人教版六年级数学《抽屉原理》教学设计
小学数学六年级《抽屉原理》优秀教学设计

教学设计:《抽屉原理》一、教学目标1.知识目标:通过本节课的学习,学生能够了解什么是抽屉原理,掌握其基本概念和应用方法。
2.能力目标:培养学生的逻辑思维能力,提高学生运用抽屉原理解决问题的能力。
3.情感目标:激发学生的学习兴趣,培养学生的探索精神和解决问题的勇气。
二、教学重点1.了解抽屉原理的基本概念和应用方法。
2.运用抽屉原理解决相关问题。
三、教学难点学生能够灵活运用抽屉原理解决复杂问题。
四、教学过程设计1.引入(5分钟)教师通过提问,引导学生思考:你们在家里的抽屉里放了什么东西?抽屉有什么共同特点?学生回答之后,教师引导学生总结抽屉的共同特点:抽屉是一种容器,可以用来存放衣服、书籍、文具等物品。
2.导入(10分钟)教师出示一些抽屉的图片,让学生观察并回答问题:这些抽屉里装了多少件东西?学生回答后,教师引导学生进一步思考:如果这些抽屉的数量和放入抽屉的物品数量相等,那么最少需要多少抽屉?最多需要多少抽屉?学生能够自主思考解决问题,教师适时给予点拨。
3.学习(25分钟)(1)教师介绍抽屉原理的基本概念:在一类事物中放入的东西比该类事物的数目还多,那么必定有至少一个抽屉放了两件或两件以上的东西。
(2)教师通过几个简单的案例来让学生理解抽屉原理的应用方法。
例如:有8个抽屉,放入7个苹果,那么至少有一个抽屉中放了2个苹果。
学生在理解的基础上进行思考,试着运用抽屉原理解决其他类似问题。
(3)教师带领学生进行抽屉原理的练习。
先进行简单的练习,再逐步提高难度。
例如:有10个抽屉和9只手套,那么至少有一个抽屉中放了2只手套;有100个抽屉和99个文件夹,那么至少有一个抽屉中放了两个文件夹。
(4)教师和学生一起解析练习题,确保学生掌握抽屉原理的应用方法。
4.拓展(15分钟)(1)教师出示一些有关抽屉原理的拓展问题,让学生独立思考解决方案。
例如:有100个瓶子和99个球,那么至少有一个瓶子中装了几个球?学生可以根据抽屉原理提出自己的思路和解决办法。
抽屉原理教案14篇

抽屉原理教案14篇抽屉原理优质课教案篇一××老师的《抽屉原理》一课结构完整,过程清晰,充分体现了学生的主体地位,为学生提供了足够的自主探索的空间,引导学生在观察、猜测、操作、推理和交流等数学活动中初步了解“抽屉原理”,并学会了用“抽屉原理”解决简单的实际问题。
1、本节课充分放手,让学生自主思考,采用自己的方法“证明”:“把4枝笔放入3个文具盒中,不管怎么放,总有一个杯子里至少放进2枝筷子”,然后交流展示,为后面开展教与学的活动做了铺垫。
此处设计注意了从最简单的数据开始摆放,有利于学生观察、理解,有利于调动所有学生的积极性。
在有趣的类推活动中,引导学生得出一般性的结论,让学生体验和理解“抽屉原理”的最基本原理:当物体个数大于抽屉个数时,一定有一个抽屉中放进了至少2个物体。
这样的教学过程,有助于发展学生的类推能力,形成比较抽象的数学思维。
在评价学生各种“证明”方法,针对学生的不同方法教师给予针对性的鼓励和指导,让学生在自主探索中体验成功,获得发展。
在学生自主探索的基础上,进一步比较优化,让学生逐步学会运用一般性的数学方法来思考问题。
2、在教学过程中充分发挥了学生的主体性,在抽屉原理(2)的推导过程中,至少是“商+余数”,还是“商+1”个物体放进同一个抽屉。
让学生互相争辩,再由学生自己想办法来进行验证,使学生更好的理解了抽屉原理。
另外,本节课中,学生争先恐后的学习行为,积极参与自学、交流、合作、展示、补充、互评、提问、质疑、反思等的学习过程,“自主、合作、探究”的学习方式,给人留下了深刻的印象,学生主体地位得到了充分的落实。
3、注意渗透数学和生活的联系。
并在游戏中深化知识。
