分式运算典型例题精解_2

合集下载

分式经典例题及答案

分式经典例题及答案

分式的性质一、知识回顾1、分式的定义:如果A、B表示两个整式,并且B中含有字母,那么式子A/B叫做分式。

2、分式有意义、无意义的条件:? ?? ?① 分式有意义的条件:分式的分母不等于0;? ?? ?② 分式无意义的条件:分式的分母等于0。

3、分式值为零的条件:当分式的分子等于0且分母不等于0时,分式的值为0。

4、分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变。

5、分式的通分:和分数类似,利用分式的基本性质,使分子和分母同乘适当的整式,不改变分式的值,把几个异分母分式化成相同分母的分式,这样的分式变形叫做分式的通分。

6、分式的约分:和分数一样,根据分式的基本性质,约去分式的分子和分母中的公因式,不改变分式的值,这样的分式变形叫做分式的约分。

约分后分式的分子、分母中不再含有公因式,这样的分式叫最简公因式。

约分的关键是找出分式中分子和分母的公因式。

二、典型例题? ???? ?? ???A.x=-2? ?? ?? ?? ?? ???B.x=0? ?? ?? ?? ?? ???C.x=1或2? ?? ?? ?? ?? ? D.x=1分析:先根据分式的值为0的条件列出关于x的不等式组,求出x的值即可.这种题一定要考虑到分母不为0.解答:? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ???? ?? ?? ???∴{ x-1=0? ???①? ?? ?? ?? ???{ x+2≠0? ? ② ,解得x=1.? ?? ?? ???故选D.______________________________________________________________________________ _______? ?? ?? ?? ?? ?? ?? ?? ?? ?? ???A.x=1? ?? ?? ?? ?? ?? ?? ???B.x=-1? ?? ?? ?? ?? ?? ?? ?C.x=±1? ?? ?? ?? ?? ?? ?? ???D.x≠1分析:要使分式的值为0,一定要分子的值为0并且分母的值不为0.解答:由x2-1=0解得:x=±1,? ? 又∵x-1≠0即x≠1,∴x=-1,?? 故选B.______________________________________________________________________________ _______A.x≠5 B.x≠-5 C.x>5 D.x>-5分析:要使分式有意义,分式的分母不能为0.解答:∵x-5≠0,∴x≠5;? ???故选A.______________________________________________________________________________ _______A.x<2 B.x<2且x≠-1 C.-1<x<2 D.x>2分析:易得分母为非负数,要使分式为正数,则应让分子大于0,分母不为0.解答:根据题意得:2-x>0,且(x+1)2≠0,? ? ∴x<2且x≠-1,? ? 故选B.______________________________________________________________________________ _______A.x>0 B.x≥0 C.x≥0且x≠1 D.无法确定分析:分母x2-2x+1=(x-1)2,为完全平方式,分母不为0,则:x-1≠0时,要使分式的值为非负数,则3x≥0,由此列不等式组求解.解答:依题意,得{ 3x≥0? ?①{ x-1≠0??② ,解得x≥0且x≠1,故选C.______________________________________________________________________________ _______例6:下列说法正确的是()A.只要分式的分子为零,则分式的值为零B.分子、分母乘以同一个代数式,分式的值不变C.分式的分子、分母同时变号,其值不变分析:根据分式的值为0的条件是:(1)分子为0;(2)分母不为0.? ?分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.解答:A、分式的分子为零,分母不为0,则分式的值为零,故错误;? ? B、分子、分母乘以同一个不等于0的代数式,分式的值不变,故错误;? ? C、正确;? ? D、当x取任意实数时,分式(|2-x|+x)/2 有意义,故错误.? ? 故选C.______________________________________________________________________________ _______A.-7/2 B.7/2? ? C.2/7 D.-2/7分析:先把分式的分子、分母都除以xy,就可以得到已知条件的形式,再把1/x-1/y=3代入就可以进行计算.解答:根据分式的基本性质,分子分母都除以xy得,? ?? ?? ?故选B.______________________________________________________________________________ _______分析:根据已知条件求出(a-b)与ab的关系,再代入所求的分式进行求值.______________________________________________________________________________ _______分析:设恒等式等于一个常数,求出x,y,z与这个常数的关系式,再进行证明.解答:解:? ?? ? 则x=ka-kb,y=kb-kc,z=kc-ka,? ? x+y+z=ka-kb+kb-kc+kc-ka=0,? ? ∴x+y+z=0.三、解题经验本节题目变化多端,我们要多做练习以积累经验,牢记分式有无意义的条件。

