1959年至2012年IMO试题
IMO历届试题

IMO历届试题2010年第51届国际奥林匹克数学竞赛(IMO)试题及答案1.△ABC的内心为I,三角形内一点P满足∠PBA+∠PCA=∠PBC+∠PCB.求证,AP ≥AI,而且等号当且仅当P=I时成立.证:∠PBC+∠PCB= 12(∠ABC+∠ACB)=∠IBC+∠ICB,故∠PBI=∠PCI,从而P,B,C,I四点共圆.但由内外角平分线相垂直知B,C,I与BC 边上的旁切圆心T 共圆,且IT是这个圆的直径,IT的中点O为圆心.由于A,I,T共线(∠BAC的平分线),且P在圆周上,AP+PO≥AO=AI+IO,PO=IO,故AP≥AI.等号当且仅当P为线段AO与圆周的交点即P=I时成立.2.正2006 边形P 的一条对角线称为好的,如果它的两端点将P 的边界分成的两部分各含P的奇数条边.P的边也是好的.设P被不在P的内部相交的2003 条对角线剖分为三角形.试求这种剖分图中有两条边为好的等腰三角形个数的最大值.解:对于剖分图中的任一三角形ABC,P的边界被A,B,C分为3段,A-B段所含P 的边数记作m(AB).由于m(AB)+ m(BC)+ m(CA)=2006,故等腰三角形若有两条好边,它们必是两腰.称这样的等腰三角形为好三角形.考虑任一好三角形ABC(AB=AC).A-B 段上若有别的好三角形,其两腰所截下的P 的边数为偶数.由于剖分图中的三角形互不交叉,而A-B 段上P 的边数为奇数,故A-B 段上必有P的一边α不属于更小的腰段,同理A-C段上也有P的一边β不属于更小的腰段,令△ABC 对应于{α,β}.由上述取法,两个不同的好三角形对应的二元集无公共元,因此好三角形不多于20062=1003 个.设P=A1A2…A2006,用对角线A1A2k+1(1≤k≤1002)及A2k+1A2k+3(1≤k≤1001)所作的剖分图恰有1003 个好三角形.因此,好三角形个数的最大值是1003.3.求最小实数M ,使得对一切实数 a ,b ,c 都成立不等式2222222222|()()()|()ab a b bc b c ca c a M a b c -+-+-++≤解:222222()()()ab a b bc b c ca c a -+-+-()()()()a b b c c a a b c =----++.设a b x b c y c a z a b c s -=-=-=++=,,,,则22222221()3a b c x y z s ++=+++.原不等式成为22222()9||(0)M x y z s xyzs x y z +++++=≥.x y z ,,中两个同号而与另一个反号.不妨设 x y ,≥0.则2221||()2z x y x y x y =+++,≥,2()4x y xy +≥.于是由算术-几何平均不等式222222223()(())2x y z s x y s +++++≥=22222111(()()())222x y x y x y s ++++++6223414())42()||162||8x y s x y s xyzs +=+≥(≥即9232M =时原不等式成立.等号在21s x y ===,,2z =-,即::(23):2:(23)a b c =+-时达到,故所求的最小的9232M =.4.求所有的整数对(x y ,),使得212122x x y +++=.解:对于每组解(x y ,),显然0x ≥,且()x y -,也是解.0x =时给出两组解(02)±,.设x y ,>0,原式化为12(21)(1)(1)x x y y ++=+-.1y +与1y -同为偶数且只有一个被4整除.故3x ≥,且可令12x y m ε-=+ ,其中m 为正的奇数,1ε=±.代入化简得2212(8)x m m ε--=-.若1ε=,2801m m -=≤,.不满足上式.故必1ε=-,此时22212(8)2(8)x m m m -+=--≥,解得3m ≤.但1m =不符合,只有3m =,4x =,23y =.因此共有4组整数解(02)(423)±±,,,.5.设()P x 为n 次(n >1)整系数多项式,k 是一个正整数.考虑多项式()(((())))Q x P P P x = ,其中 P 出现k 次.证明,最多存在 n 个整数t ,使得()Q t t =.证:若Q 的每个整数不动点都是 P 的不动点,结论显然成立.设有整数0x 使得00()Q x x =,00()P x x ≠.作递推数列 1()(012)i i x P x i +== ,,.它以 k 为周期.差分数列1(12)i i i x x i -∆=-= ,,的每一项整除后一项.由周期性及10∆≠,所有||i ∆ 为同一个正整数u .令121111min{}m k m m m m m m x x x x u x x x x x x -++-==-=-= ,,,,,.数列的周期为 2.即0x 是 P 的2-周期点.设 a 是P 的另一个2-周期点,() b P a =(允许b =a ).则0a x -与1b x -互相整除,故01||||a x b x -=-,同理01||||b x a x -=-.展开绝对值号,若二者同取正号,推出01x x =,矛盾.故必有一个取负号而得到01a b x x +=+.记01x x C +=,我们得到:Q 的每个整数不动点都是方程 ()P x x C +=的根.由于P 的次数n 大于 1,这个方程为n 次.故得本题结论.6.对于凸多边形P 的每一边b ,以b 为一边在P 内作一个面积最大的三角形.证明,所有这些三角形的面积之和不小于P 的面积的两倍.证:过P 的每个顶点有唯一的直线平分P 的面积,将该直线与P 的边界的另一交点也看作 P 的顶点(允许若干个相继顶点共线).每两条面积平分线都交于 P 内.P 可 看成一个 2n 边形122-12n n A A A A ,每条对角线i i n A A +是P 的面积平分线(i =1,2,…,n ,2i n i A A +=).设i i n A A +与11i i n A A +++交于 i O (i n i O O +=),由面积关系得到,11()()i i i i i n i n S O A A S O A A ++++=△△,11i i i i i i n i i n O A O A O A O A ++++= ,故i i n i iO A O A +和11i i n i i O A O A +++中必有一个不小于 1,于是以 1i i A A +为一边在 P 内作的面积最大的三角形的面积11111()max{()()}2()i i i n i i i n i i i i i S A A S A A A S A A A S O A A +++++++≥△,△≥△.对于每条有向线段i i n A A +,P 内部的每一点T 或在它的左侧或在它的右侧.由于T 在11n A A + 和12111n n n A A A A +++= 的相反侧,故必有i 使得T 在i i n A A + 和11i i n A A +++的相反侧,从而T在1i i i O A A +△或1i i n i n O A A +++△中.即211ni i i i O A A P +=⊇ △.于是221111()2()2()nnii i i i i i S A AS O A A S P ++==∑∑≥△≥P 中同一边上的各个1()i i S A A +之和就是该边上的面积最大的内接三角形面积.。