学了“抽屉原理”有什么用?能解决生活中的什么问题?教学中教师注重了联系学生的生活实际。
课前老师设计一个游戏:“学生在一副去掉了大小王的扑克牌中,任意抽取五张,老师猜:总有一种花色的牌至少有两张。
”这是为什么?学生很惊讶。
人教版六年级数学下册《抽屉原理》教案

人教版六年级数学下册《抽屉原理》教案一、前置知识1.熟练掌握集合的概念及符号表示法。
2.了解数学计数方法,如排列、组合、乘法原理、加法原理等。
3.了解如何利用数轴表示数值大小,并掌握引入数轴的前提条件。
4.掌握简单的数学问题解决方法,如列方程、列等式、画图等。
二、教学目标1.理解抽屉原理的含义和应用场景。
2.通过例题掌握抽屉原理的实际应用方法。
3.培养学生的逻辑思维能力和解决实际问题的能力。
三、教学步骤1. 导入新课进入教室后,老师先放一段视频或图片,引发学生对抽屉原理的好奇心,引导学生能够发现空间中物体的分布规律,然后简单介绍一下抽屉原理的出现背景和基本概念。
2. 理论讲解既然要学习抽屉原理,那我们就要了解一下它的基本概念:抽屉原理:将若干个物品放入若干个抽屉中,若物品的个数比抽屉的个数还要多,则必有至少1个抽屉中,至少放了两个物品。
接下来,让学生通过班级演示“抽屉放苹果”的情境,让学生大致了解什么是抽屉原理,并且感受到抽屉原理的实用性和简单性。
3. 实例演练为了更直观地让学生体验抽屉原理的作用,让学生自己动手实践一下。
3.1 学生活动1现在有7个苹果,要放在5个抽屉里,问:抽屉中至少放了几个苹果?这时,同学们可以分别计算抽屉中放1个、2个、3个苹果的情况,直到发现一定有至少1个抽屉中放了至少2个苹果。
3.2 学生活动2现在有12个苹果,要放在4个抽屉里,问:抽屉中至少放了几个苹果?此时,学生们可以自己思考一下,也可以一起讨论和计算。
4. 综合练习让学生自己独立解决下面的问题:有10个苹果,分别编号为1到10,现在要将苹果分成若干组,使得编号相同的苹果在同一组中,那么至少要分成几组?这个问题中,可以将苹果编号看成是抽屉,将分组的方案看成是物品。
这样,就可以顺利推导出至少要分成5组。
5. 总结反思通过以上的教学,我相信同学们已经对抽屉原理有了一个更深的了解,同时也掌握了抽屉原理的具体应用场景和实际解决方法。
《抽屉原理》教学设计二

《抽屉原理》教学设计二《抽屉原理》教学设计二教学设计二:《抽屉原理》的应用一、教学目标:1.知识目标:了解并掌握抽屉原理的概念和基本原理。
2.能力目标:能够应用抽屉原理解决问题。
3.情感目标:培养学生分析问题、解决问题的能力,增强学生的逻辑思维和创新意识。
二、教学重点与难点:1.教学重点:抽屉原理的应用。
2.教学难点:如何将抽屉原理应用于实际问题的解决。
三、教学过程:1.导入(5分钟)通过一个生活中的例子,引导学生思考:如果有10双袜子,其中5双是黑色的,5双是白色的,那么至少要从这些袜子中拿出多少双袜子,才能确保至少有两双同色的袜子?2.概念讲解(10分钟)通过引导学生思考,提出抽屉原理的概念:抽屉原理也称为鸽巢原理,它是指如果有n+1个物体放入n个抽屉中,那么至少有一个抽屉里会放入两个或以上的物体。
解释抽屉原理的基本原理:当物体的数量超过抽屉的数量时,必然会有至少一个抽屉里放入了两个或以上的物体。
3.抽屉原理的应用(25分钟)(1)应用一:生活中的应用通过一些生活中的例子,让学生感受抽屉原理的应用,如:生活中的抽屉放衣服、餐馆里的桌子和座位等。
(2)应用二:数学问题通过一些数学问题,让学生应用抽屉原理解决问题,如:有12个苹果,其中有5个是红色的,7个是绿色的,那么至少要拿出几个苹果,才能确保拿到3个同色的苹果?(3)应用三:计算机科学中的应用通过介绍计算机科学中抽屉原理的应用,如:哈希函数冲突、数据压缩等,让学生了解抽屉原理在计算机科学中的重要性。