分式方程例题

分式方程例题

分式方程例题分式方程(Rational Equations)是指含有分式(有理式)的方程。

在解分式方程时,我们需要求解使得方程成立的未知数的值。

下面,我们通过几个例题来学习如何解分式方程。

例题一:解方程 $\frac{x}{x-2} = \frac{3}{4}$解答:首先,我们需要注意到分式方程的一个重要性质:在分式方程的两边同时乘上相同的非零数时,等号仍然成立。

利用这个性质,我们可以通过消去分母来解方程。

为了消去方程中的分母,我们可以将方程两边同时乘以$x-2$和$4$的乘积,即:$x(x-2) \times 4 = 3 \times (x-2)$化简得:$4x(x-2) = 3(x-2)$继续化简:$4x^2 - 8x = 3x - 6$移项得:$4x^2 - 11x + 6 = 0$现在,我们需要解这个二次方程。

可以通过因式分解或者使用求根公式来求解。

将方程因式分解得:$(4x-3)(x-2)=0$因此,我们得到两个解:$x=\frac{3}{4}$ 和 $x=2$。

例题二:解方程 $\frac{2}{5x+3} = \frac{3}{2x+1}$解答:同样地,我们要消去方程中的分母。

为了实现这一点,我们将方程两边同时乘以$(5x+3)$和$(2x+1)$的乘积:$2(2x+1) = 3(5x+3)$化简得:$4x+2 = 15x+9$移项得:$15x - 4x = 9 - 2$继续化简得:$11x = 7$因此,解为 $x = \frac{7}{11}$。

例题三:解方程 $\frac{1}{x} + \frac{1}{x+1} = \frac{1}{x+2}$解答:我们首先可以注意到这个方程中的分母是相邻整数,这对我们来说非常方便。

为了简化计算,我们可以通过一些代换来解决问题。

设 $u = x+1$,那么原方程可以重新表示为:$\frac{1}{u-1} + \frac{1}{u} = \frac{1}{u+1}$将分式凑同分母得:$\frac{u+u-1}{(u-1)u} = \frac{1}{u+1}$继续化简得:$\frac{2u-1}{u^2-u} = \frac{1}{u+1}$通过交叉乘积消去分母得:$(2u-1)(u+1) = (u-1)u$展开并移项得:$2u^2+u-1 = u^2-u$继续移项得:$u^2+2u-1 = 0$现在,我们需要解这个二次方程。

分式的运算练习题及答案

分式的运算练习题及答案

分式的运算练习题及答案分式的运算是数学中的基本内容之一,掌握好分式的运算方法对于提高数学水平具有重要的作用。

本文将为您提供一些分式的运算练习题及答案,帮助您巩固分式运算的知识。

一、基础练习题1. 计算:$\frac{1}{2} + \frac{3}{4}$答案:$\frac{5}{4}$2. 计算:$\frac{2}{3} \times \frac{3}{5}$答案:$\frac{2}{5}$3. 计算:$\frac{5}{6} \div \frac{1}{2}$答案:$\frac{5}{3}$4. 计算:$\frac{3}{4} + \frac{2}{9} - \frac{1}{3}$答案:$\frac{1}{36}$5. 计算:$(\frac{2}{3} + \frac{1}{4}) \times \frac{3}{5}$答案:$\frac{13}{30}$二、复杂练习题1. 计算:$\frac{3}{4} \div \frac{2}{5} \times \frac{1}{3}$答案:$\frac{15}{8}$2. 计算:$(\frac{7}{8} - \frac{3}{4}) \div (\frac{2}{3} \times\frac{5}{6})$答案:$\frac{7}{20}$3. 计算:$\frac{1}{2} + \frac{1}{3} - \frac{1}{4} \times \frac{1}{5}$答案:$\frac{2}{15}$4. 计算:$\frac{2}{3} \div \frac{3}{4} + \frac{4}{5} - \frac{5}{6}$答案:$\frac{7}{6}$5. 计算:$(\frac{3}{4} + \frac{1}{5}) \div \frac{2}{3} - \frac{5}{6}$答案:$-\frac{17}{36}$三、应用题1. 甲、乙两人一起做数学题,甲做的时间是乙的$\frac{2}{3}$,若乙做完题所需时间为1小时,问甲需要多长时间做完这些题?答案:$\frac{4}{3}$小时解析:设甲需要x小时做完这些题,则根据题意可得$\frac{x}{1}=\frac{2}{3}$,解得x=$\frac{4}{3}$。