2012年IMO国际数学奥林匹克试题解答

2012年IMO国际数学奥林匹克试题解答第一题设J是三角形ABC顶点A所对旁切圆的圆心. 该旁切圆与边BC相切于点M, 与直线AB和AC分别相切于点K和L. 直线LM和BJ相交于点F, 直线KM与CJ相交于点G. 设S是直线AF和BC的交点, T是直线AG和BC的交点. 证明: M是线段ST的中点.2012年IMO国际数学奥林匹克试题第一题解答: 因为∠JFL=∠JBM−∠FMB=∠JBM−∠CML=12(∠A+∠C)−12∠C=12∠A=∠JAL,所以A、F、J、L四点共圆. 由此可得AF⊥FJ, 而BJ是∠ABS的角平分线, 于是三角形ABS的角平分线与高重合, 从而AB=BS; 同理可得AC=CT.综上, 有SM=SB+BM=AB+BK=AK=AL=AC+CL=CT+CM=MT,即M是线段ST的中点.第二题设n⩾3, 正实数a2,a3,⋯,a n满足a2⋅a3⋅⋯⋅a n=1, 证明:(a2+1)2(a3+1)3⋯(a n+1)n>n n.解答:由均值不等式, 我们有(a k+1)k=⩾(a k+1k−1+⋯+1k−1)k(ka k⋅(1k−1)k−1−− − − − − − − − − − −−√k)k=k k(k−1)k−1a k,当a k=1k−1时等号成立, 其中k=2,3,⋯,n. 于是(a2+1)2(a3+1)3⋯(a n+1)n⩾221a2⋅3322a3⋅⋯⋅n n(n−1)n−1a n=n n.当对任意的k=2,3,⋯,n时, 若恒有a k=1k−1, 此时由n⩾3知a2⋅a3⋅⋯⋅a n=1(n−1)!≠1,因此上述不等式等号不成立, 从而不等式得证.第三题"欺诈猜数游戏" 在两个玩家甲和乙之间进行, 游戏依赖于两个甲和乙都知道的正整数k和n.游戏开始时甲先选定两个整数x和N, 1⩽x⩽N. 甲如实告诉乙N的值, 但对x 守口如瓶. 乙现在试图通过如下方式的提问来获得关于x的信息: 每次提问, 乙任选一个由若干正整数组成的集合S(可以重复使用之前提问中使用过的集合), 问甲"x是否属于S?". 乙可以提任意数量的问题. 在乙每次提问之后, 家必须对乙的提问立刻回答"是" 或"否", 甲可以说谎话, 并且说谎的次数没有限制, 唯一的限制是甲在任意连续k+1次回答中至少又一次回答是真话.在乙问完所有想问的问题之后, 乙必须指出一个至多包含n个正整数的集合X, 若x属于X, 则乙获胜; 否则甲获胜. 证明:(1) 若n⩾2k, 则乙可保证获胜;(2) 对所有充分大的整数k, 存在正整数n⩾1.99k, 使得乙无法保证获胜.解答: (1)可以认为n=2k,N=n+1. 采用二进制.把1,2,…,2k都写成二进制: a1a2…a k+1¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯, 这里a i(i=1,2,…,k+1)是0或者1; 然后, 记T为这2k个二进制数组成的集合. 2 k+1的二进制表示是100…01¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ .令S1={100…0¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ },S i={a1a2…a k+1¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯¯ ¯ ¯ ¯∈T|a1=0,a i=1},i=2,3,…,k+1,也就是说, S i就是T中所有满足a i=1的元素组成的子集(i=1,2,…,k+1).乙采用如下问题, 可保证获胜: 第一次提问, 选择S1, 并且接下来也一直选取S 1, 甲的回答会出现两种情况:▪连续k+1次回答“否”, 则100…0¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯可以排除;▪在至多k+1次回答中, 一旦出现”是”, 乙接下来的k次提问, 依次选取S2,S3,…,S k+1, 就取得胜利. 事实上, 若甲最后的k次回答都是”是”, 则x∈T; 若甲最后的k次回答有一些是”否”, 则x绝对不可能是a1a2…ak+1¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯, 这里a1=0, a i=0还是1取决于甲对S i的答案: 若甲的回答是”是”, a i=0, 否则a i=1(i=2,3,…,k+1). (2). 先将问题转化成等价形式: 甲从集合S中取定一个元素x(|S|=N), 乙提出一系列的问题. 乙的第j个问题题就是取S的子集D j, 随后甲选取集合P j∈{D j,D c j}, 使得对任意的j⩾1都有x∈P j∪P j+1∪⋯∪P j+k,当乙提完他想问的一系列问题后, 如果乙能选取一个集合X满足|X|⩽n, 使得x∈X, 那么乙获胜; 否则甲获胜.解答1. 任取实数p使得2>p>1.99, 再选取正整数k0, 使得当k>k0时(2−p)p k+1−1.99k>1.设N使得(2−p)p k+1>N>1.99k. 我们来证明, 若|S|=N, 不妨S={1,2,…,N}, 甲有办法使乙无法胜利.记D j是乙的第j个问题展示的集合, 定义P j为D j或者D C j, 取决于甲对D j的答案: 若甲的回答是”是”, P j=D j, 否则P j=D C j; 再记P0=S. 定义A j如下:A j=A j(P j)=a0+pa1+p2a2+⋯+p j a j,这里a0=∣∣P j∣∣,a i=∣∣P j−i∖(P j∪P j−1∪⋯∪P j−i+1)∣∣(i=1,2,…,j).此时∑i=0j a i=N.注意A0=N.我们指出, 甲可以使得N2−p>A j成为事实: N2−p>A0=N.假设已有N2−p>A j, 甲可选取P j+1∈{D j+1,D C j+1}使得N2−p>A j+1. 事实上,A j+1(D j+1)=b0+pb1+p2b2+…+p j b j+p j+1b j+1,A j+1(D C j+1)=c0+pc1+p2c2+…+p j c j+p j+1c j+1.