2015国家公务员考试行测:中国剩余定理问题

合集下载

细谈历年国家公务员考试行测中的余数问题

细谈历年国家公务员考试行测中的余数问题

细谈历年国家公务员考试行测中的余数问题在国家公务员考试中余数问题是常考题型之一,这类题实质上考察的是广大考生的数字敏感性。

今天中公教育专家跟大家一起来着重了解一下余数问题中的中国剩余定理。

在余数问题中有这样一类考题,其题目形式是这样的,X÷A余数为a,X÷B的余数为b,X÷C的余数为c……求符合条件的X的取值。

对于这类问题一般又可以分为四类,以及相应的解法如下:因为X除以5和7的余数同为2,因此X-2一定既能被5整除,又能被7整除,因此,X-2=35n(n为整数),则X=35n+2,所以满足条件的最小的数为37(n=1)。

总结:余同加余,即余数相同的则用除数的最小公倍数加余数。

例题1:三位自然数N满足:除以6余3,除以5余3,除以4也余3,则符合条件的自然数N有几个?A.8B.9C.15D.16【中公解析】因为余数相同,根据余同加余,所以,P=60n+3,可以取2、3、4、5、6..........15、16,共15个数,选C。

由于5减去3为2,7减去5也为2,除数与余数的差相同,因此,X+2一定既能被5整除,又能被7整除,因此,X+2=35n(n为整数),则X=35n-2,所以满足条件的最小的数为33(n=1)。

总结:差同减差,即除数和余数的差相同时,则用除数的最小公倍数减除数与余数的差。

例题2:三位运动员跨台阶,台阶总数在100-150之间,第一位运动员每次跨3个台阶,最后一步还剩2台阶。

第二位运动员每次跨4个台阶,最后一步还剩3个台阶。

第三为运动员每次跨5个台阶,最后一步还剩4个台阶。

问:这些台阶总共有多少级?A.119B.121C.129D.131【中公解析】每次跨3个台阶,最后还剩2个台阶,即为除以3余数为2,后面依次为除以4余数为3,除以5余数为4,因为除数减去余数的差均相同,所以X=60n-1,当n=2时,X=119,选A。

行测技巧:速解中国剩余定理

行测技巧:速解中国剩余定理

行测技巧:速解中国剩余定理余数问题在行测考试中考察频率都非常高,而且以不同的形式考察,比如说对余数基本定义的考察,以及同余数特性题型的考察。

掌握好解余数问题的一些技巧,对考生来说至关重要。

今天主要来说说中国剩余定理的解题方法。

中国剩余定理有着千年的文化历史,早在春秋时期就出现过,是我国悠久历史的象征,中国剩余定理是一个大的数学体系,而今天主要是学习现有的公职类考试中常见题型的考察形式,以及解题方法。

一、什么是中国剩余定理:中国剩余定理最早出现在《孙子算经》中,又名物不知数问题。

今有物不知其数,三三数之剩二(除以3余2),五五数之剩三(除以5余3),七七数之剩二(除以7余2),问物几何?”这个问题称为“孙子问题”,后经宋朝人传入西方,引起西方广大关注,以至于后来该问题的一般解法国际上称为“中国剩余定理”。

二、中国剩余定理的通用形式:M除以A得到余数a;M除以B得到余数b;M除以C得到余数c;求M为多少?三、中国剩余定理的解法:1.余同加余:M÷3 (1)M÷4 (1)当M除以不同的除数得到余数相同时,此时M的值为除数的最小公倍数的倍数加一,如下:M=12N+12.和同加和:M÷3 (2)M÷4 (1)当M除以不同的除数得到余数与除数的加和相同时,此时M的值为除数的最小公倍数的倍数加上余数与除数的相应的和,如下:M=12N+53. 差同减差:M÷5 (2)M÷4 (1)当M除以不同的除数得到除数与余数的差相同时,此时M的值为除数的最小公倍数的倍数减去除数与余数的差,如下:M=12N-34. 逐步满足法:根据条件从除数最小的式子用数逐步满足题目要求,试探的找出答案。

5. 带入排除法:将答案依次带到题目中,判断那个选项符合要求。

2015国家公务员考试行测提分利器之剩余定理1110

2015国家公务员考试行测提分利器之剩余定理1110

2015国家公务员考试行测提分利器之剩余定理漳州人事人才网国家公务员考试和多省公务员考试的数学运算部分,很多考生首选整除思想,但是有些题目我们会发觉题目中的被除数不满足能被整除的条件,即有余数,这类题目称为剩余问题,常见形式为:一个数同时满足除以a余x,除以b余y,除以c余z,其中a、b、c两两互质,求满足这样条件的数是多少(有几个)。