分式练习题及答案

分式练习题及答案

分式练习题及答案分式是数学中的一个重要概念,它在我们的日常生活中有着广泛的应用。

在学习分式的过程中,练习题是不可或缺的一部分。

通过练习题,我们可以巩固对分式的理解,提高解题能力。

本文将给大家介绍一些常见的分式练习题及其答案,希望对大家的学习有所帮助。

一、基础练习题1. 计算:$\frac{3}{4}+\frac{2}{5}$解答:首先找到两个分式的公共分母,这里是20。

然后将两个分式的分子相加,保持分母不变。

计算得到:$\frac{15}{20}+\frac{8}{20}=\frac{23}{20}$2. 计算:$\frac{5}{6}-\frac{1}{3}$解答:同样地,找到两个分式的公共分母,这里是6。

然后将两个分式的分子相减,保持分母不变。

计算得到:$\frac{5}{6}-\frac{2}{6}=\frac{3}{6}=\frac{1}{2}$3. 计算:$\frac{2}{3}\times\frac{3}{4}$解答:将两个分式的分子相乘,分母相乘,得到:$\frac{2}{3}\times\frac{3}{4}=\frac{6}{12}=\frac{1}{2}$4. 计算:$\frac{2}{3}\div\frac{5}{6}$解答:将除法转化为乘法,即将第二个分式的分子与分母互换位置,然后进行乘法运算。

得到:$\frac{2}{3}\div\frac{5}{6}=\frac{2}{3}\times\frac{6}{5}=\frac{12}{15}=\frac{4}{5}$二、应用练习题1. 甲、乙两个水管一起工作可以在3小时内将一个水池填满。

如果甲单独工作需要4小时,乙单独工作需要多少小时?解答:设乙单独工作需要x小时。

根据工作时间和工作效率的关系,可以得到以下分式:$\frac{1}{4}+\frac{1}{x}=\frac{1}{3}$。

将分式转化为方程,解方程得到:$x=12$。

分式知识点及例题精讲

分式知识点及例题精讲

1、分式的加减:例1:化简1x +12x +13x等于( ) A .12x B .32x C .116x D .56x例2:x x x x x x 13632+-+-- 例7:2212a a a ++--224a a --例3:计算11--+a a a 的结果是( ) A 11-a B 11--a C 112---a a a D 1-a 例4:请先化简:21224x x x ---,然后选择一个使原式有意义而又喜欢的数代入求值.例5:已知:0342=-+x x 求442122++--+x x x x x 的值。

2、分式的混合运算:例1:4421642++-÷-x x x x 例2:34121311222+++-∙-+-+x x x x x x x例3:222)2222(x x x x x x x -∙-+-+- 例4:1342+∙⎪⎭⎫ ⎝⎛+-x x x3、分式求值问题:例1:已知x 为整数,且23x ++23x -+22189x x +-为整数,求所有符合条件的x 值的和.例2:已知x =2,y =12,求222424()()x y x y ⎡⎤-⎢⎥+-⎣⎦÷11x y x y ⎛⎫+ ⎪+-⎝⎭的值.例3:已知实数x 满足4x 2-4x+l=O ,则代数式2x+x21的值为________.例5:若13x x += 求1242++x x x 的值是( ). A .81 B .101 C .21 D .41 例6:已知113x y -=,求代数式21422x xy y x xy y----的值例7:先化简,再对a 取一个合适的数,代入求值221369324a a a a a a a +--+-÷-+-.4、化为一元一次的分式方程:(1)分式方程:含分式,并且分母中含未知数的方程——分式方程。