注意b0+c0=N,b i+c i=a i−1(i=1,2,…,j+1),于是A j+1(D j+1)+A j+1(D C j+1)=N+p(a0+pa1+p2a2+…+p j a j)<N+p⋅N2−p,因之min{A j+1(D j+1),A j+1(D C j+1)}<N2+p2⋅N2−p=N2−p.于是, 可以选取P j+1∈{D j+1,D C j+1}达到我们的要求.既然p k+1>N2−p>A j, 那么, 只要i⩾k+1,必定a i=0,这导致乙无法排除S的任何一个元素, 不能取得胜利.解答2. 记p,q是满足2>q>p>1.99的实数, 选取正整数k0使得(p q)k0⩽2(1−q2),p k0−1.99k0>1.我们来指出, 对任意k⩾k0, 若|S|∈(1.99k,p k), 那么甲有策略, 通过回答”是”或者”否”, 使得下式对所有j∈N成立:P j∪P j+1∪⋯∪P j+k=S,这里P i是D i或者D C i, 取决于甲对D i的答案: 若甲的回答是”是”, P i=D i, 否则P i=D C i; D i是乙的第i个问题所问的集合(i∈N).假定S={1,2,…,N}. 定义(x)∞j=0=(x j1,x j2,…,x j N)如下: x01=x02=⋯=x0 N=1; P0=S, 在P j+1选定之后, 定义x j+1:x j+1i={1,qx j i,i∈P j+1,i∉P j+1.(1)只要甲使得成立x j i⩽q k(1⩽i⩽N,j⩾1), 那么乙就不能取得胜利. 记T(x)=∑i=1N x i, 甲只要使得T(x j)⩽q k(j⩾1)即可. 这是可以做到的: 显而易见的事情是, T(x0)=N⩽p k<q k. 假设已有T(x j)⩽q k, 甲可以就乙的D j+1选取P j+1∈{D j+1,D C j+1}使得T(x j+1)⩽q k. 假定甲回答”是”, 此时P j+1=D j+1, 记y是根据(1)得到的序列; 相应地, 记z是甲回答”否”, P j+1=D C j+1, 根据(1)得到的序列. 于是T(y)=∑i∈D C j+1qx j i+∣∣D j+1∣∣,T(z)=∑i∈D j+1qx j i+∣∣D C j+1∣∣.因此T(y)+T(z)=q⋅T(x j)+N⩽q k+1+p k,根据选取的k0的性质, 得min{T(y),T(z)}⩽q2⋅q k+p k2⩽q k.第四题求所有的函数f:Z→Z使得对任意满足a+b+c=0的整数a,b,c恒有f(a)2+f(b)2+f(c)2=2f(a)f(b)+2f(b)f(c)+2f(c)f(a).解答: 令a=b=c=0可得3f(0)2=6f(0)2, 这说明f(0)=0. 现在我们令b=−a, c=0可得到f(a)2+f(−a)2=2f(a)f(−a)即(f(a)−f(−a))2, 于是f(a)=f(−a), 即f(n)为偶函数.假设对某个整数a使得f(a)=0, 则对任意整数b我们有a+b+(−a−b)=0, 因此f(a)2+f(b)2+f(a+b)2=2f(b)f(a+b),这等价于(f(b)−f(a+b))2=0, 即f(a+b)=f(b). 因此对某个整数a使得f(a)=0时, f是一个以a为周期的函数.令b=a及c=−2a代入题目条件中的等式f(2a)⋅(f(2a)−4f(a))=0. 取a=1我们得到f(2)=0或f(2)=4f(1).如果f(2)=0, 那么f以 2 为周期, 对任意奇数n有f(n)=f(1). 容易验证对任意的c∈Z函数f(x)={0,c,2∣n,2∤n满足题目条件.现在假设f(2)=4f(1)并且f(1)≠0. 如果对任意的整数n都有f(n)=n2⋅f(1)成立,那么此时问题解决了. 如果存在整数n使得f(n)≠n2f(1), 由于f是偶函数, 不妨将n看做自然数, 那么显然n⩾3, 我们设n是使得f(n)≠n2f(1)的最小的正整数.令a=1, b=n−1, c=−n代入可得f(1)2+(n−1)4f(1)2+f(n)2=2(n−1)2f(1)2+2((n−1)2+1)f(n)f(1)即(f(n)−(n)2f(1))⋅(f(n)−(n−2)2f(1))=0,由假设可得此时f(n)=(n−2)2f(1).令a=n, b=2−n, c=−2代入可得2(n−2)4f(1)2+16f(1)2=2⋅4⋅2(n−2)2f(1)2+2⋅(n−2)4f(1),这说明(n−2)2=1即n=3. 因此f(3)=f(1). 令a=1, b=3, c=4(因为f为偶函数, 所以条件改成c=a+b时仍然成立)代入可得f(4)2=4f(4)f(1), 即f(4)=0或f(4)=4f(1)=f(2).如果f(4)≠0, 令a=2, b=2, c=4代入可得f(2)2+f(2)2+f(4)2=2f(2)2+4f(2)f(4),即f(4)=4f(2). 又因为我们已经推得f(4)=f(2), 这说明f(2)=0, 矛盾. 因此f(4)=0, 从而f以4 为周期. 于是f(4k)=0, f(4k+1)=f(4k+3)=c, 以及f(4k+2)=4c, 容易验证这个解满足题目条件.综上所述, 函数方程的解为: f(x)=cx2, 其中c∈Z; f(x)={0,c,2∣n,2∤n其中c ∈Z; 以及f(x)=⎧⎩⎨⎪⎪ 0,c,4c,4∣n,2∤n,n≡2 (mod 4)其中c∈Z.第五题已知三角形ABC中, ∠BAC=90∘, D是过顶点C的高的垂足. 设X是线段CD内部一点. K是线段AX上一点, 使得BK=BC. L是线段BX上一点, 使得AL=AC. 设M是AL与BK的交点. 证明: MK=ML.2012年IMO国际数学奥林匹克试题第五题解答: 因为AL2=AC2=AD⋅AB, 所以△ALD和△ABL相似, 因此∠ALD=∠XBA.设R是射线DC上一点, 使得DX⋅DR=BD⋅AD. 由于∠BDX=∠RDA=90∘我们可以推得△RAD∼△BXD, 因此∠XBD=∠ARD, 从而∠ALD=∠ARD 即R, A, D, 和L四点共圆. 这说明∠RLA=90∘, 于是RL2=AR2−AL2=AR2−AC2. 类似地, 我们可以得到RK2=BR2−BC2和∠RKB=90∘. 因为RC⊥AB我们有AR2−AC2=BR2−BC2, 因此RL2=RK2即RL=RK.又因为∠RLM=∠RKM=90∘我们可以推得MK2=RM2−RK2=RM2−RL2=ML2,从而MK=ML.第六题求所有正整数n, 使得存在非负整数a1,a2,⋯,a n, 满足12a1+12a2+⋯+12a n=13a1+23a2+⋯+n3a n=1.解答: 所求n≡1,2(mod4). 设M=max{a1,a2,⋯,a n}, 则有3M=∑k=1n k⋅3M−a k≡∑k=1n k=n(n+1)2(mod2),所以n(n+1)2是奇数, 从而n≡1,2(mod4).