对于这类题目我们在没有学习剩余定理之前往往只能采用枚举法或者是代入排除法来解决。

如果问这个数是多少,显然大家习惯用代入排除法;如果问有几个,就要用枚举法了,而这种方法是比较繁琐的。

在行测考试中时间对大家来说是最重要的,因此掌握此种题型的解题方法对大家在做题准确率以及做题速度上都有很大帮助。

下面中公教育专家给大家讲解一下剩余定理常考察哪些题型以及其快速解题方法。

一、剩余定理的特殊情况(1)余同(余数相同):除数的最小公倍数+余数例题1:三位数的自然数P满足:除以4余2,除以5余2,除以6余2,则符合条件的自然数P有多少个?A.120B.122C.121D.123【答案】B。

【中公解析】一个数除以4、5、6均余2,余数相同,属于余同,因此这个数满足通项公式N=60n+2 ,(n=0,1,2,3……),当n=2时,N=122,选择B项。

(2)和同(除数和余数的和相同):除数的最小公倍数+和(除数加余数的和)例题2:三位数的自然数P满足:除以5余3,除以6余2,除以7余1,则符合条件的自然数P有多少个?A.3B.2C.4D.5【答案】D。

【中公解析】此题除数与余数的和相加均为8,则该自然数应满足N=210n+8(n=0,1,2……),因此在0至999以内满足题干条件的自然数有8,218,428,638,848五个数,因此选D。

(3)差同(除数减余数之差相同):除数的最小公倍数-差(除数减余数的和)例题3:某校三年级同学,每5人一排多1人,每6人一排多2人,每7人一排3多人,问这个年级至少有多少人?A.206B.202C.237D.302【答案】A。

2015河南选调生考试行测辅导:同余问题中的剩余定理

2015河南选调生考试行测辅导:同余问题中的剩余定理

余数问题中的一个重要问题就是同余问题,在同余问题解决过程中,华图公务员考试研究中心推荐代入法和口诀法两大类。

其中口诀法是公倍数做周期,余同取余,和同加和,差同减差的应用,但是有时候会出现余不同,和不同并且差也不同的现象,这就需要我们采用剩余定理进行解决。

剩余定理的原理是在“孙子问题”现代数论中的一个一次同余问题,它最早出现在我国公元四世纪的数学著作《孙子算经》中。

《孙子算经》卷下“物不知数”题说:有物不知其数,三个一数余二,五个一数余三,七个一数又余二,问该物总数几何?显然,这相当于求不定方程组N=3x+2,N=5y+3,N=7x+2的正整数解N,或用现代数论符号表示,等价于解下列的一次同余组:N 2(mod3) 3(mod5) 2(mod7)②《孙子算经》所给答案是N=23。

由于孙子问题数据比较简单,这个答数通过试算也可以得到。

但是《孙子算经》并不是这样做的。

“物不知数”题的术文指出解题的方法:三三数之,取数七十,与余数二相乘;五五数之,取数二十一,与余数三相乘;七七数之,取数十五,与余数二相乘。

将诸乘积相加,然后减去一百零五的倍数。

列成算式就是:N=70×3+21×3+15×2-2×105。

这里105是模数3、5、7的最小公倍数,容易看出,《孙子算经》给出的是符合条件的最小正整数。

对于一般余数的情形,《孙子算经》术文指出,只要把上述算法中的余数2、3、2分别换成新的余数就行了。

以R1、R2、R3表示这些余数,那么《孙子算经》相当于给出公式N=70×R1+21×R2+15×R3-P×105(p是整数)。

孙子算法的关键,在于70、21和15这三个数的确定。

后来流传的《孙子歌》中所说“七十稀”、“廿一枝”和“正半月”,就是暗指这三个关键的数字。

《孙子算经》没有说明这三个数的来历。

实际上,它们具有如下特性:国家公务员| 事业单位| 村官| 选调生| 教师招聘| 银行招聘| 信用社| 乡镇公务员| 各省公务员|也就是说,这三个数可以从最小公倍数M=3×5×7=105中各约去模数3、5、7后,再分别乘以整数2、1、1而得到。

剩余定理在公考数量关系中的运用

剩余定理在公考数量关系中的运用

剩余定理在公考数量关系中的运用一、剩余定理的由来我国古代数学名著《孙子算经》中,记载这样一个问题:“今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何。