(2)解分式方程的过程,实质上是将方程两边同乘以一个整式(最简公分母),把分式方程转化为整式方程。

15.2分式的运算例题与讲解

15.2分式的运算例题与讲解

15.2 分式的运算1.分式的乘除(1)分式的乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母.用式子表示为:a b ·c d =a ·c b ·d. (2)分式的除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.用式子表示为:a b ÷c d =a b ·d c =a ·d b ·c. 分式的除法要转化为乘法,然后根据乘法法则进行运算,结果要化为最简分式.【例1】 计算:(1)4a 4b 215x 2·9x 8a 4b; (2)a 2-1a 2+2a +1÷a 2-a a +1; (3)a 2-4a 2+4a +4·2a a 2-4a +4; (4)4x 2+4xy +y 22x +y÷(4x 2-y 2). 解:(1)4a 4b 215x 2·9x 8a 4b =4a 4b 2·9x 15x 2·8a 4b =3b 10x; (2)a 2-1a 2+2a +1÷a 2-a a +1=(a +1)(a -1)(a +1)2·a +1a (a -1) =(a +1)(a -1)(a +1)a (a +1)2(a -1)=1a ; (3)a 2-4a 2+4a +4·2a a 2-4a +4=(a +2)(a -2)(a +2)2·2a (a -2)2 =2a (a +2)(a -2)(a +2)2(a -2)2 =2a a 2-4; (4)4x 2+4xy +y 22x +y÷(4x 2-y 2) =(2x +y )22x +y ·1(2x +y )(2x -y )=12x -y. 2.分式的乘方(1)法则:分式乘方要把分子、分母分别乘方.(2)用式子表示:⎝⎛⎭⎫a b n =a n b n .解技巧 分式的乘方的理解 (1)分式乘方时,分子、分母要乘相同次方;(2)其结果的符号与有理数乘方结果的符号确定方法一样.【例2】 计算:(1)⎝⎛⎭⎫a 2-b 34;(2)⎝⎛⎭⎫x 2y -z 23. 解:(1)⎝⎛⎭⎫a 2-b 34=(a 2)4(-b 3)4=a 8b 12; (2)⎝⎛⎭⎫x 2y -z 23=(x 2y )3(-z 2)3=x 6y 3-z 6=-x 6y 3z 6. 3.分式的加减(1)同分母分式相加减:①法则:分母不变,把分子相加减;②用式子表示:a c ±b c =a ±b c. (2)异分母分式相加减:①法则:先通分,变为同分母的分式,再加减; ②用式子表示:a b ±c d =ad bd ±bc bd =ad ±bc bd. 警误区 分式加减运算的注意点 (1)同分母分式的加减运算的关键是分子的加减运算,分子加减时要将其作为一个整体进行加减,当分子是多项式时,要添加括号;(2)异分母分式加减运算的关键是先通分,转化为同分母的分式相加减,再根据同分母分式加减法进行运算,通分时要注意最简公分母的确定;(3)分式加减运算的结果要化为最简分式或整式.【例3】 计算:(1)(a -b )22ab +(a +b )22ab; (2)a a 2-1-11-a 2; (3)1x +y -1x -y +2x x 2-y 2; (4)12m 2-9+23-m; (5)x -3x 2-1-2x +1; (6)4a +2-a -2. 解:(1)(a -b )22ab +(a +b )22ab=(a -b )2+(a +b )22ab=a 2-2ab +b 2+a 2+2ab +b 22ab =2a 2+2b 22ab=a 2+b 2ab; (2)a a 2-1-11-a 2=a a 2-1+1a 2-1=a +1a 2-1=a +1(a +1)(a -1)=1a -1; (3)1x +y -1x -y +2x x 2-y 2 =1x +y -1x -y +2x (x +y )(x -y ) =(x -y )-(x +y )+2x (x +y )(x -y ) =2x -2y (x +y )(x -y ) =2(x -y )(x +y )(x -y )=2x +y; (4)12m 2-9+23-m =12(m +3)(m -3)-2m -3=12(m +3)(m -3)-2(m +3)(m +3)(m -3) =12-2(m +3)(m +3)(m -3) =-2(m -3)(m +3)(m -3)=-2m +3; (5)x -3x 2-1-2x +1=x -3(x +1)(x -1)-2(x -1)(x +1)(x -1) =x -3-2(x -1)(x +1)(x -1)=-(x +1)(x +1)(x -1)=-1x -1; (6)4a +2-a -2=4a +2-(a +2) =4a +2-(a +2)1=4a +2-(a +2)2a +2=4-(a +2)2a +2=4-a 2-4a -4a +2=-a 2+4a a +2.4.整数指数幂一般地,当n 是正整数时,a -n =1a n (a ≠0).这就是说,a -n (a ≠0)是a n 的倒数.这样引入负整数指数幂后,指数的取值范围就推广到全体整数.根据整数指数幂的运算性质,当m ,n 为整数时,a m ÷a n =a m -n ,a m ·a -n =a m +(-n )=a m-n ,因此a m ÷a n =a m ·a -n .特别地,a b=a ÷b =a ·b -1,所以⎝⎛⎭⎫a b n =(a ·b -1)n ,即商的乘方⎝⎛⎭⎫a b n 可以转化为积的乘方(a ·b -1)n .这样,整数指数幂的运算性质可以归纳为:(1)a m ·a n =a m +n (m ,n 是整数);(2)(a m )n =a mn (m ,n 是整数);(3)(ab )n =a n b n (m ,n 是整数).【例4】 计算:(1)⎝⎛⎭⎫-23-2; (2)a 2b -3(a -1b )3÷(ab )-1. 解:(1)⎝⎛⎭⎫-23-2=1⎝⎛⎭⎫-232=149=94; (2)a 2b -3(a -1b )3÷(ab )-1=a 2b -3·a -3b 3·ab =a 0b =b .5.科学记数法(1)用科学记数法表示绝对值大于1的数时,应当表示为a ×10n 的形式,其中1≤|a |<10,n 为原数整数部分的位数减1;(2)用科学记数法表示绝对值小于1的数时,可以表示为a ×10-n 的形式,其中n 为原数第1个不为零的数字前面所有零的个数(包括小数点前面的那个零),1≤|a |<10.提示:用科学记数法的形式表示数更方便于比较数的大小.【例5】 把下列各数用科学记数法表示出来:(1)650 000;(2)-36 900 000;(3)0.000 002 1;(4)-0.000 006 57.解:(1)650 000=6.5×105;(2)-36 900 000=-3.69×107;(3)0.000 002 1=2.1×10-6;(4)-0.000 006 57=-6.57×10-6.6.分式的乘除混合运算分式的乘除混合运算要统一为乘法运算来计算.谈重点 分式乘除混合运算的方法 (1)分式的乘除混合运算顺序与分数的乘除混合运算顺序相同,即从左到右的顺序,有括号先算括号里面的;(2)分式的乘除混合运算要注意每个分式中分子、分母括号的处理,以及结果符号的确定;(3)分式的乘除混合运算结果应为最简分式或整式.7.分式的混合运算分式的四则混合运算与有理数的混合运算相同,必须按照运算顺序,先乘方,再乘除,后加减,有括号时先去小括号再去中括号,最后结果要化为最简分式或整式.解技巧 分式混合运算的技巧 分式四则混合运算要注意:(1)按照运算顺序进行,确定合理的运算顺序是解题的关键;(2)灵活运用交换律、结合律、分配律,可以使运算简捷,而且还可以提高运算速度和准确率;(3)将结果化为最简分式或整式;(4)运算过程中要注意符号的确定.8.把分式化简后再求值 分式的化简求值题,关键是要准确地运用分式的运算法则,然后代入求值.化简运算过程中要注意约分、通分时分式的值保持不变,要注意分清运算顺序,先乘除,后加减,如果有括号,先进行括号内的运算.【例6】 计算:1-x 2x 2+4x +4÷(x -1)2·x 2+3x +2x -1. 分析:按照从左到右的顺序依次运算,把除法运算转化为乘法,然后根据乘法法则进行运算,结果要化为最简分式或整式.