4.拓展应用(20分钟)让学生分组进行小组讨论,探讨如何应用抽屉原理解决其他实际问题,如:选择课程表中的时间冲突、找出重复的数字等。
每个小组选择一个问题,并用抽屉原理解决,并向全班进行汇报和讨论。
5.总结(5分钟)总结抽屉原理的概念和基本原理,强调抽屉原理的应用。
鼓励学生在日常生活中运用抽屉原理解决问题,并培养学生的逻辑思维和创新意识。
四、教学评价:1.教师观察学生在课堂上的参与和表现情况。
人教版六年级数学《抽屉原理》优秀教学设计

人教版六年级数学(抽屉原理)优秀教学设计教学内容:(义务教育课程标准实验教科书数学)人教版六年级下册第70-71 页。
教学目标:1、知识与技能:经历“抽屉原理〞的探索过程,初步了解“抽屉原理〞,会用“抽屉原理〞解决简单的实际问题。
2、过程与方法:经历从具体到抽象的探索过程,提高学生有依据、有条理地进行思量和推理的能力。
3、感情与态度:通过“抽屉原理〞的灵敏应用,提高学生解决数学问题的能力和兴趣,感受到数学文化及数学的魅力。
教学重点:经历“抽屉原理〞的探索过程,初步了解“抽屉原理〞,并会简单应用。
教学难点:理解“抽屉原理〞,并对一些简单实际问题加以“模型化〞。
教学打算:多媒体课件、相应数量的铅笔、文具盒、扑克牌。
教学过程一、游戏导入,激发兴趣师:同学们,虽然我不了解你们的生日,可是我敢肯定地说:第—第二组同学中肯定至少有2 人的生日在同一个月,你们信托吗?〔请同学报出自己出生的月份,进行验证〕师:老师为什么能做出 X 的判断呢?道理是什么?这其中蕴含着一个有趣的数学原理,这节课我们就一起来研究这个原理。
(设计意图:依据学生的认知特点,从学生熟悉的“生日〞游戏开始,让学生初步体验不管怎么报,至少有 2 人的生日在同一个月,一是引起探索的心愿;二是为探索埋下伏笔。
激发了学生的学习兴趣,收到了寓教于趣、寓学于乐的效果。
)二、动手操作,探索新知〔一〕教学例 11、观察猜想课件出例如 1:把 4 支铅笔放进 3 个文具盒中,不管怎么放总有一个文具盒至少放进〔〕支铅笔。
猜一猜:不管怎么放,总有一个文具盒至少放进〔〕支铅笔2、独立思量:怎样解释这一现象?3、小组合作:拿铅笔和文具盒实际摆一摆、放一放,看一共有几种情况(设计意图:先让学生观察、猜想,然后自己想方法“证明〞自己的猜想。
这样设计,给学生自主思量的时间和空间。
在独立思量的根抵上,再小组合作。
把动脑思量与动手操作有机结合,把独立思考与小组合作有机结合,有利于提高探索活动的实效性。
小学数学教学课例《抽屉原理》教学设计及总结反思

板书:4÷3=1......1,至少数:1+1=2) 师:这里的 4 指的是什么?3 呢?商 1 呢?余数 1
呢? 师:看来解决这个问题时,用平均分的方法比较简
便。 三、课堂练习: 我们知道了抽屉原理,我们生活中也有许多这样的
原理存在。 例如:1、任意找 3 人,至少有(2)人同一性别。 人——苹果性别——抽屉 2、任意找 5 人,至少有()人同一季节出生。 苹果——人抽屉——季节 四、课堂小结:这节课我们通过放苹果的游戏学习
小学数学教学课例《抽屉原理》教学设计及总结反思
学科
小学数学
教学课例名
《抽屉原理》
称
教学内容:人教版六年级数学下册数学广角《抽屉
原理》70-71 页的例 1 和例 2。
教学重点:
1、经历“抽屉原理”的探究过程,初步了解“抽
屉原理”。 教材分析
2、知道“总有”“至少”具体含义,以及找至少
数的方法。
教学难点:
的想法。 师:一共有多少种放法? 生:4 种。 3、引导出不考虑顺序,只有 2 种放法。 活动二 1、请学生打开 2 号信封,信封里有 1 个苹果和一
共纸盘,请学生小组合作,不考虑顺序,用学具摆一摆, 4 个苹果放进 3 个纸盘,共有几种摆法。
