式11、几何问题N边形内角和=N-2×180°球体体积=4/3 πr^3圆柱体积=πr^2 h圆柱体积=1/3 πr^2 h重点公式12、牛吃草问题牛头数-每天长草量×天数=最初总草量重点公式13、日期问题一年加1,闰年加2,小月30天加2,大月31天加3,28年一周期 4年1闰,100年不闰,400年再闰重点公式14、页码问题如:一本书的页码一共用了270个数字,求这本书的页数。
数量关系公式大全

数量关系公式大全01.分数比例形式整除若a∶b=m∶n(m、n互质),则a是m的倍数,b是n的倍数。
若a=m/n×b,则a=m/(m+n)×(a+b),即a+b是m+n的倍数02.尾数法选项尾数不同,且运算法则为加、减、乘、乘方运算,优先使用尾数进行判定;所需计算数据多,计算复杂时考虑尾数判断快速得到答案。
常用在容斥原理中。
03.等差数列相关公式和=(首项+末项)×项数÷2=平均数×项数=中位数×项数;项数=(末项-首项)÷项数+1。
从1开始,连续的n个奇数相加,总和=n×n,如:1+3+5+7=4×4=16,……04.几何边端问题相关公式单边线型植树公式(两头植树):棵树=总长÷间隔+1,总长=(棵树-1)×间隔植树不移动公式:在一条路的一侧等距离栽种m棵树,然后要调整为种n 棵树,则不需要移动的树木棵树为:(m-1)与(n-1)的最大公约数+1棵;单边环型植树公式(环型植树):棵树=总长÷间隔,总长=棵树×间隔单边楼间植树公式(两头不植):棵树=总长÷间隔-1,总长=(棵树+1)×间隔方阵问题:最外层总人数=4×(N-1),相邻两层人数相差8人,n阶方阵的总人数为n²05.火车过桥核心公式路程=桥长+车长(火车过桥过的不是桥,而是桥长+车长)06.相遇追及问题公式相遇距离=(速度1+速度2)×相遇时间追及距离=(速度1-速度2)×追及时间07.队伍行进问题公式队首→队尾:队伍长度=(人速+队伍速度)×时间队尾→队首:队伍长度=(人速-队伍速度)×时间08.流水行船问题公式顺速=船速+水速,逆速=船速-水速09.往返相遇问题公式两岸型两次相遇:S=3S1-S2,(第一次相遇距离A为S1,第二次相遇距离B为S2)单岸型两次相遇:S=(3S1+S2)/2,(第一次相遇距离A为S1,第二次相遇距离A为S2);左右点出发:第N次迎面相遇,路程和=(2N-1)×全程;第N次追上相遇,路程差=(2N-1)×全程。
小学数学常用公式大全数量关系计算公式

小学数学常用公式大全(数量关系计算公式)1、单价×数量=总价2、单产量×数量=总产量3、速度×时间=路程4、工效×时间=工作总量5、加数+加数=和一个加数=和+另一个加数被减数-减数=差减数=被减数-差被减数=减数+差因数×因数=积一个因数=积÷另一个因数被除数÷除数=商除数=被除数÷商被除数=商×除数有余数的除法:被除数=商×除数+余数一个数连续用两个数除,可以先把后两个数相乘,再用它们的积去除这个数,结果不变。
例:90÷5÷6=90÷(5×6)6、1公里=1千米 1千米=1000米1米=10分米 1分米=10厘米 1厘米=10毫米1平方米=100平方分米 1平方分米=100平方厘米1平方厘米=100平方毫米1立方米=1000立方分米 1立方分米=1000立方厘米1立方厘米=1000立方毫米1吨=1000千克 1千克= 1000克= 1公斤= 1市斤1公顷=10000平方米。
1亩=平方米。
1升=1立方分米=1000毫升 1毫升=1立方厘米7、什么叫比:两个数相除就叫做两个数的比。
如:2÷5或3:6或1/3比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变。
8、什么叫比例:表示两个比相等的式子叫做比例。
如3:6=9:189、比例的基本性质:在比例里,两外项之积等于两内项之积。
10、解比例:求比例中的未知项,叫做解比例。
如3:χ=9:1811、正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。
如:y/x=k( k一定)或kx=y12、反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。
数量关系公式大全

数量关系公式大全1.百分数公式:-百分数=(所占数量/总数量)×100%2.比例公式:-比例=已知数量/未知数量3.增长率公式:-增长率=增加的数量/原始数量4.直线方程:- y = mx + c,其中m是斜率,c是y轴截距5.平均值公式:-平均值=(所有数据之和)/(数据个数)6.学生t分布公式(用于计算样本平均值的置信度):-t=(平均值-总体平均值)/标准误差7.标准差公式(用于计算数据集的离散程度):- 标准差 = sqrt((每个数据值 - 平均值)^ 2的总和 / 数据个数)8.四分位数公式(用于描述数据集分布):-第一四分位数=(n+1)/4个数据点-第二四分位数(中位数)=(n+1)/2个数据点-第三四分位数=3(n+1)/4个数据点9.正态分布公式:-正态分布=(1/根号(2πσ^2))×e^(-(x-μ)^2/2σ^2)10.欧拉公式(描述复数和三角函数之间的关系):- e^(ix) = cos(x) + i × sin(x)11.斐波那契数列公式(描述费波那契数列中的数量关系):-Fn=Fn-1+Fn-2,其中F0=0,F1=112.二项式系数公式(描述二项式展开中的系数):-nCk=n!/(k!×(n-k)!),其中n为整数,k为介于0和n之间的整数13.反比例公式:-两个量A和B成反比例关系,即A×B=k(k为常数)14.几何级数公式(描述几何级数中的数量关系):-S=a/(1-r),其中a是首项,r是公比15.面积公式:-矩形面积=长×宽-三角形面积=(底边长×高)/2-圆面积=π×半径^2以上是一些常见的数量关系公式,它们在数学和科学中经常被使用。
