人教版小专题(一) 二次根式的性质及运算
二次根式知识点归纳

二次根式知识点归纳二次根式是数学中的一个重要概念,也是我们在中学阶段学习的数学知识之一、学好二次根式的知识,不仅可以提高我们的数学实力,还能够帮助我们更好地理解和应用数学。
下面是对二次根式的知识点进行归纳总结。
一、二次根式的定义与性质1.二次根式的定义:如果一个数x的平方等于一个有理数a,那么称x是a的二次根,记作√a=x。
其中,a是被开方数,x是二次根。
2.二次根式的性质:二次根式具有以下基本性质:-非负性:对于所有的a≥0,√a≥0。
-唯一性:对于任意一个正数a,二次根√a是唯一确定的。
-传递性:对于任意的a≥0和b≥0,如果√a=√b,那么a=b。
-加减性:对于任意的a≥0和b≥0,有√a±√b=√(a±b)。
-乘除性:对于任意的a≥0和b≥0,有√(a×b)=√a×√b,√(a/b)=√a/√b(其中,b不为零)。
二、二次根式的化简1.因式分解法:将二次根式的被开方数进行因式分解,然后利用乘除性质化简。
2.合并同类项法:将二次根式中相同的根号项合并,然后根据加减性质化简。
三、二次根式的比较大小1.当被开方数相同时,二次根式相等,即√a=√b,当且仅当a=b。
2.当被开方数不同时,可以通过平方的方式来比较大小。
即对于a≥b≥0,有√a≥√b。
四、二次根式的运算1.加减运算:对于任意的a≥0和b≥0,可以进行二次根式的加减运算。
-加法:√a+√b=√(a+b)。
-减法:√a-√b=√(a-b)(需要满足a≥b)。
2.乘法运算:对于任意的a≥0和b≥0,可以进行二次根式的乘法运算。
-乘法:√a×√b=√(a×b)。
3.除法运算:对于任意的a≥0和b>0,可以进行二次根式的除法运算。
-除法:√a/√b=√(a/b)(需要满足b≠0)。
五、二次根式的应用二次根式在实际问题中的应用非常广泛1.几何问题:二次根式可以用来表示长度、面积、体积等物理量,例如计算一个正方形的对角线长度、一个圆的半径等等。
人教版八年级数学下册期末复习课件:专项训练一 二次根式的性质及运算 (共13张PPT)

专项训练一 二次根式的性质及运算
重难突破
ቤተ መጻሕፍቲ ባይዱ
类型 1 二次根式的非负性
1.要使 4-a2=a-4 成立,则 a 的取值范围是
A.a≤4
B.a≤-4
C.a≥4
D.一切实数
2.已知实数 x、y 满足1-x+ y-2=0,则代数式(x-y)2019 的值为
A.1
B.-1
C.2019
D.-2019
类型 2 二次根式的化简 6.化简: (1) -144×-169; 解:原式= 144×169= 144× 169=12×13=156. (2)-13 225; 解:原式=-13×15=-5.
(3)-12 1024×5; 解:原式=-12 322×5=-12×32 5=-16 5. (4) 18m2n.
11.计算: (1)14-1- 12+( 2+1)( 2-1)+ 2× 18; 解:原式=4-2 3+2-1+ 2×3 2=5-2 3+6=11-2 3. (2)(1+ 3)( 2- 6)-(2 3-1)2.
解:原式= 2- 6+ 6-3 2-(12-4 3+1)=-2 2-12+4 3-1=-2 2+ 4 3-13.
解:根据新定义,得 7※( 2※ 3)= 7※ 3= 72- 32= 7-3=2.
15.先化简,再求值:6x xy+3y xy3-4y xy+ 36xy,其中 x= 21-1,y= 1 2+1.
解:原式=(6 xy+3 xy)-(4 xy+6 xy)=- xy.∵x= 21-1= 2+1,y= 21+1= 2-1,∴- xy=- 2+1 2-1=-1.