若对奇数n=2m+1, 此时存在非负整数序列(a1,a2,⋯,a n)使得12a1+12a2+⋯+12a n=13a1+23a2+⋯+n3a n=1.注意到12a m+1=12a m+1+1+12a m+1+1,m+13a m+1=m+13a m+1+1+2(m+1)3a m+1+1=m+13a m+1+1+n+13a m+1+1.因此此时对n+1, 可以验证(a1,a2,⋯,a m,a m+1+1,a m+2,⋯,a n,a m+1+1)为满足题意的序列. 这说明对奇数n若满足题目条件, 则n+1也满足题目条件.剩下的问题只要解决n=4m+1时的构造问题即可.设序列(a1,a2,⋯,a2k+1)是(1,2,⋯,2k+1)的一个排列, 设G=(1,2,⋯,2k,2k), 用g i表示它的分量.定义D(X)=∑i=12k+1a i3g i, 由于∑i=12k+112g i=1, 所以我们只要求出一个排列X使得D(X)=1, 问题就解决了. 令X=(2,1,4,3,6,5,...,2k,2k−1,2k+1), 用归纳法可算得此时D(X)=1+k32k.现在假设上面的k是正偶数, 即k=2m, 则X=(2,1,4,3,...,2m,2m−1,2m+2,2m+1,...,4m,4m−1,4m+1),定义Y=(2,1,4,3,...,2m,2m−1,2m+1,...,4m,4m−1,4m+1,2m+2),即将X的第2m+1个分量移动到最后形成的. 简单计算可得D(X)−D(Y)=2m3 4m, 所以D(Y)=1. 当k=0时, 此时取a1=0时即可. 这说明n=4m+1时的构造问题已经解决.综上所述, 要求的为满足n≡1,2(mod4)的正整数.。
【最新】imo1995试题-范文模板 (8页)

本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==imo1995试题篇一:1959年至201X年IMO试题第一届(1959年)罗马尼亚布拉索夫(Bra?ov,Romania)21n?41. 求证14n?3 对每个自然数 n 都是最简分数。
(波兰)2. 设a)A?x?2x?1?x?2x?1?A,试在以下3种情况下分别求出x的实数解: 2;b)A=1;c)A=2。
(罗马尼亚)3. a、b、c 都是实数,已知关于 cos x 的二次方程acos2x?bcosx?c?0试用 a,b,c 作出一个关于 cos 2x 的二次方程,使它的根与原来的方程一样。
当a=4,b=2,c=-1 时比较 cos x 和 cos 2x 的方程式。
(匈牙利)4. 试作一直角三角形使其斜边为已知的c,斜边上的中线是两直角边的几何平均值。
(匈牙利)5. 在线段AB上任意选取一点M,在AB的同一侧分别以 AM、MB 为底作正方形AMCD、 MBEF,这两个正方形的外接圆的圆心分别是 P、Q,设这两个外接圆又交于 M、N。
a) 求证:AF、BC 相交于N点;b) 求证:不论点M如何选取,直线MN都通过定点S;c) 当M在A与B之间变动时,求线段PQ的中点的轨迹。
(罗马尼亚)6. 两个平面P、Q 的公共边为 p,A 为P上给定一点,C为Q上给定一点,并且这两点都不在直线p上。
试作一等腰梯形ABCD(AB平行于CD),使得它有一个内切圆,并且顶点B、D 分别落在平面P和Q上。
(捷克斯洛伐克)第二届(1960年)罗马尼亚锡纳亚(Sinaia,Romania)1. 找出所有具有下列性质的三位数N:N能被11整除且商等于N的各位数字的平方和。
(保加利亚)2. 寻找使下式成立的实数x:(匈牙利)1?4x2?2x2?2x?9 3. 直角三角形ABC的斜边BC的长为a,将它分成n等份(n为奇数),令α为从A点向中间的那一小段线段所张的锐角,从A到BC边的高长为h,求证:(罗马尼亚)tan??4nh n2?1a4. 已知从A、B两点引出的高线长ha、hb以及从 A引出的中线长ma,求作三角形ABC。
历届北方数学奥林匹克试题

历届北方数学奥林匹克试题目录2005年北方数学奥林匹克 (2)2006年北方数学奥林匹克 (4)2007年北方数学奥林匹克 (6)2008年北方数学奥林匹克 (7)2009年北方数学奥林匹克 (10)2010年北方数学奥林匹克 (13)2011年北方数学奥林匹克 (15)2012年北方数学奥林匹克 (17)2005年北方数学奥林匹克1.AB是⊙O的一条弦,它的中点为M,过点M作一条非直径的弦CD,过点C和D作⊙O的两条切线,分别与直线AB相交于P、Q两点.求证:P A=QB.(裘宗沪供题)2.定义在R上的函数f(x)满足:(1)f(0)=0;(2)对任意xx∈(?∞,?1)∪(1,+∞),都有f?1x?+f?1y?=f(x+y1+xy);(3)当x∈(?1,0)时,都有f(x)>0.求证:f?119?+f?129?+?+ f?1n2+7n+11?>f(12),其中n∈N+. (刘贵谭祖春供题)3.在公差为d(d>0)的整数等差数列a1,a2,?,a3n(n≥2)中,任取n+2个数.证明:其中必存在两个数a i、a j(i≠j),满足不等式14.已知n位数的各位数字只能取集合{1,2,3,4,5}中的元素,设含有数字5且在5的前面不含3的n位数的个数为f(n).求f(n).(蒋西明供题)5.如果三个正实数x、y、z满足x2+xx+x2=254,x2+xy+y2=36,y2+yx+x2=1694.求xx+xy+yx的值. (张同君供题)6.设0≤α、β、γ≤π2,ccc2α+ccc2β+ccc2γ=1.求证:2≤(1+ccc2α)2cin4α+(1+ccc2β)2cin4β+(1+ccc2γ)2cin4γ≤(1+ccc2α)(1+ccc2β)(1+ccc2γ)(谭祖春供题)2006年北方数学奥林匹克1. 如图1,AB 为⊙O 的直径,非直径的弦CC ⊥AA ,E 是OC 的中点,连结AE 并延长交⊙O 于点P ,连结DP 交BC 于点F .求证:F 是BC 的中点.图12. 设p 是大于2的质数,数列{a n }满足na n+1=(n +1)a n ?(p 2)4.求证:当a 1=5时,16|a 81. 3. 已知AD 是△ABC 的边BC 上的高,且AC +AC =AA +AC .求∠A 的取值范围.4. 设函数f (x )=x 2+ax +b (a 、b ∈R ).若存在实数m ,使得|f (m )|≤14,且|f (m +1)|≤14,求Δ=a 2?4b 的最大值和最小值.5. 已知正数a 、b 、c 满足a +b +c =3.求证:a 2+92a +(b+c )+b 2+92b +(c+a )+c 2+92c 2+(a+b )2≤5. 6. 组委会说明试题有误.7. 