2、学生交流。 3、发现规律。 师:观察每个纸盘里的苹果,你有有什么发现? 生:4 个苹果放进 3 个盘子里,不管怎么放,总有 一个盘子放了至少 2 个苹果。 师:其实早在 180 多年前就有一个叫狄里克雷的德 国数学家发现了这个规律,只是当时他是把苹果放入抽 屉里。(课件出示:4 个苹果放进 3 个抽屉里,不管怎 么放,总有一个抽屉放了至少 2 个苹果——狄里克雷原 理。介绍抽屉原理。) 二、引出课题: 师:这节课我们学习的内容就是抽屉原理,板书课 题。 师:4 个苹果放进 3 个抽屉里,不管怎么放,总有一个
人教版六年级数学《抽屉原理》优秀教学设计

人教版六年级数学《抽屉原理》优秀教学设计人教版六年级数学《抽屉原理》优秀教学设计广西河池天峨县实验小学易凤英莫耐春陈晓妮教学内容:《义务教育课程标准实验教科书数学》人教版六年级下册第70-71页。
教学目标:1、知识与技能:经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。
2能力。
32人1支铅笔。
23思考与小组合作有机结合,有利于提高探索活动的实效性。
】把你的想法说给小组同学听(边说边演示)。
4、集体汇报师:谁来展示一下你放的情况?(指名分)根据学生放的情况,师板书:(4,0,0)(3,1,0)(2,2,0)(2,1,1),师:还有不同的放法吗?生:没有了。
师:观察这四种分法,在每一种分法中,有几支铅笔放进了同一个文具盒?生:答师::我们已经将所有的放法一一列举出来,你们发现什么?生:不管怎么放,总有一个文具盒里至少有2枝铅笔。
师:“总有”是什么意思?生:一定有师:“至少”有2枝什么意思?生:不少于两只,可能是2枝,也可能是多于2枝?师:就是不能少于2枝。
(通过操作让学生充分体验感受)师:把4枝笔放进3个盒子里,不管怎么放,总有一个盒子里至少有2枝铅笔。
这是我们通过实际操作得到了这个结论。
【设计意图:抽屉原理对于学生来说,比较抽象,特别是“总有一个文具盒中至少放进2支铅笔”这句话的理解。
所以通过具体的操作,列举所有的情况后,引导学生直接关注到每种分法中数量最多的文具盒,理解“总有一个文具盒”以及“至少2支”。
让学生初步经历“数学证明”的过程,训练学生的逻辑思维能力。
】师:请同学们观察这4种分法,哪种放法能更容易,更简便地得出这个结论呢?为什么?支铅笔。
5现象?生:6师:7把8把9:100生16、运用实践出示第70页“做一做”。
7只鸽子飞进5个鸽舍,至少有几只鸽子飞进同一个鸽舍?为什么?(1)学生独立思考,自主探究。
(2)交流,说理。
(学生说理,根据学生说理情况,教师或者学生进行操作演示)师:剩下的两只鸽子应该怎样分?为什么?(进一步强调“至少”情况)【设计意图:从余数1到余数2,让学生再次体会要保证“至少”必须尽量平均分,余下的数也要进行二次平均分。
六年级数学《抽屉原理》教学设计

六年级数学《抽屉原理》教学设计六年级数学《抽屉原理》教学设计作为一位杰出的老师,通常需要准备好一份教学设计,教学设计是把教学原理转化为教学材料和教学活动的计划。
那么应当如何写教学设计呢?以下是小编精心整理的六年级数学《抽屉原理》教学设计,仅供参考,大家一起来看看吧。
教学内容:人教版《义务教育课程标准实验教科书数学》六年级下册数学广角《抽屉原理》。
教学目标:1、知识与能力:初步了解抽屉原理,运用抽屉原理知识解决简单的实际问题。
2、过程和方法:经历抽屉原理的探究过程,通过动手操作、分析、推理等活动,发现、归纳、总结原理。
3、情感与价值:通过“抽屉原理”的灵活应用感受数学的魅力;提高同学们解决问题的能力和兴趣。
教学重点:经历“抽屉原理”的探究过程,初步了解“抽屉原理”。
教学难点:理解“抽屉原理”,并对一些简单实际问题加以“模型化”。