解:∵a=
2+1,b=
2-1,∴a+b=2
2,a-b=2,ab=
二次根式的运算和性质

二次根式的运算和性质二次根式是指具有平方根的数,它是数学中的重要概念,与一次根式不同,二次根式的运算涉及到平方根的加减乘除,以及二次根式的化简和简化等操作。
本文将围绕二次根式的运算和性质展开讨论,帮助读者更好地理解和应用二次根式。
一、二次根式的运算1. 二次根式的加减运算对于同类项,即根号下的数相同的二次根式,可以进行加减运算。
例如:√2 + √2 = 2√2√5 - √2 = √5 - √2 (不可化简)不同类项的二次根式无法进行加减运算,如√2 + √3。
2. 二次根式的乘法二次根式的乘法运算可以通过合并同类项、利用乘法公式等方法进行。
例如:√2 × √3 = √6(√2 + √3) × (√2 - √3) = √2^2 - √2√3 + √2√3 - √3^2 = 2 - 3 = -13. 二次根式的除法二次根式的除法运算可以通过有理化的方法进行。
例如:√2 ÷ √3 = (√2 × √3) ÷ (√3 × √3) = √6 ÷ 3 = √6/3 = √6/3 × √3/√3 =√18/3 = √2/√3二、二次根式的性质1. 二次根式的化简当二次根式中的根号下的数为完全平方数时,可以进行化简。
例如:√4 = 2√9 = 3√16 = 4通过化简可以简化计算过程,使得计算更加方便快捷。
2. 二次根式的大小比较对于两个二次根式的大小比较,可以通过平方的方法进行。
例如:(√2)^2 = 2(√3)^2 = 3(√4)^2 = 4可以通过比较二次根式的平方大小来确定它们的大小关系。
3. 二次根式的应用二次根式在实际应用中有广泛的用途,常见于几何学、物理学等领域的计算中。
例如,在三角形的勾股定理中,就涉及到二次根式的运算。
综上所述,二次根式的运算和性质是数学学习中的重要内容。
掌握二次根式的运算规则,了解二次根式的性质,有助于提高数学计算能力,并能应用于实际问题的解决中。
最新人教版八年级数学下册 二次根式知识点归纳及题型总结

最新人教版八年级数学下册二次根式知识点归纳及题型总结二次根式知识点归纳和题型归类一、知识框图二、知识要点梳理知识点一、二次根式的主要性质:1.二次根式的定义:形如$\sqrt{a}$($a\geq 0$)的式子叫做二次根式。
2.二次根式的双重非负性:$\sqrt{a}\geq 0$,即一个非负数的算术平方根是一个非负数。
3.二次根式的同底同指数相加减:$\sqrt{a}+\sqrt{b}=\sqrt{a+b}$,$\sqrt{a}-\sqrt{b}=\sqrt{a-b}$。
4.积的算术平方根的性质:$\sqrt{ab}=\sqrt{a}\cdot\sqrt{b}$。
5.商的算术平方根的性质:$\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}$($b\neq 0$)。
6.若$a\geq 0$,则$\sqrt{a^2}=|a|$。
知识点二、二次根式的运算1.二次根式的乘除运算1) 运算结果应满足以下两个要求:①应为最简二次根式或有理式;②分母中不含根号。
2) 注意每一步运算的算理。
3) 乘法公式的推广:$(\sqrt{a}\pm\sqrt{b})^2=a+b\pm2\sqrt{ab}$。
2.二次根式的加减运算:先化简,再运算。
3.二次根式的混合运算1) 明确运算的顺序,即先乘方、开方,再乘除,最后算加减,有括号先算括号里。
2) 整式、分式中的运算律、运算法则及乘法公式在二次根式的混合运算中也同样适用。
例题:1.下列各式中一定是二次根式的是()。
A。
$-3$;B。
$x$;C。
$x^2+1$;D。
$x-1$2.$x$取何值时,下列各式在实数范围内有意义。
1)$\sqrt{-15+x}$;(2)$\frac{1}{\sqrt{x+4}}$3)$\sqrt{x+4}+\sqrt{2x+1}$;(4)$\sqrt{x+1}-\sqrt{x}$5)$3-\sqrt{x+1}$;(6)$\frac{2x}{\sqrt{x+1}}$7)若$x(x-1)=\frac{1}{4}$,则$x$的取值范围是()。
人教版八年级数学下册专题01 二次根式的有关概念和性质 题型归纳 (解析版)