是否可以将正整数1,2,?,64分别填入8×8的64个方格,使得凡具备“”形的四个方格(方向课以任意转置)内的数之和都能被5整除?8. 已知数列{a n }满足a k+1=a k +12006a k 2,a 0=12,k ∈N .求证:A1?12008<a2006<1.< p="">1.在锐角△ABC中,BD、CE分别是AC、AB边上的高.以AB为直径作圆交CE于M,在BD上取点N是AN=AM.证明:AN⊥CN.2.设△ABC三边长分别为a、b、c,且a+b+c=3.求f(a,b,c)=a2+ b2+c2+43abc的最小值.3.在数列{a n}中,a n+1=a n2a n+1(n∈N).求证:当0≤n≤1004时,有[a n]=2007?n(其中[x]表示不超过x的最大整数).4.平面上每个点被染为n中颜色之一,同时满足:(1)每种颜色的点都有无穷多个,且不全在同一条直线上;(2)至少有一条直线上所有的点恰为两种颜色.求n的最小值,使得存在互不同色的4个点共圆.5.设α,β∈(0,π2),求A=(1??tanα2tanβ2)2cctα+cctβ的最大值.6.已知f(x)=ll(x+1)?12lcl3x.(1)解方程f(x)=0;(2)求集合M={n|f(n2?214n?1998)≥0,n∈Z}.7.设n是正整数,a=?√n?(其中[x]表示不超过x的最大整数),求同时满足下列条件的n的最大值:(1)n不是完全平方数;(2)a3|n28.设△ABC的内切圆半径为1,三边长AC=a,CA=b,AA=c.若a、b、c都是整数,求证:△AAC为直角三角形.1. 如图1,⊙O 是梯形ABCD 的内切圆,切点分别为E 、F 、G 、H ,AB ∥CD .作BP ∥AD 交DC 的延长线于点P ,AO 的延长线交CP 于点Q .若AD =AD ,求证:∠CAQ =∠PAQ .图1 (张利民供题)2. 已知∠A 、∠A 、∠C 是△AAC 的三个内角.证明:tan A 2+tan B 2+tan C 2√3≥?tan 2A 2+tan 2A 2+tan 2C 26 (张雷供题)3. 给定三角形数表如图2:1 2 3 4 ? 97 98 99 100 3 5 7 ? 195 197 199 8 12 ? 392 396 20 ? 788 ? ? ? ? ? M图2其中,第一行各数依次是1,2,?,100,从第二行起,每个数分别等于它上面一行左、右两数的和.求M 的值.(焦和平供题)4.证明:(1)存在无穷个正整数n,使n2+1的最大质因子小于n;(2)存在无穷个正整数n,使n2+1|n!. (张雷供题)5.如图3,已知□ABCD,过A、B、C三点的⊙O1分别交AD、BD 于点E、F,过C、D、F三点的⊙O2交AD于点G,设⊙O1、⊙O2R222.的半径分别为R1、R2.求证:AG图3(吕建恒刘康宁供题)6.设a、b、c为直角三角形的三边长,其中,c为斜边长.求使得a3+b3+c3abc≥k成立的k的最大值.(李铁汉供题)7.设n是正整数,整数a是方程x4+3ax2+2ax?2×3n=0的根.求所有满足条件的数对(n,a).(李铁汉供题)8.给定由n(n+1)2个点组成的正三角形点阵(如图4),记以点阵中三个点为顶点的所有正三角形的个数为f(n),求f(n)的表达式.图4(张利民供题)2009年北方数学奥林匹克1. 设数列{x n }满足x 1=1,x n =?x n?12+x n?1+x n?1(n ≥2).求数列{x n }的通项公式. (张雷供题)2. 如图1,在锐角△ABC 中,已知AA >AC ,cccA +cccC =1,E 、F 分别是AB 、AC 延长线上的点,且满足∠AAF =∠ACD =90°.(1)求证:AD +CF =DF ;(2)设∠DAC 的平分线与EF 交于点P ,求证:CP 平分∠ACF .图1(刘康宁吕建恒徐庆金供题)3. 已知有26个互不相等的正整数,其中任意六个数中都至少有两个数,一个数整除另一个数.证明:一定存在六个数,其中一个数能被另外五个数整除.(张同君供题)4. 船长和三位水手共得到2009枚面值相同的金币.四人商定按照如下规则对金币进行分配:水手1、水手2、水手3每人写下一个正整E数分别为b 1、b 2、b 3,满足b 1≥b 2≥b 3,且b 1+b 2+b 3=2009;船长在不知道水手写的数的情况下,将2009枚金币分成3堆,各堆数量分别为a 1、a 2、a 3,且a 1≥a 2≥a 3.对于水手k (k =1,2,3),当b k的金币归船长所有.若无论三位水手怎样写数,船长总可以确保自己拿到n 枚金币.试确定n 的最大值,并证明你的结论. (张利供题)5. 如图2,在给定的扇形AOB 中,圆心角为锐角.在弧AB 上取异于A 、B 的一点C ,在线段OC 上取一点P ,连结AP ,过点B 作直线BQ ∥AP 交射线OC 于点Q .证明:封闭图形OAQPBO 的面积与点C 、P 的选取无关.图2 (徐庆金供题)6. 设x 、y 、z >0,且x 2+x 2+y 2=3,求证:∑x 2009?2008(x?1)y+z ≥12(x +x +y ). (杨海滨贾应红供题)7. 记[m ]为不超过实数m 的最大整数.设x 、y 均为正实数,且对所有的正整数n ,都有[x [nx ]]=n ?1成立.证明xy =1,且y 是大于1的无O理数.(刘康宁供题)8.求能被209整除且各位数字之和等于209的最小正整数.(张雷供题)2010年北方数学奥林匹克1.已知数列{a n}满足a1=2,a n=22n a n?1+2n2n(n=2,3,?).求通项a n(n=1,2,?). (吴树勋供题)2.已知PA、PB是⊙O的切线,切点分别是A、B,PCD是⊙O的一条割线,过点C作PA的平行线,分别交弦AB、AD于点E、F.求证:CD=DF.(李新焕供题)3.求所有的正整数(x,x,y),使得1+2x×3y=5z成立.(张雷供题)4.在7×7的方格表的64个网格线交点(称为“结点”)处放棋子,每点至多放1枚,一共放了k枚棋子.若无论怎样放,总存在4枚棋子,它们所在的结点构成一个矩形(矩形的边平行于棋盘网格线)的四个顶点.试求k的最小值.(张利民供题)5.设正实数a、b、c满足(a+2b)(b+2c)=9.求证:?a2+b22+2?b3+c323≥3.(张雷供题)6.已知⊙O是△ABC的内切圆,D、E、N是切点,连结NO并延长交DE于点K,连结AK并延长交BC于点M.求证:M 是BD的中点.(康春波供题)7.求[x,x,y]=(x,x)+(x,y)+(y,x)满足x≤x≤y,(x,x,y)=1的所以正整数解,其中,[m,n]和(m,n)分别表示正整数m、n的最小公倍数和最大公约数.(王全供题)8.设x、x、y∈[0,1],且|x?x|≤12,|x?y|≤12,|y?x|≤12.试求W=x+x+y?xx?xy?yx的最小值和最大值.