通过掌握这些公式,我们可以更好地理解和解决各种与数量关系相关的问题。
小学1-6年级必须掌握的数量关系计算公式

小学1-6年级必须掌握的数量关系计算公式1、单价×数量=总价2、单产量×数量=总产量3、速度×时间=路程4、工效×时间=工作总量5、加数+加数=和一个加数=和-另一个加数被减数——减数=差减数=被减数——差被减数=减数+差因数×因数=积一个因数=积÷另一个因数被除数÷除数=商除数=被除数÷商被除数=商×除数有余数的除法:被除数=商×除数+余数一个数连续用两个数除,可以先把后两个数相乘,再用它们的积去除这个数,结果不变。
例:90÷5÷6=90÷(5×6)6、1公里=1千米1千米=1000米1米=10分米1分米=10厘米1厘米=10毫米1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米1立方米=1000立方分米1立方分米=1000立方厘米1立方厘米=1000立方毫米1吨=1000千克1千克= 1000克= 1公斤= 1市斤1公顷=10000平方米。
1亩=666.666平方米。
1升=1立方分米=1000毫升1毫升=1立方厘米7、什么叫比:两个数相除就叫做两个数的比。
如:2÷5或3:6或1/3比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变。
8、什么叫比例:表示两个比相等的式子叫做比例。
如3:6=9:189、比例的基本性质:在比例里,两外项之积等于两内项之积。
10、解比例:求比例中的未知项,叫做解比例。
如3:χ=9:1811、正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。
如:y/x=k( k一定)或kx=y12、反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。
数量关系公式大全

数量关系公式大全数量关系是指事物之间的数量大小关系。
在数学中,我们可以通过公式来表示数量关系。
以下是一些常见的数量关系公式。
1.平均数公式平均数是一组数据的总和除以数据的个数。
设有n个数x1, x2, ..., xn,则平均数为:平均数 = (x1 + x2 + ... + xn) / n2.比例公式比例是两个或多个量之间的数量关系。
设有两个比例为a:b和c:d,则可以得到以下公式:a/b = c/d 或 ad = bc3.百分比公式百分比是一个数与100的乘积。
设有一个数x,它的百分比表示为p%,则可以得到以下公式:x=p/1004.线性关系公式线性关系是指两个变量之间的关系可以用直线表示。
设有两个变量x和y,它们之间的线性关系可以用y = mx + c来表示,其中m是斜率,c是截距。
5.比率公式比率是两个不同单位的数量之比。
设有两个量x和y,它们的比率表示为x:y,则可以得到以下公式:x/y=a/b6.百分数增减公式百分数增加或减少是指一个数在另一个数基础上增加或减少百分比。
设有一个数x,在它的基础上增加或减少p%后得到y,则可以得到以下公式:y=(100±p)x/1007.百分数增长率公式百分数增长率是指一些数在一段时间内的增长百分比。
设有一个数x,在一段时间t后增长p%,则可以得到以下公式:y=x(1+p/100)^t8.利息公式利息是指通过投资或贷款而得到的额外收入或支付的费用。
设有一个本金P,投资或贷款时间为t,年利率为r,则可以得到以下公式:利息=P*r*t9.积分和微分公式积分和微分是微积分学中的重要概念。
积分是一个函数在一些区间上的总体积,微分是函数在一些点上的斜率。
积分和微分有一些重要的公式,如牛顿-莱布尼茨公式和对数微分法则等。
以上是一些常见的数量关系公式,它们在数学和实际生活中都有着重要的应用。
通过了解和应用这些公式,我们可以更好地理解数量之间的关系,并进行相关的计算和分析。
数量关系计算公式方面

数量关系计算公式方面1、单价×数量=总价2、单产量×数量=总产量3、速度×时间=路程4、工效×时间=工作总量6、1公里=1千米1千米=1000米1米=10分米1分米=10厘米1厘米=10毫米1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米1立方米=1000立方分米1立方分米=1000立方厘米1立方厘米=1000立方毫米1吨=1000千克1千克= 1000克= 1公斤= 1市斤1公顷=10000平方米。