解:1-x 2x 2+4x +4÷(x -1)2·x 2+3x +2x -1=(1+x )(1-x )(x +2)2·1(x -1)2·(x +1)(x +2)x -1=-(x +1)2(x +2)(x -1)2. 【例7】 计算:⎣⎢⎡⎦⎥⎤a 2-b 2a 2+2ab +b 2+2ab ÷⎝⎛⎭⎫1a +1b 2·2a 2-b 2+2ab. 解:原式=⎣⎢⎡⎦⎥⎤a 2-b 2a 2+2ab +b 2+2ab ÷⎝⎛⎭⎫a +b ab 2·2a 2-b 2+2ab=⎣⎢⎡⎦⎥⎤a 2-b 2a 2+2ab +b 2+2ab ·(ab )2(a +b )2·2a 2-b 2+2ab=⎣⎢⎡⎦⎥⎤a 2-b 2a 2+2ab +b 2+2ab (a +b )2·2a 2-b 2+2ab=⎣⎢⎡⎦⎥⎤a 2-b 2(a +b )2+2ab (a +b )2·2a 2-b 2+2ab=a 2-b 2+2ab (a +b )2·2a 2-b 2+2ab=2(a +b )2. 【例8】 先化简,再求值:⎝⎛⎭⎫3x x -1-x x +1·x 2-12x ,其中x =-3.解:原式=3x (x +1)-x (x -1)(x +1)(x -1)·(x +1)(x -1)2x =3x 2+3x -x 2+x 2x =2x 2+4x 2x =2x ·(x +2)2x=x +2. 当x =-3时,原式=-3+2=-1.9.运用分式运算解决实际问题运用分式运算解决实际问题,关键是理解题意,找准各种量之间的关系,这也是解决数学应用题的基本方法,作差法等也是解决这类问题的常用方法.在判断两分式的差的正负的时候,可以考虑利用完全平方式的非负性和题中字母的实际意义来解题.作差法举例:若x ≠y 且x >0,y >0,比较4x +y 与x +y xy的大小. 解:4x +y -x +y xy =4xy -(x +y )2xy (x +y )=-(x -y )2xy (x +y ). 因为x ≠y ,x >0,y >0.所以-(x -y )2xy (x +y )<0,即4x +y <x +y xy. 【例9】 甲、乙两工人生产同一种零件,甲每小时比乙多生产8个,现要求甲生产出168个零件,乙生产出144个零件,则他们两人谁能先完成任务?解:设甲每小时生产这种零件x 个,则乙每小时生产这种零件(x -8)个,甲完成任务需要时间为168x 小时,乙完成任务需要时间为144x -8小时. 168x -144x -8=168(x -8)-144x x (x -8)=24(x -56)x (x -8). ∵x >8,∴x -8>0,∴x (x -8)>0.故当x >56时,168x -144x -8>0; 当x =56时,168x -144x -8=0; 当x <56时,168x -144x -8<0. 所以若甲每小时生产零件多于56个,则乙先完成任务;若甲每小时生产零件等于56个,则两人同时完成任务;若甲每小时生产零件小于56个且多于8个,则甲先完成任务.10.分式混合运算的开放型题运用分式的混合运算解决开放型问题,关键还是进行分式的混合运算,只是题目具有一定的开放性,所以在解决此类问题时,首先还是要正确进行分式的化简,然后还要注意问题的多解的情况.举例:已知P =a 2+b 2a 2-b 2,Q =2ab a 2-b 2,用“+”或“-”连接P ,Q 共有三种不同的形式:P +Q ,P -Q ,Q -P ,请选择其中一种进行化简求值,其中a =3,b =2.【例10】 已知A =1x -2,B =2x 2-4,C =x x +2.将它们组合成(A -B)÷C 或A -B÷C 的形式,请你从中任选一种进行计算.先化简,再求值,其中x =3.解:选一:(A -B)÷C =⎝⎛⎭⎫1x -2-2x 2-4÷x x +2=x (x +2)(x -2)×x +2x =1x -2, 当x =3时,原式=13-2=1. 选二:A -B÷C =1x -2-2x 2-4÷x x +2=1x -2-2(x +2)(x -2)×x +2x =1x -2-2x (x -2)=x -2x (x -2)=1x, 当x =3时,原式=13.。