(刘康宁安振平供题)2011年北方数学奥林匹克1.已知数列{a n}的通项a n=(√3+√2)2n(n∈N+),设b n=a n+1a n. (1)试求b n+2、b n+1、b n之间的递推关系;(2)求a2011整数部分的个位数字.(刘洪柱供题)2.如图1,△ABC的内切圆分别切BC、CA、AB、于点D、E、F,P 为内切圆内一点,线段PA、PB、PC分别于内切圆交于点X、Y、Z.证明:XD、YE、ZF三线共点.图1(徐庆金供题)3.求不定方程1+2x×7y=y2的全部正整数解(x,x,y). (翁世有供题)4.设n个集合A1,A2,?,A n是集合A={1,2,?,29}的一个分划,且A i(i=1,2,?,n)中任意个元素之和都不等于30.求n的最小可能值. 【注】若集合A的非空子集A1,A2,?,A n(n∈N+,n≥2)满足A i∩A j=?(i≠j),A1∪A2∪?∪A n=A,则称A1,A2,?,A n是集合A的一个分划.(张雷供题)5. 若正整数a 、b 、c 满足a 2+b 2=c 2,则称(a ,b ,c )为勾股数组.求含有30的所有勾股数组. (杨春宏供题)6. 如图2,过点P 引的切线P A 和割线PBC ,AC ⊥PP ,垂足为D .证明:AC 是△ABD 外接圆的切线.图2(吕建恒供题) 7. 在△ABC 中,证明:11+ccs 2A+ccs 2A +11+ccs 2A+ccs 2C +11+ccs 2C+ccs 2A ≤2.(安振平供题) 8. 已知n 是正整数,实数x 满足1?|2??|(n ?1)?|n ?x ||?|?=x .求x 的值. (张利民供题)P2012年北方数学奥林匹克1.如图1,在△ABC中,∠C=90°,I是内心.直线BI交AC于D,作DE平行于AI交BC于E,直线EI交AB于F.证明:DF垂直于AI.图12.正整数x1,x2,?,x n(n∈?+),满足x12+x22+?+x n2=111,求S=x1+x2+?+x n n的最大可能值.3.设S={x|x=a2+ab+b2,a,b∈?}.求证:(1)若m∈S,3|m,则3m∈S;(2)若m,n∈S,则m?n∈S.4.平面上有n(n≥4)条直线,对于直线a,b,在余下的n-2条直线中,如果至少存在两条直线与直线a,b都相交,则称直线a,b是相合的直线对,否则称其是相离的直线对.若n条直线中相合直线对的个数比相离直线对的个数多2012.求n的最小可能值(直线对中的两条直线不计顺序).5.已知数列{a n}:a0=0,a n=1a n?1?2,n∈?+,在数列{a n}中任意取定一项a k,构造数列{b n}:b0=a k,b n=2b n?1+1b n?1,n∈?+.试判断数列{b n}是有限数列还是无穷数列?并给出证明.6.设n是正整数,证明1+13??1+131+13?<2.7.如图2在五边形ABCDE中,BC=DE,CD平行于BE,AB>AE,AA AA,求证:AC平分线段BE.若∠AAC=∠CAD,且图28.设p是奇素数,如果存在正整数a使p!|a p+1,证明:(1)?a+1,a p+1a+1?=p.(2)a p+1a+1没有小于p的素因子.p!|a+1.</a2006<1.<>。
imo数学竞赛试题及答案

imo数学竞赛试题及答案IMO数学竞赛试题及答案一、选择题1. 下列哪个数是最小的正整数?A. 0B. 1C. 2D. 3答案:B2. 如果一个数的立方等于它本身,那么这个数可以是:A. -1B. 0C. 1D. 2答案:ABC3. 一个长方体的长、宽、高分别是8cm、6cm和5cm,那么它的表面积是多少平方厘米?A. 236B. 284C. 312D. 376答案:B二、填空题4. 一个数的平方根是3,那么这个数是_________。
答案:95. 一个等差数列的前三项分别是2,4,6,那么它的第10项是_________。
答案:22三、解答题6. 证明:对于任意的正整数 \( n \),\( n^5 - n \) 总是能被30整除。
解答:首先,我们可以将 \( n^5 - n \) 分解为 \( n(n^4 - 1) \)。
接下来,我们注意到 \( n^4 - 1 \) 可以表示为 \( (n^2 +1)(n^2 - 1) \)。
而 \( n^2 - 1 \) 可以进一步分解为 \( (n +1)(n - 1) \)。
因此,我们有:\( n^5 - n = n(n^2 + 1)(n + 1)(n - 1) \)。
由于 \( n \) 是正整数,\( n - 1 \) 和 \( n + 1 \) 也是整数。
这意味着 \( n^5 - n \) 中至少包含因子2和3(因为 \( n^2 + 1 \) 至少是奇数,从而至少包含一个2的因子)。
因此,\( n^5 - n \)可以被30整除。
7. 一个圆的半径是15厘米,求圆的面积。
解答:圆的面积可以通过公式 \( A = \pi r^2 \) 计算,其中\( A \) 是面积,\( r \) 是半径,\( \pi \) 是圆周率,约等于3.14159。
将给定的半径 \( r = 15 \) 厘米代入公式,我们得到:\( A = \pi \times 15^2 = \pi \times 225 \approx 706.86 \)平方厘米。
1959-2017年IMO试题(1)

1959/3.
Let a, b, c be real numbers. Consider the quadratic equation in cos x : a cos2 x + b cos x + c = 0. Using the numbers a, b, c, form a quadratic equation in cos 2x, whose roots are the same as those of the original equation. Compare the equations in cos x and cos 2x for a = 4, b = 2, c = −1.
Fourth International Olympiad, 1962
1962/1.
1961/4.
Consider triangle P1 P2 P3 and a point P within the triangle. Lines P1 P, P2 P, P3 P intersect the opposite sides in points Q1 , Q2 , Q3 respectively. Prove that, of the numbers P1 P P2 P P3 P , , P Q1 P Q2 P Q 3 at least one is ≤ 2 and at least one is ≥ 2.
1961/5.