1亩=666.666平方米。
1升=1立方分米=1000毫升1毫升=1立方厘米8、什么叫比例:表示两个比相等的式子叫做比例。
如3:6=9:189、比例的基本性质:在比例里,两外项之积等于两内项之积。
10、解比例:求比例中的未知项,叫做解比例。
如3:χ=9:1811、正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。
如:y/x=k( k一定)或kx=y12、反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。
如:x×y = k( k一定)或k / x = y16、最大公约数:几个数都能被同一个数一次性整除,这个数就叫做这几个数的最大公约数。
(或几个数公有的约数,叫做这几个数的公约数。
其中最大的一个,叫做最大公约数。
)17、互质数:公约数只有1的两个数,叫做互质数。
18、最小公倍数:几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个叫做这几个数的最小公倍数。
19、通分:把异分母分数的分别化成和原来分数相等的同分母的分数,叫做通分。
(通分用最小公倍数)20、约分:把一个分数化成同它相等,但分子、分母都比较小的分数,叫做约分。
人教版小学数学公式大全

人教版小学1----6年级数学公式数量关系计算公式方面1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数总数÷总份数=平均数2、1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数3、速度×时间=路程路程÷速度=时间路程÷时间=速度4、单价×数量=总价总价÷单价=数量总价÷数量=单价5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率6、加数+加数=和和-一个加数=另一个加数7、被减数-减数=差被减数-差=减数差+减数=被减数8、因数×因数=积积÷一个因数=另一个因数9、被除数÷除数=商被除数÷商=除数商×除数=被除数小学数学几何形体周长面积体积计算公式1、长方形的周长=(长+宽)×2 C=(a+b)×22、形的周长=边长×4 C=4a3、长方形的面积=长×宽S=ab4、形的面积=边长×边长S=a.a=5、三角形的面积=底×高÷2 S=ah÷26、平行四边形的面积=底×高S=ah7、梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷28、直径=半径×2 d=2r 半径=直径÷2 r= d÷29、圆的周长=圆周率×直径=圆周率×半径×2 c=πd =2πr10、圆的面积=圆周率×半径×半径小学数学图形计算公式1 、形C周长S面积a边长周长=边长×4 C=4a边长=周长÷4 a=C÷4面积=边长×边长S=a×a=a22 、体V:体积a:棱长表面积=棱长×棱长×6 S表=a×a×6体积=棱长×棱长×棱长V=a×a×a=a33 、长方形C周长S面积a长b宽周长=(长+宽)×2 C=(a+b)×2长=周长÷2-宽宽=周长÷2-长面积=长×宽S=a×b4 、长方体V:体积s:面积a:长b: 宽h:高(1)表面积=长×宽×2+长×高×2+宽×高×2 S=2(ab+ah+bh)(2)体积=长×宽×高V=abh长=体积÷(宽×高)宽=体积÷(长×高)高=体积÷(长×宽)5 三角形s面积a底h高面积=底×高÷2 s=ah÷2三角形高=面积×2÷底三角形底=面积×2÷高6 平行四边形s面积a底h高面积=底×高s=ah底=面积÷高高=面积÷底7 梯形s面积a上底b下底h高面积=(上底+下底)×高÷2 s=(a+b)× h÷2高=面积×2÷(上底+下底)上底=面积×2÷高-下底下底=面积×2÷高-上底8 圆形S面积C周长∏ d=直径r=半径直径=半径×2 d=2r 半径=直径÷2 r= d÷2(1)周长=直径×π=2×π×半径C= π d =2πr直径=周长÷π d= C ÷ π半径=周长÷(2π)r=C÷(2π)(2)面积=π×半径×半径s=πr29 圆柱体v:体积h:高s;底面积r:底面半径c:底面周长(1)侧面积=底面周长×高①侧面积=π d×高(据直径求侧面积)②侧面积=2πr×高(据半径求侧面积)(2)表面积=侧面积+底面积×2①π d×高+π()2×2(据直径求表面积)②2πr×高+π r2 ×2(据半径求表面积)(3)体积=底面积×高V=Sh底面积=体积÷高S=V÷H高=体积÷底面积H=V÷S长方体(体、圆柱体)的体积=底面积×高V=Sh10 圆锥体v:体积h:高s;底面积r:底面半径体积=底面积×高÷3 V= S H底面积=体积×3÷高高=体积×3÷底面积长度单位换算1公里=1千米1千米=1000米1米=10分米1分米=10厘米1米=100厘米1厘米=10毫米面积单位换算1平方千米=100公顷1公顷=10000平方米1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米1亩=666.666平方米体(容)积单位换算1立方米=1000立方分米1立方分米=1000立方厘米1立方分米=1升1立方厘米=1毫升1立方米=1000升重量单位换算1吨=1000 千克1千克=1000克1千克=1公斤(1公斤= 2市斤)人民币单位换算1元=10角1角=10分1元=100分时间单位换算1世纪=100年1年=12月大月(31天)有:1\3\5\7\8\10\12月小月(30天)的有:4\6\9\11月平年2月28天, 闰年2月29天平年全年365天, 闰年全年366天1日=24小时1时=60分1分=60秒1时=3600秒小学数学定义定理公式(二)一、算术方面1.