专题01 二次根式的有关概念和性质【思维导图】◎考点题型1 求二次根式的值例.(2022·浙江·九年级专题练习)当0x =时, )A .4B .2CD .0【答案】B 【解析】 【分析】把0x = 【详解】解:把0x =2= 故选:B . 【点睛】本题考查了二次根式的定义和二次根式的性质,能灵活运用二次根式的性质进行计算是解题的关键.变式1.(2020·山东定陶·八年级期末)当 x =-3 时, )A .3B .-3C .±3D 【答案】A【分析】把x =-3代入二次根式进行化简即可求解. 【详解】解:当x =-3时3=. 故选A. 【点睛】本题考查了二次根式的计算,正确理解算术平方根的意义是关键. 变式2.(2020·北京·一模)如果31a ,那么代数式21(1)11aa a +÷--的值为( )A .3BCD 2【答案】B 【解析】 【分析】先根据分式的混合运算法则化简原式,再把a 的值代入化简后的式子计算即可. 【详解】 解:原式=()()111a a a a a ÷--+=()()1111a a a a a a-+⨯=+-;当31a时,原式11+=故选:B . 【点睛】本题考查了分式的化简求值,属于常考题型,熟练掌握分式的混合运算法则是解题关键.变式3.(2020·湖北鄂城· )A B .2 C .22 D .2±【答案】B 【解析】 【分析】根据乘方和开方的运算法则进行计算即可. 【详解】2=故答案为:B .本题考查了开方和乘方的运算问题,掌握乘方和开方的运算法则是解题的关键.◎考点题型2 求二次根式中的参数例.(山东阳谷·,则正整数n的最小值是()A.2B.4C.6D.8【答案】C【解析】【分析】,=则6n是完全平方数,满足条件的最小正整数n为6.【详解】解:24n=,∴,即6n是完全平方数;∴n的最小正整数值为6.故选:C.【点睛】本题主要考查了二次根式的定义,关键是根据乘除法则和二次根式有意义的条件,二次根式有意义的条件时被开方数是非负数进行解答变式1.(全国·,最小的正整数n是()A.6B.3C.4D.2【答案】B【解析】【分析】根据题意,算数平方根是正整数,可得被开方数是能开方的正整数.【详解】是正整数,所以n 的最小正整数是3,故选:B.【点睛】本题主要考查了二次根式的定义,利用开方运算是解答本题的关键.变式2.(2020·四川三台·,则正整数n 的最小值是( ) A .2 B .3C .4D .6【答案】B 【解析】 【分析】,然后再判断n 的最小正整数值. 【详解】=,,则也是整数; ∴n 的最小正整数值是3; 故选B . 【点睛】变式3.(2020·江西南丰·20b -=,则2019()a b +的值是( ). A .1 B .-1C .2019D .-2019【答案】B 【解析】 【分析】利用非负数的性质列出方程组,求出方程组的解得到a 与b 的值,代入原式计算即可求出值. 【详解】20b -=,∴3020a b +=⎧⎨-=⎩, ∴32a b =-⎧⎨=⎩, ∴20192019()(32)1a b +=-+=-, 故选择:B. 【点睛】此题考查了非负数的性质及二元一次方程组,熟练掌握几个非负数的和为零,则每一个非负数都为零是解本题的关键.◎考点题型3 二次根式有意义的条件例.(2022·河北·在实数范围内有意义,则x 的值可能为( ) A .0 B .﹣2 C .﹣1 D .1【答案】D 【解析】 【分析】,可列不等式组10,10x x 得到不等式组的解集,再逐一分析各选项即可. 【详解】解: , 1010x x ①②由①得:1,x ≥ 由②得:1,x ≠- 所以:1,x ≥故A,B,C 不符合题意,D 符合题意, 故选D 【点睛】本题考查的是分式有意义的条件,二次根式有意义的条件,掌握“分式与二次根式的综合形式的代数式有意义的条件”是解本题的关键.变式1.(2022·湖南岳阳·,则实数x 的取值范围是( ) A .1x ≥- B .0x ≠C .1≥xD .0x >【答案】C 【解析】 【分析】根据二次根式的被开方数为非负数解答.解:由题意得10x -≥, 解得1≥x , 故选:C . 【点睛】此题考查了二次根式的非负数,解题的关键是熟练掌握二次根式的双重非负性列式进行解答.变式2.(2022·福建惠安·有意义,则x 的取值范围为( ) A .1x ≥- B .1x >- C .1≥x D .1x ≤【答案】A 【解析】 【分析】根据二次根式有意义的条件分析即可. 