教具学具:课件、扑克牌、每组都有相应数量的杯子、吸管。
教学过程:一、创设情景,导入新课分配房间1、3个人住两个房间2、4个人住3个房间板书课题:抽屉原理展示学习目标1、经历抽屉原理的探究过程,初步了解抽屉原理;2、运用抽屉原理解决简单的实际问题。
二、探究新知,揭示原理1、出示题目:把4根吸管放进3个纸杯里。
师:先进入活动(一):把4枝吸管放进3个杯子里,有多少种放法呢?会出现什么情况呢?大家摆摆看。
在不同的摆法中,把每个杯子里面吸管的枝数记录下来,当某个杯子中没放吸管时可以用0表示。
2、学生动手操作,自主探究。
师巡视,了解情况。
3、汇报交流指名演示。
4、思考:再认真观察记录,有什么发现?课件出示:总有一个杯子里至少有2根吸管。
5、理解“总有”、“至少”的含义总有一个杯子:一定有一个杯子,但并不一定是只有一个杯子。
至少2根吸管:最少2枝,也可能比2枝多6、讨论、交流:刚刚我们是把每一种放法都列举出来,知道了总有一个杯子里至少有2枝吸管。
那为什么会出现这种情况呢?可不可以每个杯子里只放1枝吸管呢?和小组里的同学说说你的想法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《抽屉原理》教学设计【教学内容】《义务教育课程标准实验教科书·数学》六年级下册第68页。
【教学目标】1.经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。
2.通过操作发展学生的类推能力,形成比较抽象的数学思维。
3.通过“抽屉原理”的灵活应用感受数学的魅力。
【教学重点】经历“抽屉原理”的探究过程,初步了解“抽屉原理”。
【教学难点】理解“抽屉原理”,并对一些简单实际问题加以“模型化”。
【教具、学具准备】每组都有相应数量的盒子、铅笔、书。
【教学过程】一、课前游戏引入。
师:同学们在我们上课之前,先做个小游戏:老师这里准备了4把椅子,请5个同学上来,谁愿来?(学生上来后)师:听清要求,老师说开始以后,请你们5个都坐在椅子上,每个人必须都坐下,好吗?(好)。
这时教师面向全体,背对那5个人。
师:开始。
师:都坐下了吗?生:坐下了。
师:我没有看到他们坐的情况,但是我敢肯定地说:“不管怎么坐,总有一把椅子上至少坐两个同学”我说得对吗?生:对!师:老师为什么能做出准确的判断呢?道理是什么?这其中蕴含着一个有趣的数学原理,这节课我们就一起来研究这个原理。
下面我们开始上课,可以吗?【点评】教师从学生熟悉的“抢椅子”游戏开始,让学生初步体验不管怎么坐,总有一把椅子上至少坐两个同学,使学生明确这是现实生活中存在着的一种现象,激发了学生的学习兴趣,为后面开展教与学的活动做了铺垫。
二、通过操作,探究新知(一)教学例11.出示题目:有3枝铅笔,2个盒子,把3枝铅笔放进2个盒子里,怎么放?有几种不同的放法?师:请同学们实际放放看,谁来展示一下你摆放的情况?(指名摆)根据学生摆的情况,师板书各种情况(3,0)(2,1)【点评】此处设计教师注意了从最简单的数据开始摆放,有利于学生观察、理解,有利于调动所有的学生积极参与进来。
师:5个人坐在4把椅子上,不管怎么坐,总有一把椅子上至少坐两个同学。
3支笔放进2个盒子里呢?生:不管怎么放,总有一个盒子里至少有2枝笔?是:是这样吗?谁还有这样的发现,再说一说。
师:那么,把4枝铅笔放进3个盒子里,怎么放?有几种不同的放法?请同学们实际放放看。
(师巡视,了解情况,个别指导)师:谁来展示一下你摆放的情况?(指名摆)根据学生摆的情况,师板书各种情况。
(4,0,0)(3,1,0)(2,2,0)(2,1,1),师:还有不同的放法吗?生:没有了。
师:你能发现什么?生:不管怎么放,总有一个盒子里至少有2枝铅笔。