”用现在的话来说就是:“有一批物品,3个3个地数余2个,5个5个地数余3个,7个7个地数余2个,问这批物品最少有多少个?” 这个问题的解题思路,被称为“孙子问题”、“鬼谷算”、“隔墙算”、“韩信点兵”等等。

二、“剩余定理”算理及其应用明朝数学家程大位把这一解法编成四句歌诀:三人同行七十(70)稀,五树梅花廿一(21)枝,七子团圆正月半(15),除百零五(105)便得知。

歌诀中每一句话都是一步解法:第一句指除以3的余数用70去乘;第二句指除以5的余数用21去乘;第三句指除以7的余数用15去乘;第四句指上面乘得的三个积相加的和如超过105,就减去105的倍数,就得到答案了。

即:70×2+21×3+15×2-105×2=23为什么这样解呢?因为70是5和7的公倍数,且除以3余1。

21是3和7的公倍数,且除以5余1。

15是3和5的公倍数,且除以7余1。

(任何一个一次同余式组,只要根据这个规律求出那几个关键数字,那么这个一次同余式组就不难解出了。

)把70、21、15这三个数分别乘以它们的余数,再把三个积加起来是233,符合题意,但不是最小,而105又是3、5、7的最小公倍数,去掉105的倍数,剩下的差就是最小的一个答案。

三、“剩余定理”的应用主要是是针对那些我们学的口诀“公倍数做周期:余同取余,和同加和,差同减差”以外的余数问题的题目。

【例1】一个数被3除余1,被4除余2,被5除余4,这个数最小是几?A.81 B.34 C.128 D.103【答案】B【解析】本题属于余数问题。

题中3、4、5三个数两两互质。

则〔4,5〕=20;〔3,5〕=15;〔3,4〕=12;〔3,4,5〕=60。

为了使20被3除余1,用20×2=40;使15被4除余1,用15×3=45;使12被5除余1,用12×3=36。

行测数量关系技巧:中国剩余定理

行测数量关系技巧:中国剩余定理

行测数量关系技巧:中国剩余定理行测数量关系技巧:中国剩余定理各位考生,很多同学在备考的过程中遇到中国剩余定理的题目除了代入排除这一种方法就有些不知所措,其实,中国剩余定理问题备考起来还是比较容易掌握的,下面就跟着来一块学习这部分的内容吧。

什么是中国剩余定理呢,中国剩余定理最早出现在《孙子算经》中,又名“物不知数问题”,有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?即,一个整数除以三余二,除以五余三,除以七余二,求这个整数。

《孙子算经》中首次提到了同余方程组问题,以及以上具体问题的解法,因此在中文数学文献中也会将中国剩余定理称为孙子定理。

中国剩余定理的通用形式是:M除以A得到余数a;除以B得到余数b;M除以C得到余数c;求M为多少?在其中也有一些特殊模型如下:一、余同加余,例如:M÷3…1,M÷4…1,则M=12n+1下面来看一个例题:例1. 一个大于10的正整数,除以3余2,除以4余2,除以5余2。

问这个数最小是多少?A.60B.61C.62D.63(答案)C。

解析:一个数M除以A得到余数a;除以B得到余数b;除以C得到余数c,求这个数的形式,符合中国剩余定理。

而且余数都为2,符合余同加余的模型。

这道题目当中符合题意的数应是3,4,5的公倍数加2,所有这样的数可表示为60n+2n为整数,因为这个数大于10,当n取1时,这个数最小为62。

选C。

二、差同减差,例如:M÷5…2,M÷4…1,则M=20n-3下面来看一个例题:例2.一个小于200的正整数P除以11余8,除以13余10,那么P是多少?A.139B.140C.141D.142(答案)B。

解析:这道题目是小于二百的数除以11余8,除以13余10,求这个数的形式,符合中国剩余定理。

11-8=3,13-10=3,除数与余数的差都为3,且11、13 的最小公倍数为143,根据差同减差可知,P=143n-3,那么在小于200的数中,P的值为140。