Construct triangle ABC if AC = b, AB = c and AM B = ω , where M is the midpoint of segment BC and ω < 90◦ . Prove that a solution exists if and only if b tan ω ≤ c < b. 2
imo试题及答案

imo试题及答案1. IMO试题1题目:请证明对于任意正整数 \( n \),\( n^3 + 2 \) 总是可以被3整除。
答案:设 \( n \) 为任意正整数。
- 情况1:\( n \) 是3的倍数,即 \( n = 3k \)(\( k \) 为整数)。
\( n^3 + 2 = (3k)^3 + 2 = 27k^3 + 2 \),显然 \( 27k^3 \) 是3的倍数,所以 \( n^3 + 2 \) 也是3的倍数。
- 情况2:\( n \) 不是3的倍数,即 \( n = 3k + 1 \) 或 \( n = 3k + 2 \)(\( k \) 为整数)。
- 如果 \( n = 3k + 1 \),则 \( n^3 + 2 = (3k + 1)^3 + 2 = 27k^3 + 27k^2 + 9k + 1 + 2 = 3(9k^3 + 9k^2 + 3k) + 3 \),显然 \( 9k^3 + 9k^2 + 3k \) 是整数,所以 \( n^3 + 2 \) 是3的倍数。
- 如果 \( n = 3k + 2 \),则 \( n^3 + 2 = (3k + 2)^3 + 2 = 27k^3 + 54k^2 + 36k + 8 + 2 = 3(9k^3 + 18k^2 + 12k + 3) + 1 \),显然 \( 9k^3 + 18k^2 + 12k + 3 \) 是整数,所以 \( n^3 + 2 \) 是3的倍数。
因此,对于任意正整数 \( n \),\( n^3 + 2 \) 总是可以被3整除。
2. IMO试题2题目:给定一个圆,圆心为 \( O \),半径为 \( r \)。
从圆上一点 \( A \) 向圆内作切线 \( AB \) 和 \( AC \),连接 \( B \) 和\( C \) 两点。
求 \( BC \) 的长度。
答案:设 \( O \) 为圆心,\( r \) 为半径,\( A \) 为圆上一点,\( B \) 和 \( C \) 分别为切线 \( AB \) 和 \( AC \) 与圆的切点。
1959年至2012年IMO试题

第一届(1959年)罗马尼亚 布拉索夫(Bra şov ,Romania )1. 求证314421++n n 对每个自然数 n 都是最简分数。
(波兰)2. 设A x x x x =--+-+1212,试在以下3种情况下分别求出x 的实数解: a)2=A ;b)A =1;c)A =2。
(罗马尼亚)3. a 、b 、c 都是实数,已知关于 cos x 的二次方程0cos cos 2=++c x b x a试用 a,b,c 作出一个关于 cos 2x 的二次方程,使它的根与原来的方程一样。
当a =4,b =2,c =-1 时比较 cos x 和 cos 2x 的方程式。
(匈牙利)4. 试作一直角三角形使其斜边为已知的c ,斜边上的中线是两直角边的几何平均值。
(匈牙利)5. 在线段AB 上任意选取一点M ,在AB 的同一侧分别以 AM 、MB 为底作正方形AMCD 、 MBEF ,这两个正方形的外接圆的圆心分别是 P 、Q ,设这两个外接圆又交于 M 、N 。
a) 求证:AF 、BC 相交于N 点;b) 求证:不论点M 如何选取,直线MN 都通过定点S ;c) 当M 在A 与B 之间变动时,求线段PQ 的中点的轨迹。
(罗马尼亚)6. 两个平面P 、Q 的公共边为 p ,A 为P 上给定一点,C 为Q 上给定一点,并且这两点都不在直线p 上。
试作一等腰梯形ABCD (AB 平行于CD ),使得它有一个内切圆,并且顶点B 、D 分别落在平面P 和Q 上。
(捷克斯洛伐克)第二届(1960年)罗马尼亚 锡纳亚(Sinaia ,Romania )1. 找出所有具有下列性质的三位数N :N 能被11整除且商等于N 的各位数字的平方和。
(保加利亚)2. 寻找使下式成立的实数x :(匈牙利)()92211422+<+-x x x3. 直角三角形ABC 的斜边BC 的长为a ,将它分成n 等份(n 为奇数),令α为从A 点向中间的那一小段线段所张的锐角,从A 到BC 边的高长为h ,求证:(罗马尼亚)()a n nh 14tan 2-=α 4. 已知从A 、B 两点引出的高线长h a 、hb 以及从 A 引出的中线长m a ,求作三角形ABC 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一届(1959年)罗马尼亚 布拉索夫(Bra şov ,Romania )1. 求证314421++n n 对每个自然数 n 都是最简分数。
(波兰)2. 设A x x x x =--+-+1212,试在以下3种情况下分别求出x 的实数解: a)2=A ;b)A =1;c)A =2。
(罗马尼亚)3. a 、b 、c 都是实数,已知关于 cos x 的二次方程0cos cos 2=++c x b x a试用 a,b,c 作出一个关于 cos 2x 的二次方程,使它的根与原来的方程一样。
当a =4,b =2,c =-1 时比较 cos x 和 cos 2x 的方程式。
(匈牙利)4. 试作一直角三角形使其斜边为已知的c ,斜边上的中线是两直角边的几何平均值。
(匈牙利)5. 在线段AB 上任意选取一点M ,在AB 的同一侧分别以 AM 、MB 为底作正方形AMCD 、 MBEF ,这两个正方形的外接圆的圆心分别是 P 、Q ,设这两个外接圆又交于 M 、N 。
a) 求证:AF 、BC 相交于N 点;b) 求证:不论点M 如何选取,直线MN 都通过定点S ;c) 当M 在A 与B 之间变动时,求线段PQ 的中点的轨迹。
(罗马尼亚)6. 两个平面P 、Q 的公共边为 p ,A 为P 上给定一点,C 为Q 上给定一点,并且这两点都不在直线p 上。
试作一等腰梯形ABCD (AB 平行于CD ),使得它有一个内切圆,并且顶点B 、D 分别落在平面P 和Q 上。
(捷克斯洛伐克)第二届(1960年)罗马尼亚 锡纳亚(Sinaia ,Romania )1. 找出所有具有下列性质的三位数N :N 能被11整除且商等于N 的各位数字的平方和。
(保加利亚)2. 寻找使下式成立的实数x :(匈牙利)()92211422+<+-x x x 3. 直角三角形ABC 的斜边BC 的长为a ,将它分成n 等份(n 为奇数),令α为从A 点向中间的那一小段线段所张的锐角,从A 到BC 边的高长为h ,求证:(罗马尼亚)()a n nh 14tan 2-=α 4. 已知从A 、B 两点引出的高线长h a 、hb 以及从 A 引出的中线长m a ,求作三角形ABC 。
(匈牙利)5. 正方体ABCD-A'B'C'D'(上底面 ABCD ,下底面 A'B'C'D')。
X 是对角线AC 上任意一点,Y 是B'D'上任意一点。
a) 求XY 中点的轨迹;b) 求a)中轨迹上的、并且还满足 ZY =2XZ 的点Z 的轨迹。
(捷克斯洛伐克)6. 一个圆锥内有一内接球,又有一圆柱体外切于此圆球,其底面落在圆锥的底面上。
令V 1 为圆锥的体积,V 2为圆柱的体积。
a) 求证:V 1不等于V 2;b) 设V 1=kV 2,求k 的最小值;并在此情况下作出圆锥顶角。