加法交换律:a+b=b+a两数相加交换加数的位置,和不变。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数量关系计算公式方面1、每份数×份数=总数/总数÷每份数=份数/ 总数÷份数=每份数2、1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数3、速度×时间=路程路程÷速度=时间路程÷时间=速度4、单价×数量=总价总价÷单价=数量总价÷数量=单价5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率6、加数+加数=和和-另一个加数=一个加数7、被减数-减数=差被减数-差=减数差+减数=被减数8、因数×因数=积积÷另一个因数=一个因数9、被除数÷除数=商被除数÷商=除数商×除数=被除数小学数学图形计算公式1 、正方形C周长S面积a边长周长=边长×4 C=4a边长=周长÷4 a=C÷4面积=边长×边长S=a×a=a22 、正方体V:体积a:棱长表面积=棱长×棱长×6 S表=a×a×6体积=棱长×棱长×棱长V=a×a×a=a33 、长方形C周长S面积a长b宽周长=(长+宽)×2 C=(a+b)×2长=周长÷2-宽宽=周长÷2-长面积=长×宽S=a×b4 、长方体V:体积s:面积a:长b: 宽h:高(1)表面积=长×宽×2+长×高×2+宽×高×2S=2(ab+ah+bh)(2)体积=长×宽×高V=abh长=体积÷(宽×高)宽=体积÷(长×高)高=体积÷(长×宽)5 三角形s面积a底h高面积=底×高÷2 s=ah÷2三角形高=面积×2÷底三角形底=面积×2÷高6 平行四边形s面积a底h高面积=底×高s=ah底=面积÷高高=面积÷底7 梯形s面积a上底b下底h高面积=(上底+下底)×高÷2 s=(a+b)× h÷2高=面积×2÷(上底+下底)上底=面积×2÷高-下底下底=面积×2÷高-上底8 圆形S面积C周长∏ d=直径r=半径直径=半径×2 d=2r 半径=直径÷2 r= d÷2(1)周长=直径×π=2×π×半径C= π d =2πr直径=周长÷π d= C ÷ π半径=周长÷(2π)r=C÷(2π)(2)面积=π×半径×半径s=πr29 圆柱体v:体积h:高s;底面积r:底面半径c:底面周长(1)侧面积=底面周长×高①侧面积=π d×高(据直径求侧面积)②侧面积=2πr×高(据半径求侧面积)(2)表面积=侧面积+底面积×2①π d×高+π()2×2(据直径求表面积)②2πr×高+π r2 ×2(据半径求表面积)(3)体积=底面积×高V=Sh底面积=体积÷高S=V÷H高=体积÷底面积H=V÷S长方体(正方体、圆柱体)的体积=底面积×高V=Sh10 圆锥体v:体积h:高s;底面积r:底面半径体积=底面积×高÷3 V= S H底面积=体积×3÷高高=体积×3÷底面积利润与折扣问题利润=售出价-成本利润率=利润÷成本×100%=(售出价÷成本-1)×100%涨跌金额=本金×涨跌百分比折扣=实际售价÷原售价×100%(折扣<1)原售价=实际售价÷折扣实际售价=原售价×折扣应纳税额=总收入×税率税率=应纳税额÷总收入总收入=应纳税额÷税率利息=本金×利率×时间税后利息=本金×利率×时间×(1-20%)长度单位换算1公里=1千米1千米=1000米1米=10分米1分米=10厘米1米=100厘米1厘米=10毫米面积单位换算1平方千米=100公顷1公顷=10000平方米1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米1亩=666.666平方米体(容)积单位换算1立方米=1000立方分米1立方分米=1000立方厘米1立方分米=1升1立方厘米=1毫升1立方米=1000升重量单位换算1吨=1000 千克1千克=1000克1千克=1公斤(1公斤= 2市斤)人民币单位换算1元=10角1角=10分1元=100分时间单位换算1世纪=100年1年=12月大月(31天)有:1\3\5\7\8\10\12月小月(30天)的有:4\6\9\11月平年2月28天, 闰年2月29天平年全年365天, 闰年全年366天1日=24小时1时=60分1分=60秒1时=3600秒小学数学定义定理公式(二)一、算术方面1.加法交换律:a+b=b+a两数相加交换加数的位置,和不变。
2.加法结合律:(a+b)+c=a+(b+c)三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。