国考行测数学运算之【剩余定理】拿分点评

国考行测数学运算之【剩余定理】拿分点评

国家公务员考试行测数学运算—剩余定理【例1】一个数被3除余1,被4除余2,被5除余4,这个数最小是几?【解析】题中3、4、5三个数两两互质。

则〔4,5〕=20;〔3,5〕=15;〔3,4〕=12;〔3,4,5〕=60。

为了使20被3除余1,用20×2=40;使15被4除余1,用15×3=45;使12被5除余1,用12×3=36。

然后,40×1+45×2+36×4=274,因为,274>60,所以,274-60×4=34,就是所求的数。

【例2】一个数被3除余2,被7除余4,被8除余5,这个数最小是几?在1000内符合这样条件的数有几个?【解析】题中3、7、8三个数两两互质。

则〔7,8〕=56;〔3,8〕=24;〔3,7〕=21;〔3,7,8〕=168。

为了使56被3除余1,用56×2=112;使24被7除余1,用24×5=120。

使21被8除余1,用21×5=105;然后,112×2+120×4+105×5=1229,因为,1229>168,所以,1229-168×7=53,就是所求的数。

再用(1000-53)/168得5,所以在1000内符合条件的数有6个。

【例3】一个数除以5余4,除以8余3,除以11余2,求满足条件的最小的自然数。

【解析】题中5、8、11三个数两两互质。

则〔8,11〕=88;〔5,11〕=55;〔5,8〕=40;〔5,8,11〕=440。

为了使88被5除余1,用88×2=176;使55被8除余1,用55×7=385;使40被11除余1,用40×8=320。

然后,176×4+385×3+320×2=2499,因为,2499>440,所以,2499-440×5=299,就是所求的数。

2015河南省公务员考试行测 数量关系-数、整除、余数与剩余定理

2015河南省公务员考试行测 数量关系-数、整除、余数与剩余定理

2015河南省公务员考试行测:数量关系-数、整除、余数与剩余定理数、整除、余数与剩余定理1.数的整除特性被4整除:末两位是4的倍数,如16,216,936…被8整除:末三位是8的倍数,如144,2144,3152被9整除:每位数字相加是9的倍数,如,81,936,549被11整除:奇数位置上的数字和与偶数位置上的数字和之间的差是11的倍数。

如,121,231,9295如果数A被C整除,数B被C整除,则,A+B 能被C整除 ; A*B也能被C整除如果A能被C整除,A能被B整除,BC互质,则A能被B*C整除。

例:有四个自然数A、B、C、D,它们的和不超过400,并且A除以B商是5余5,A除以C商是6余6,A除以D商是7余7。

那么,这四个自然数的和是:析:A除以B商是5余5,B的5倍是5的倍数,5是5的倍数,则A是5的倍数,同理A是6的倍数,A是7的倍数,则A为最小公倍数,210,此题得解。

2.剩余定理原理用例子解释,一个数除以3余2,那么,这个数加3再除以3,余数还是2.一个数除以5余3,除以4余3,那么这个数加上5和4的公倍数所得到的数,除3还是能得到这个结论。

例:一个三位数除以9余7,除以5余2,除以4余3,这样的三位数共有()析:7是最小的满足条件的数。

9,5,4的最小公倍数为180,则187是第二个这样的数,367,547,727,907共5个三位数。

国家公务员| 事业单位| 村官| 选调生| 教师招聘| 银行招聘| 信用社| 乡镇公务员| 各省公务员|例:有一个年级的同学,每9人一排多5人,每7人一排多1人,每5人一排多2人,问这个年级至少有多少人?析:题目转化为,一个数除以9余5,除以7余1,除以5除2。

第一步,从最大的数开刀,先找出除以9余5的最小数,14。

第二步,找出满足每9人一排多5人,每7人一排多1人的最小的数。

14除以7不余1;再试14+9这个数,23除以7照样不余1;数取14+9*4时,50除以7余1,即满足每9人一排多5人,每7人一排多1人的最小的数是,50; 第三步,找符合三个条件的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015国家公务员考试行测:中国剩余定理问题国家公务员考试数学运算部分,我们常用到整除的思想,但是有些题目我们会发觉题目中的被除数不满足能被整除的条件,即有余数,有一类题目称为剩余问题,常见形式为一个数同时满足除以a余x,除以b余y,除以c余z,其中a、b、c两两互质,求满足这样条件的数。

对于这类题目我们在没有学习剩余定理之前往往只能采用枚举法来解决,而这种方法是比较繁琐的,在行测考试中时间对大家来说是最重要的,因此掌握此种题型的解题方法对大家在做题准确率以及做题速度上都有很大帮助。

下面中公教育专家结合具体的例子给大家做一详细的讲解。

剩余问题的解法:
1. 特殊情况
(1)余同(余数相同)加余
【例题1】某校二年级全部共3个班的学生排队,每排4人,5人或6人,最后一排都只有2人,这个学校二年级有( )名学生。