【详解】, ∴10x +≥ 解得1x ≥- 故选A 【点睛】本题考查了二次根式有意义的条件,理解被开方数为非负数是解题的关键.变式3中x 的取值范围是( ) A .x >2 B .x ≥﹣2C .x ≠2D .x ≥﹣2且x ≠2【答案】D 【解析】 【分析】根据二次根式及分式有意义的条件可直接进行求解. 【详解】 解:由题意得:20x +≥且20x -≠,解得:2x ≥-且2x ≠; 故选D .本题主要考查二次根式及分式有意义的条件,熟练掌握二次根式及分式有意义的条件是解题的关键.◎考点题型4 利用二次根式的性质化简例.(2022·贵州松桃·八年级期末)下列各式中正确的是( )A 2=-B 2=±C .22= D .(22=-【答案】C 【解析】 【分析】根据二次根式的性质即可依次判断. 【详解】A. 2,故错误;B. 2=,故错误;C.22=,正确;D. (22=,故错误;故选C . 【点睛】此题主要考查二次根式的计算,解题的关键是熟知二次根式的性质.变式1.(2022·江苏·2x =-成立,则x 的取值范围是( ) A .2x ≤ B .2x ≥C .02x ≤≤D .任意实数【答案】A 【解析】 【分析】根据实数的性质及去绝对值的方法即可求解. 【详解】22x x =-=-∴x -2≤0故选A . 【点睛】此题主要考查实数的性质,解题的关键是熟知平方根的性质及去绝对值的方法. 变式2.(上海奉贤·七年级期末)下列计算错误的是( )A 2=-B 2C 2D .2(2=【答案】A 【解析】 【分析】直接利用二次根式的性质以及二次根式的乘法运算法则化简,进而判断即可. 【详解】解:A 2,故此选项计算错误,符合题意;B 2=,故此选项计算正确,不合题意;C 2=,故此选项计算正确,不合题意;D .2(2=,故此选项计算正确,不合题意; 故选:A . 【点睛】此题考查了二次根式的性质及二次根式的乘法运算法则,熟记乘法法则是解题的关键.变式3.(2022·2的结果是( ) A .61x -- B .1-C .61x +D .1【答案】D 【解析】 【分析】x 的取值范围,,利用二次根式的性质去根号,然后合并同类项即可. 【详解】0x ≥∴31=+x故原式化简为:3131x x +-=. 故选:D . 【点睛】本题主要是考查了去二次根号以及二次根式的基本性质,熟练掌握二次根式的性质,求解该题的关键.◎考点题型5 复合二次根式的化简例.(浙江滨江·八年级期中)对式子,使根号外不含字母m ,正确的结果是( )A B .C .D 【答案】C 【解析】 【分析】直接利用二次根式的性质化简求出答案. 【详解】解:由题意可得:30m -≥,∴0m ≤∴=故选:C 【点睛】此题主要考查了二次根式的性质与化简,正确掌握二次根式的性质是解题关键.变式1.(河南原阳· )AB C .D .【答案】D 【解析】 【分析】根据二次根式成立的条件确定x 的取值,从而利用二次根式的性质进行化简. 【详解】解:由题意可得:x <0∴(11x x x⋅=⋅-故选:D . 【点睛】本题考查二次根式的化简,理解二次根式成立的条件及二次根式的性质正确化简计算是解题关键.变式2.(湖北鄂州·八年级期末)把(2-x) 2-x )适当变形后移入根号内,得( )AB C . D .【答案】D 【解析】 【分析】由题意易得x>2,然后根据二次根式的性质可进行求解. 【详解】 解:由题意得: 102x >-,解得:x>2,∴(2x -= 故选D . 【点睛】本题主要考查二次根式的性质,熟练掌握二次根式的性质是解题的关键.变式3.(2018·全国·2得( ) A .2 B .﹣4x+4C .xD .5x ﹣2【答案】C 【解析】 【分析】根据二次函数的性质求解可得答案. 【详解】解:1-3x≥0,x≤13,∴2x-1≤1-3<0,∴原式-(1-3x)=1-2x-1+3x=x, 故选C. 【点睛】主要考查了根据二次根式的意义及化简.:当a >0时=a;当a<0时,=-a.二次根式2=a,(a≥0).。
二次根式的有关概念和性质

专题01二次根式的概念和性质(知识点考点串编)【思维导图】◎考点1:二次根式的值例.(2022·浙江·九年级专题练习)当0x =的值等于( )A .4B .2CD .0【答案】B【解析】【分析】把0x =解题即可【详解】◉知识点一:二次根式的定义知识点技巧:二次根式概念:一般地,我们把形如(a ≥0)的式子叫做二次根式,“”称为二次根号。