(民主德国)7. 一个等腰梯形的两底为a 、c ,高为h 。
a) 在这个等腰梯形的对称轴上,找到所有的点P ,使以P 为顶点,且经过梯形腰的两个端点的角为直角;b) 计算P 点到两底的距离;c) 判断在什么情况下P 点确实存在。
讨论各种情况。
(保加利亚)第三届(1961年)匈牙利 维斯普雷姆(Veszpr ém ,Hungary )1. 设a ,b 为常数,解方程组⎪⎩⎪⎨⎧==++=++22222z xy b z y x a z y x ,并给出a 和b 满足什么条件时才能使x 、y 、z 为互不相同的正数。
(匈牙利)2. 设a 、b 、c 为三角形的三条边,其面积为S 。
证明S c b a 34222≥++并说明何时取等号。
(波兰)3. 解方程1sin cos =-x x n n ,n 是自然数。
(保加利亚)4. 设P 是三角形P 1P 2P 3内一点。
直线P 1P ,P 2P ,P 3P 分别与其对边相交于Q 1,Q 2,Q 3。
证明数字332211,,PQ P P PQ P P PQ P P 至少有一个不大于2,也至少有一个不小于2。
(民主德国) 5. 作三角形ABC 满足AC=b ,AB=c ,且∠AMB=ω,其中M 是线段BC 的中点且ω<90°。
证明:当且仅当b c b <≤2tan ω时可作出此三角形,并说明何时等号成立。
(捷克斯洛伐克) 6. 三个不共线的点A 、B 、C 在平面ε的同一侧;假设平面ABC 不与平面ε平行。
在平面ε上任取三个点A ’、B ’、C ’。
设L 、M 、N 分别为线段AA ’,BB ’,CC ’的中点,G 为三角形LMN 的重心(不考虑使L 、M 、N 不能构成三角形的情况)。
问:当A ’、B ’、C ’各自变化时,G 的轨迹是什么?(罗马尼亚)第四届(1962年)捷克斯洛伐克 捷克布杰约维采(Česk é Bud ějovice ,Czechoslovakia )1. 找出具有下列各性质的最小正整数n :a) 它的最后一位数字是 6;b) 如果把最后的6去掉并放在最前面,所得到的数是原来数的4倍。
(波兰)2. 试找出满足下列不等式的所有实数 x :2113>+--x x (匈牙利) 3. 已知正方体ABCD-A'B'C'D'(ABCD 、A'B'C'D'分别是上下底)。
一点X 沿着正方形ABCD 的边界以方向ABCDA 作匀速运动;一点Y 以同样的速度沿着正方形B'C'CB 的边界以方向 B'C'CBB'运动。
点X 、Y 在同一时刻分别从点A 、B'开始运动。
求线段XY 的中点的轨迹。
(捷克斯洛伐克)4. 解方程 cos 2x+cos 22x+cos 23x=1。
(罗马尼亚)5. 在圆K 上有三个不同的点A 、B 、C 。
试在K 上再作出一点D 使得这四点所形成的四边形有一个内切圆。
(保加利亚)6. 一个等腰三角形,设R 为其外接圆半径,内切圆半径为r ,求证这两个圆的圆心的距离是)2(r R R -。
(民主德国) 7. 求证:正四面体有5个不同的球,每个球都与这六条边或其延长线相切;反过来,如果一个四面体有5个这样的球,则它必然是正四面体。
(苏联)第五届(1963年)波兰 弗罗茨瓦夫(Wroclaw ,Poland )1. 找出下列方程的所有实数根(其中p 是实参数):x x p x =-+-1222(捷克斯洛伐克)2. 给定一点A 及线段BC ,设空间中有一点使得以该点为顶点,一边通过A 点,另一边与线段BC 相交的角为直角,试求出所有满足条件的点的轨迹。
(苏联)3. 在一个n 边形中,所有内角都相等,相连的边长度满足a 1≥a 2≥…≥a n 。
求证:所有边长都相等。
(匈牙利)4. 设 y 是一个参数,试找出方程组⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=+=+=+=+514453342231125yx x x yx x x yx x x yx x x yx x x 的所有解x 1,x 2,x 3,x 4,x 5。
(苏联)5. 求证2173cos 72cos 7cos =+-πππ。
(民主德国) 6. 五个同学A 、B 、C 、D 、E 参加竞赛,一种猜测说比赛结果的名次依然是ABCDE 。
但是实际上没有一位同学的名次被猜中,而且预测中名次相邻的同学也没有真的相邻(例如,C 、D 两位同学名次不是(1,2)、(2,3)、(3,4)、(4,5)中的任何一种)。
还有一种猜测说结果会是DAECB 的顺序。
实际上是恰好有两个同学所得的名次与预测的一样;而且有两对同学(4个不同的同学)的名次像预测中的一样是相连。
试讨论最后的名次如何?(匈牙利)第六届(1964年)苏联 莫斯科(Moscow ,Soviet Union )1. a) 求所有正整数n 使得2n —1能被7整除;b) 求证不存在正整数n 使得2n +1能被7整除。
(捷克斯洛伐克)2. 假设a 、b 、c 是三角形的三边长,求证:abc c b a c b c a b a c b a 3)()()(222≤-++-++-+(匈牙利)3. 三角形ABC 的三边长分别为a 、b 、c 。
分别平行于三角形ABC 的各边作三角形ABC 内切圆 的切线,每条切线都在△ABC 中又切出一个小三角形,再在每个这样的小三角形中作内切圆,求这四个内切圆的面积之和(用a 、b 、c 表示)。
(南斯拉夫)4. 十七个人互相通信,每一个人都和其他人写信。
在他们的信上一共讨论有三个不同的话题,每两个人只讨论一个话题,求证:这些人当中至少有三个人他们所讨论的话题是一样的。
(匈牙利)5.平面上有五个点,任意两点的连线都不平行,也不垂直,现从每一个点向其他四点两两连接的直线作垂线,试求出所有这些垂线的交点的最大数目。
(罗马尼亚)6.四面体ABCD 的中心是D 0 ,分别过A 、B 、C 作DD 0的平行线,这些线分别交平面BCD 、 CAD 、ABD 于点A 1、B 1、C 1,求证:ABCD 的体积是A 1B 1C 1D 0的三分之一;再问如果D 0为三角形 ABC 内的任意一点,结果是否仍然成立?(波兰)第七届(1965年)民主德国 柏林(Berlin ,German Democratic Republic )1. 找出所有的x (0≤x ≤2π)使其满足22sin 12sin 1cos 2≤--+≤x x x 。
(南斯拉夫)2. 如下方程组⎪⎩⎪⎨⎧=++=++=++000333232131323222121313212111x a x a x a x a x a x a x a x a x a其中x 1、x 2、x 3未知。
系数满足以下条件:a) a 11、a 22、a 33为正数;b) 其余系数是负数;c) 在每个方程中,系数的和是正数。
证明该方程组只有唯一解x 1=x 2=x 3=0。
(波兰)3. 给出四面体ABCD ,其中AB 和CD 长度分别为a 和b 。
异面直线AB 和CD 的距离为d ,夹角为ω。
四面体ABCD 被平面ε分为两部分,平面ε平行于AB 和CD 。
AB 和CD 到平面ε的距离的比为k 。
计算出这两部分的体积之比。
(捷克斯洛伐克)4. 找出所有满足条件的四个实数x 1、x 2、x 3、x 4,它们中任何三个数的乘积加上第四个数的和都等于2。
(苏联)5. 给出三角形OAB ,其中∠AOB 是锐角。
M 是边AB 上除O 外的任意一点,从M 点向OA 和OB 作垂线,垂足为P 、Q 。
设三角形OPQ 的垂心为H 。
当M 在下列范围移动时,求H 的轨迹。