师:“总有”是什么意思?生:一定有师:“至少”有2枝什么意思?生:不少于两只,可能是2枝,也可能是多于2枝?师:就是不能少于2枝。
(通过操作让学生充分体验感受)师:把3枝笔放进2个盒子里,和把4枝笔饭放进3个盒子里,不管怎么放,总有一个盒子里至少有2枝铅笔。
这是我们通过实际操作现了这个结论。
那么,我们能不能找到一种更为直接的方法,只摆一种情况,也能得到这个结论呢?学生思考——组内交流——汇报师:哪一组同学能把你们的想法汇报一下?组1生:我们发现如果每个盒子里放1枝铅笔,最多放3枝,剩下的1枝不管放进哪一个盒子里,总有一个盒子里至少有2枝铅笔。
师:你能结合操作给大家演示一遍吗?(学生操作演示)师:同学们自己说说看,同位之间边演示边说一说好吗?师:这种分法,实际就是先怎么分的?生众:平均分师:为什么要先平均分?(组织学生讨论)生1:要想发现存在着“总有一个盒子里一定至少有2枝”,先平均分,余下1枝,不管放在那个盒子里,一定会出现“总有一个盒子里一定至少有2枝”。
生2:这样分,只分一次就能确定总有一个盒子至少有几枝笔了?师:同意吗?那么把5枝笔放进4个盒子里呢?(可以结合操作,说一说)师:哪位同学能把你的想法汇报一下,生:(一边演示一边说)5枝铅笔放在4个盒子里,不管怎么放,总有一个盒子里至少有2枝铅笔。
师:把6枝笔放进5个盒子里呢?还用摆吗?生:6枝铅笔放在5个盒子里,不管怎么放,总有一个盒子里至少有2枝铅笔。
师:把7枝笔放进6个盒子里呢?把8枝笔放进7个盒子里呢?把9枝笔放进8个盒子里呢?……:你发现什么?生1:笔的枝数比盒子数多1,不管怎么放,总有一个盒子里至少有2枝铅笔。
师:你的发现和他一样吗?(一样)你们太了不起了!同桌互相说一遍。
【点评】教师关注了“抽屉原理”的最基本原理,物体个数必须要多于抽屉个数,化繁为简,此处确实有必要提领出来进行教学。
在学生自主探索的基础上,教师注意引导学生得出一般性的结论:只要放的铅笔数盒数多1,总有一个盒里至少放进2支。
通过教师组织开展的扎实有效的教学活动,学生学的有兴趣,发展了学生的类推能力,形成比较抽象的数学思维。
2.解决问题。
(1)课件出示:5只鸽子飞回4个鸽笼,至少有2只鸽子要飞进同一个鸽笼里,为什么?(学生活动—独立思考自主探究)(2)交流、说理活动。
师:谁能说说为什么?生1:如果一个鸽笼里飞进一只鸽子,最多飞进4只鸽子,还剩一只,要飞进其中的一个鸽笼里。
不管怎么飞,至少有2只鸽子要飞进同一个鸽笼里。
生2:我们也是这样想的。
生3:把5只鸽子平均分到4个笼子里,每个笼子1只,剩下1只,放到任何一个笼子里,就能保证至少有2只鸽子飞进同一个笼里。
生4:可以用5÷4=1……1,余下的1只,飞到任何一个鸽笼里都能保证至少有2只鸽子飞进一个个笼里,所以,“至少有2只鸽子飞进同一个笼里”的结论是正确的。
师:许多同学没有再摆学具,证明这个结论是正确的,用的什么方法?生:用平均分的方法,就能说明存在“总有一个鸽笼至少有2只鸽子飞进一个个笼里”。
师:同意吗?(生:同意)老师把这位同学说的算式写下来,(板书:5÷4=1……1)师:同位之间再说一说,对这种方法的理解。
师:现在谁能说说你对“总有一个鸽笼里至少飞进2只鸽子的理解”生:我们发现这是必然存在的一个现象,不管鸽子怎样飞回鸽笼,一定会有一个鸽笼里至少有2只鸽子。
师:同学们都有这个发现吗?生众:发现了。
师:同学们非常了不起,善于运用观察、分析、思考、推理、证明的方法研究问题,得出结论。
同学们的思维也在不知不觉中提升了许多,那么让我们再来看这样一组问题。