【注意】1.二次根式,被开方数a 可以是一个具体的数,也可以是代数式。
2.二次根式是一个非负数。
3.二次根式与算术平方根有着内在联系,(a ≥0)就表示a 的算术平方根。
解:把0x =2=故选:B .【点睛】本题考查了二次根式的定义和二次根式的性质,能灵活运用二次根式的性质进行计算是解题的关键.练习1.(2021·全国·八年级专题练习)当a 为实数时,下列各式中是二次根式的是( )个A .3个B .4个C .5个D .6个【答案】B 【解析】【分析】0)a >的代数进行分析得出答案.【详解】共4个.故选:B .【点睛】0)a >的代数式,正确把握定义是解题关键.练习2.(2021·河北·结果相同的是( ).A .321-+B .321+-C .321++D .321--【答案】A【解析】【分析】根据有理数运算和二次根式的性质计算,即可得到答案.【详解】2==∵3212-+=,且选项B 、C 、D 的运算结果分别为:4、6、0【点睛】本题考查了二次根式、有理数运算的知识;解题的关键是熟练掌握二次根式、含乘方的有理数混合运算的性质,即可得到答案.练习3.(2021·河南林州·八年级期末)已知当12a <<a -的值是( )A .3-B .12a -C .32a -D .23a -【答案】C【解析】【分析】由题意直接根据二次根式的性质以及去绝对值的方法,进行分析运算即可.【详解】解:∵12a <<,212132a a a a a a -=---=-+-=-.故选:C.【点睛】本题考查二次根式和去绝对值,熟练掌握二次根式的性质以及去绝对值的方法是解题的关键.◎考点2:求二次根式中的参数例.(2021·n 的最小值是( )A .2B .4C .6D .8【答案】C【解析】【分析】=,则6n 是完全平方数,满足条件的最小正整数n 为6.【详解】解:=∴6n 是完全平方数;∴n 的最小正整数值为6.【点睛】本题主要考查了二次根式的定义,关键是根据乘除法则和二次根式有意义的条件,二次根式有意义的条件时被开方数是非负数进行解答练习1.(2020·甘肃·酒泉市第二中学八年级期中)若x 、y 为实数,且0x +=,则2019x y æöç÷èø的值( )A .-2B .1C .2D .-1【答案】D【解析】【分析】根据非负数的性质可求出x 、y 的值,然后把x 、y 的值代入所求式子计算即可.【详解】解:∵0x +=,∴x +2=0,y -2=0,∴x =﹣2,y =2,∴220190192=12x y -æöæöç÷è=-ç÷èøø.故选:D .【点睛】本题主要考查了非负数的性质,明确实数绝对值和二次根式的非负性以及﹣1的奇次幂的性质是解题关键.练习2.(2020·江苏·丰县欢口镇欢口初级中学八年级阶段练习)如果3y ,则2x y -的平方根是( )A .-7B .1C .7D .±1【答案】D【解析】【分析】根据二次根式的性质求出x 、y 的值,再代入求解即可.解:由题意可得:24020x x -+¹=,,解得:2x =,故3y =,则21x y -=,故2x y -的平方根是:±1.故选:D .【点睛】本题考查了关于二次根式的运算问题,掌握二次根式的性质、平方根的性质是解题的关键.练习3.(2021·全国·n 的值是( )A .0B .1C .2D .5【答案】D【解析】【分析】首先化简二次根式进而得出n 的最小值.【详解】=∴最小正整数n 的值是5.故选D .【点睛】本题考查了二次根式的定义,正确化简二次根式得出是解题的关键.例.(2022·全国·九年级专题练习)在函数1y =中,自变量x 的取值范围是( )A .x <2B .x ≥2C .x >2D .x ≠2【答案】C 【解析】◉知识点二:二次根式有意义的条件知识点技巧:二次根式有意义的条件:由二次根式的意义可知,当a ≧0时,有意义,是二次根式,所以要使二次根式有意义,只要使被开方数大于或等于零即可。
九年级数学上人教版《二次根式》课堂笔记

《二次根式》课堂笔记
一、二次根式的定义
1.二次根式的定义:如果一个数的平方等于a,那么这个数叫做a的平方根
或二次方根。
其中,平方过程中等于0的平方根叫做零的平方根,也叫做二次方根。
2.二次根式的表示方法:一般地,任何一个正数和零的平方根有两个,它们
互为相反数。
而负数没有平方根。
二、二次根式的性质
1.基本性质:a2=a(a≥0);a<0时,a2=−a。