3.乘法交换律:a×b=b×a两数相乘,交换因数的位置,积不变。
4.乘法结合律:(a×b)×c=a×(b×c)三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。
5.乘法分配律:(a±b)×c=a×c±b×c两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。
如:(4+2)×5=4×5+2×5,(4-2)×5=4×5-2×56、特殊情况:a ÷ b ÷ c = a ÷(b × c) 、a-b-c= a-(b+c)7、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。
O除以任何不是O的数都得O。
简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。
8、有余数的除法:被除数=商×除数+余数方程、代数与等式等式:等号左边的数值与等号右边的数值相等的式子叫做等式。
等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。
方程式:含有未知数的等式叫方程式。
如:3x =9分数分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。
分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。
异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。
分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。
异分母的分数相加减,先通分,然后再加减。
分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。
分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。
异分母的分数相加减,先通分,然后再加减。
倒数的概念:1.如果两个数乘积是1,我们称一个是另一个的倒数。
(或称这两个数互为倒数)1的倒数是1,0没有倒数。
分数除以整数(0除外),等于分数乘以这个整数的倒数。
分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小分数的除法则:除以一个数(0除外),等于乘这个数的倒数。
真分数:分子比分母小的分数叫做真分数。
假分数:分子比分母大或者分子和分母相等的分数叫做假分数。
假分数大于或等于1。
带分数:把假分数写成整数和真分数的形式,叫做带分数。
分数的基本性质:分数的分子和分母同时乘以或除以一个相同的数(0除外),分数的大小不变。
比和比例什么叫比:两个数相除就叫做两个数的比。
如:2÷5或3:6或1/3 。
比的基本性质:比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变。
什么叫比例:表示两个比相等的式子叫做比例。
如3:6=9:18比例的基本性质:在比例里,两外项之积等于两内项之积。
解比例:求比例中的未知项,叫做解比例。
如3:χ=9:18正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。
如:y/x=k( k一定)或kx=y反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。
如:x×y = k( k一定)或k / x = y=比例尺图上距离=实际距离×比例尺实际距离=图上距离÷比例尺百分数百分数:表示一个数是另一个数的百分之几的数,叫做百分数。
百分数也叫做百分率或百分比。
把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号。
其实,把小数化成百分数,只要把这个小数乘以100%就行了。
把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。
把分数化成百分数,通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。
其实,把分数化成百分数,要先把分数化成小数后,再乘以100%就行了。
把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。
要学会把小数化成分数和把分数化成小数的化发。
倍数与约数最大公约数:几个数公有的约数,叫做这几个数的公约数。
公因数是有限个。
其中最大的一个叫做这几个数的最大公约数。
最小公倍数:几个数公有的倍数,叫做这几个数的公倍数。
公倍数是无限个。
其中最小的一个叫做这几个数的最小公倍数。
互质数:公约数只有1的两个数,叫做互质数。
相临的两个数一定互质。
两个连续奇数一定互质。
1和任何数互质。
通分:把异分母分数的分别化成和原来分数相等的同分母的分数,叫做通分。
(通分用最小公倍数)约分:把一个分数的分子、分母同时除以公约数,分数值不变,这个过程叫约分。