A.120
B.122
C.121
D.123
【答案】B
【解析】方法一:代入排除法(略)
方法二:由题意可知该校二年级的学生人数除以4、5、6均余2,余数相同,属于余同,因此该班学生人数满足通项公式N=60n+2 ,(n=0,1,2,3……),当n=2时,N=122,选择B项。

注:n前面的系数60是取4、5、6三个除数的最小公倍数。

(2)和同(除数和余数的和相同)加和
【例题2】某个数除以5余3,除以6余2,除以7余1,求在0至500内满足这样的自然数有多少个?
A.3
B.2
C.4
D.5
【答案】A
【解析】此题我们通过观察会发现除数与余数的和相加均为8,则该自然数应满足
N=210n+8(n=0,1,2……)因此在0至500以内满足题干条件的自然数有8,218,428三个数。

注:n前面的系数210是取5、6、7三个除数的最小公倍数。

(3)差同(除数与余数之差相同)减差
【例题3】三位运动员跨台阶,台阶总数在100-150级之间,第一位运动员每次跨3级台阶,最后一步还剩2级台阶。

第二位运动员每次跨4级台阶,最后一步还剩3级台阶。

第三位运动员每次跨5级台阶,最后一步还剩4级台阶。

问:这些台阶总共有多少级?
A. 119
B. 121
C. 129
D. 131
【答案】A
【解析】方法一:代入排除法(略)。

方法二:通过观察我们会发现除数与余数的差均为1,因此台阶数满足:
N=60n-1(n=1,2,3……),可发现A项满足该通项公式。

2.一般情况
用同余特性解题
【例题4】三位数的自然数P满足:除以3余2,除以7余3,除以11余4,则符合条件的自然数P有多少个?
A.5
B. 4
C. 6
D. 7
【答案】B
【解析】此题不满足所给的条件不满足我们前面所讲的特殊情况,但是通过观察我们发现,P满足除以3余2,除以7余3两个条件时,在P的基础上加上4,即(P+4)这个数一定是能够被3整除以及被7整除的,因此(P+4)=21n,所以P=21n-4……①,得到的这个通项公式再与除以11余4进行找通项公式。

该自然数P=21n-4=11a+4,等式左边都是被11除,等式左边的余数为10n-4,等式右边的余数为4,我们知道一个数被11除余4,也可以认为这个数被11除余15,或被11除余26等。

根据同余特性可知,等式左边的余数10n-4应与等式右边的余数4,15,26等数值相等。

因为n要取整数,所以取10n-4=26可以得到n=3代入①式得到P=59,所求的59这个数是满足题干三个条件的最小数,所以,满足题干三个条件的数P=231n+59(n=1,2,3……),所以在三位数以内的数有290,521,752,983四个数。

选择B项。

【例题5】一个自然数P同时满足除以3余1,除以4余3,除以7余4,求满足这样条件的三位数共有多少个?
A.10
B.11
C.12
D.13
【答案】B
【解析】先取其中两个条件,除以3余1,除以4余3,即P=4n+3=3a+1,等式两边同时除以3,等式左边的余数为n,等式右边的余数为1,即n=1,代入上式可知满足上述两个条件的最小的数为7,则同时满足上述两条件的数的通项公式为P=12n+7……①,再将①式所得的条件与题干中除以7余4的条件组合成新的条件。

即满足题干中三个条件的数
P=12n+7=7b+4,等式两边同时除以未知数较小的系数7,则左边余数为5n,等式右边的余数是4,也可认为余数是25,即5n=25,求解得n=5,代入到①式中,即同时满足题干中三个条件的最小的自然数P=67,则满足题干三个条件的数的通项公式为
P=84n+67(n=0,1,2,3……)即100≦84n+67≦999可求得1≦n≦11,即符合题意的数共有11-1+1=11个数。

中公教育专家认为,在中国剩余问题的解决过程中,遇到一些余数较为特殊的情况下用剩余定理能够很好的解决,但是对于出现的和不同,差不同,余不同的情况下,可以用同余特性得到很好的解决。

主要思路是先找满足题干中两个条件的通项公式,将三者条件转化成二者条件,然后再次利用同余特性加以解决即可。

希望广大考生在掌握方法的基础上,多加练习,一举成功。

更多2015年国家公务员考试备考信息,请关注:
/general/145/9932/?wt.mc_id=bk11914(2015国家公务员开课通知)
/html/guojiagongwuyuan/kaoshitiku/?wt.mc_id=bk11914(2015年公务员历年考试题库)。

相关文档
最新文档