分式运算典型例题精解

分式运算典型例题精解

__________ 时,分式—有意义.3错解: x 3时原分式有意义.【基础精讲】 、分式的概念1、正确理解分式的概念:2、判断分式有无意义关键是看分母是否为零(2)不要随意用“或”与“且”。

例如当x _______ 时,分式坨)有意义?错解:由分母;;1 一,得,3、注意分式的值为零必受分母不为零的限制.当x_时,分式——1有意义.当x _时,分式——1无意义.当x_时,分式 ------------------------- 1值为0.- x —1 - x —1 — x —1二、分式的基本性质:1、分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变(1)分式的基本性质是分式恒等变形的依据,它是分式的约分、通分、化简和解分式方程 基础,因此,我们要正确理解分式的基本性质,并能熟练的运用它.理解分式的基本 性质时,必须注意: ① 分式的基本性质中的 A 、B 、M 表示的都是整式.② 在分式的基本性质中,M 0.③ 分子、分母必须“同时”乘以皿俨0),不要只乘分子(或分母).④ 性质中“分式的值不变”这句话的实质,是当字母取同一值(零除外)时,变形前后分 式的值是相等的。

但是变形前后分式中字母的取值范围是变化的. ⑵注意:①根据分式的基本性质有:分式的分子、分母与分式本身的符号,改变其中任何两个,分分式性质及运算1 【例1】有理式(1)-; x(4)专;(5)古;(6)1丄中,属于整式的有:;属于分式的有:(1)例如,当x 为【例4】如果把分式a b c亘中的2x yX ,y 都扩大 3倍,那么分式的值一定 A.扩大3倍 2、约分约分是约去分式的分子与分母的最大公约式 式化为最简分式或整式,根据是分式的基本性质2 b 25】(1)化简的结果为()A.a 2 ab【例(2)化简B.扩大9倍C.扩大6倍D.不变,约分过程实际是作除法 ,目的在于把分(3) 化简3、通分*的结果()2△ 62LJ.的结果是()2x 6A.—2B.C. D.B.x 2 9 2C.x 2 9 2D.3通分的依据是分式的基本性质, 法确定:(1) 最简公分母的系数,取各分母系数的最小公倍数;(2) 最简公分母的字母,取各分母所有字母的最高次幕的积 三、分式的运算1、分式运算时注意:通分的关键是确定最简公分母.最简公分母由下面的方(1)注意运算顺序.例如,计算(3 a),应按照同一级运算从左到存依次3 a计算的法则进行.错解:原式 二(1 a) 1 (1 a)2x xx 1不能去分母[,出现了这样的解题错误:原式 ,不要同解方程的去分母相混淆;式的值不变.②分式的基本性质是一切分式运算的基础 ,分子与分母只能同乘以(或除以)同一个不等于零的整式,而不能同时加上(或减去)同一个整式【例3】下列变形正确的是().(2)通分时不能丢掉分母.例如,计算 =x x 11 .分式通分是等值变形,(4)最后的运算结果应化为最简分式.解:原式=x 2 3x 2x 2 5x 6x 2 4x 3x 1T"22、分式的乘除注意分式的乘除法应用关键是理解其法则(1) 先把除法变为乘法;(2) 接着对每个相乘的分式的分子、分母进行因式分解,当然有乘方运算要先算乘方,然后同其它分式进行约分;(3) 再把每个分式的分子与分子相乘、分母与分母相乘; (4) 最后还应检查相乘后的分式 是否为最简分式.3、 加减的加减1) 同分母分式加减法则:分母不变,分子相加减。

人教版八年级数学分式知识点及典型例题(2)(K12教育文档)