(二)教学例21.出示题目:把5本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?把7本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?把9本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?(留给学生思考的空间,师巡视了解各种情况)2.学生汇报。
生1:把5本书放进2个抽屉里,如果每个抽屉里先放2本,还剩1本,这本书不管放到哪个抽屉里,总有一个抽屉里至少有3本书。
板书:5本2个2本……余1本(总有一个抽屉里至有3本书)7本2个3本……余1本(总有一个抽屉里至有4本书)9本2个4本……余1本(总有一个抽屉里至有5本书)师:2本、3本、4本是怎么得到的?生答完成除法算式。
5÷2=2本……1本(商加1)7÷2=3本……1本(商加1)9÷2=4本……1本(商加1)师:观察板书你能发现什么?生1:“总有一个抽屉里的至少有2本”只要用“商+ 1”就可以得到。
师:如果把5本书放进3个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?生:“总有一个抽屉里的至少有3本”只要用5÷3=1本……2本,用“商+ 2”就可以了。
生:不同意!先把5本书平均分放到3个抽屉里,每个抽屉里先放1本,还剩2本,这2本书再平均分,不管分到哪两个抽屉里,总有一个抽屉里至少有2本书,不是3本书。
师:到底是“商+1”还是“商+余数”呢?谁的结论对呢?在小组里进行研究、讨论。
交流、说理活动:生1:我们组通过讨论并且实际分了分,结论是总有一个抽屉里至少有2本书,不是3本书。
生2:把5本书平均分放到3个抽屉里,每个抽屉里先放1本,余下的2本可以在2个抽屉里再各放1本,结论是“总有一个抽屉里至少有2本书”。
生3∶我们组的结论是5本书平均分放到3个抽屉里,“总有一个抽屉里至少有2本书”用“商加1”就可以了,不是“商加2”。
师:现在大家都明白了吧?那么怎样才能够确定总有一个抽屉里至少有几个物体呢?生4:如果书的本数是奇数,用书的本数除以抽屉数,再用所得的商加1,就会发现“总有一个抽屉里至少有商加1本书”了。
师:同学们同意吧?师:同学们的这一发现,称为“抽屉原理”,“抽屉原理”又称“鸽笼原理”,最先是由19世纪的德国数学家狄利克雷提出来的,所以又称“狄里克雷原理”,也称为“鸽巢原理”。
这一原理在解决实际问题中有着广泛的应用。
“抽屉原理”的应用是千变万化的,用它可以解决许多有趣的问题,并且常常能得到一些令人惊异的结果。
下面我们应用这一原理解决问题。
3.解决问题。
71页第3题。
(独立完成,交流反馈)小结:经过刚才的探索研究,我们经历了一个很不简单的思维过程,我们获得了解决这类问题的好办法,下面让我们轻松一下做个小游戏。
【点评】在这一环节的教学中教师抓住了假设法最核心的思路就是用“有余数除法”形式表示出来,使学生学生借助直观,很好的理解了如果把书尽量多地“平均分”给各个抽屉里,看每个抽屉里能分到多少本书,余下的书不管放到哪个抽屉里,总有一个抽屉里比平均分得的书的本数多1本。
特别是对“某个抽屉至少有书的本数”是除法算式中的商加“1”,而不是商加“余数”,教师适时挑出针对性问题进行交流、讨论,使学生从本质上理解了“抽屉原理”。
三、应用原理解决问题师:我这里有一副扑克牌,去掉了两张王牌,还剩52张,我请五位同学每人任意抽1张,听清要求,不要让别人看到你抽的是什么牌。
请大家猜测一下,同种花色的至少有几张?为什么?生:2张/因为5÷4=1 (1)师:先验证一下你们的猜测:举牌验证。
师:如有3张同花色的,符合你们的猜测吗?师:如果9个人每一个人抽一张呢?生:至少有3张牌是同一花色,因为9÷4=2 (1)四、全课小结【点评】当学生利用有余数除法解决了具体问题后,教师引导学生总结归纳这一类“抽屉问题”的一般规律,使学生进一步理解掌握了“抽屉原理”。