人教版八年级数学分式知识点及典型例题(2)(K12教育文档)

人教版八年级数学分式知识点及典型例题(2)(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(人教版八年级数学分式知识点及典型例题(2)(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为人教版八年级数学分式知识点及典型例题(2)(word版可编辑修改)的全部内容。

分式的知识点及典型例题分析1、分式的定义:例:下列式子中,y x +15、8a 2b 、-239a 、y x b a --25、4322b a -、2-a 2、m 1、65xy x 1、21、212+x 、πxy3、y x +3、ma 1+中分式的个数为( ) (A) 2 (B ) 3 (C ) 4 (D) 5练习题:(1)下列式子中,是分式的有 .⑴275x x -+; ⑵ 123x -;⑶25a a -;⑷22x x π--;⑸22b b -;⑹222xy x y +。

(2)下列式子,哪些是分式?5a -; 234x +;3y y; 78x π+;2x xy x y +-;145b -+.2、分式有,无意义,总有意义:(1)使分式有意义:令分母≠0按解方程的方法去求解; (2)使分式无意义:令分母=0按解方程的方法去求解; 注意:(12+x ≠0)例1:当x 时,分式51-x 有意义; 例2:分式xx -+212中,当____=x 时,分式没有意义例3:当x 时,分式112-x 有意义. 例4:当x 时,分式12+x x有意义例5:x ,y 满足关系 时,分式x yx y-+无意义; 例6:无论x 取什么数时,总是有意义的分式是( ) A .122+x x B.12+x x C.133+x xD.25x x -例7:使分式2+x x有意义的x 的取值范围为( )A .2≠x B .2-≠x C .2->x D .2<x例8:要是分式)3)(1(2-+-x x x 没有意义,则x 的值为( )A 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

例1 (1)
m n m n m n m n n m ---+-+22 计算a
a a a +-⋅+÷-31)3(11
(1)()212242-⨯-÷+-a a a a ; (2)22
2
---x x x ;
例2 已知
a 1+
b 1=4,则b
ab a b ab a 323434-+-++= 。

3 先化简代数式⎪⎭⎫ ⎝⎛-++222a a a ÷412-a ,然后选取一个合适..的a 值,代入求值.
4 有一道题:“先化简再求值:22x 12x 1)x 1x 1x 1
-+÷+--(,其中x=
明做题时把“x=通过计算解释这是怎么回事?
5在下列三个不为零的式子 44,2,4222+---x x x x x 中,任选两个你喜欢的式子组成一个分式是 ,把这个分式化简所得的结果是 . 6任意给定一个非零数,按下列程序计算,最后输出的结果是( )
A .m
B .m 2
C .m +1
D .m -1
例4在解题目:“当1949x =时,求代数式2224421142x x x x x x x
-+-÷-+-+的值”时,聪聪认为x 只要任取一个使原式有意义的值代入都有相同结果.你认为他说的有理吗=
若分式7
3222++y y 的值为41,则21461y y +-的值为( ) A 、1 B 、-1 C 、-
71 D 、51
1、m 时,关于x 的方程
223242
mx x x x +=--+会产生增根. 2、解方程.
13244x x x -=+-- 12433x x x -=---
243111x x x -+=-- 2213211x x x x --=--
2.“五一”期间,东方中学“动感数学”活动小组的全体同学包租一辆面包车前去某景点游览,面包车的租价为180元.出发时又增加了两名同学,结果每个同学比原来少摊了3元车费.若设“动感数学”活动小组有x 人,则所列方程为
3.甲队单独做一项工程刚好如期完成,乙队单独完成这项工程要比预期多用
3天.若甲、乙两队合作2天,余下的工程由乙队单独做也正好如期完成,则规定的工期是多少天?
4.从2002年起,部分汽车的价格便开始大幅度下调.现某种型号的小汽车
热销,为了增加产量,某汽车生产厂增加了设备,同时改进了技术,使该厂每小时装配的车辆数比原来提高23
,这样装配40辆汽车所用时间比技术改造前装配30辆汽车所用时间还少2h ,那么该厂技术改造后每小时装配多少辆汽车?。

相关文档
最新文档