2.重要性质:ab=a⋅b(a≥0,b≥0)
三、二次根式的化简
1.直接开平方法:形如ax2=b或(ax)2=b(a=0)的方程,可用直接开平方法
解方程,得到x=±ab。
2.配方法:用配方法解方程,先把方程的右边化为0,然后方程左边也进行
配方,最后对方程左边进行开方运算。
3.公式法:利用平方差公式把一个数分解为两数乘积的形式,然后用直接开
方法求出这个数的平方根。
四、二次根式的应用
二次根式在实际生活中被广泛应用于计算物体的面积、体积等方面。
比如在计算圆的面积时,我们需要使用圆的半径的平方作为底数进行计算。
在计算矩形、正方形等规则图形的面积时,也可以利用二次根式进行计算。
五、注意事项
1.在进行二次根式的运算时,要注意运算顺序和符号问题。
2.在化简二次根式时,要注意化简后的结果一定是最简二次根式。
3.在应用二次根式解决实际问题时,要注意单位的统一和转换。
人教版八年级数学下第十六章二次根式专题一 二次根式的性质及其运算习题课件

八年级 数学 下册 人教版
3.已知实数 a 满足|2 018-a|+ a-2 019=a,求 a-2 0182 的值. 解:由题意得 a-2 019≥0, ∴a≥2 019,∴2 018-a<0. ∴原式可以变形为 a-2 018+ a-2 019=a. ∴ a-2 019=2 018. ∴a-2 019=2 0182. ∴a-2 0182=2 019.
八年级 数学 下册 人教版
解:∵点 C 与点 B 关于点 A 对称,
∴|AC|=|AB|,即 1-x= 2-1,
∴x=2- 2,
2
2
∴|x- 2|+x=|2- 2- 2|+2- 2
2(2+ 2) =|2-2 2|+(2- 2)(2+ 2)
=2 2-2+2+ 2=3 2.
∴x+1x=6,
∴x+1x2=36,x2+x12=34, ∴ x2+x12+14= 34+14= 48=4 3.
八年级 数学 下册 人教版
10.(荆门中考)先化简,再求值:
a2-b2
a-b a
a2-2ab+b2·a+b-a-b,其中 a=1+ 3,b=1- 3.
(a+b)(a-b) a-b a 解:原式= (a-b)2 ·a+b-a-b
八年级 数学 下册 人教版
2.已知 x,y 为实数,且 y= x2-9- 9-x2+4,求 x-y 的值. 解:依题意有 x2-9≥0,9-x2≥0, ∴x2-9=0, ∴x=±3,y=4. 当 x=3 时,x-y=3-4=-1; 当 x=-3 时,x-y=-3-4=-7. ∴x-y 的值为-1 或-7.
(5)(3+ 2)2(3- 2)-(3- 2)2(3+ 2); 解:原式=(3+ 2)(3- 2)[(3+ 2)-(3- 2)] =(9-2)×2 2 =14 2.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解:原式= (x+y)2x(x-y)·y(x+y)
=x2-xyy.
当 x= 5+2,y= 5-2 时,
原式=2(
5+2)( 5-2) 5+2- 5+2
=21.
11.小明在学习二次根式后,发现一些含根号的式子可以写成另一 个式子的平方,如 3+2 2=(1+ 2)2,善于思考的小明进行了以下探 索:
6.计算: (1)(2019·南充)(1-π)0+| 2- 3|- 12+( 12)-1; 解:原式=1+ 3- 2-2 3+ 2 =1- 3.
(2)|2- 5|- 2×( 18- 210)+23.
解:原式= 5-2-21+ 5+32 =2 5-1.
类型 3 与二次根式有关பைடு நூலகம்化简求值 7.已知 a=3+2 2,b=3-2 2,求 a2b-ab2 的值.
(3)若 a+4 3=(m+n 3)2,且 a,m,n 均为正整数,求 a 的值.
解:根据题意,得a4==m2m2+n. 3n2, ∵2mn=4,且 m,n 为正整数, ∴m=2,n=1 或 m=1,n=2. ∴a=7 或 13.
(3)3 54×(-
8 9)÷7
115;
解:原式=3×(-1)×
54×98÷7
1 15
=-3 48÷7
6 5
=-73 48×56
=-76 10.
(4)( 12-4 18)-(3 13-4 0.5); 解:原式=2 3- 2- 3+2 2 = 3+ 2. (5)(3 2- 6)2-(-3 2- 6)2. 解:原式=(3 2- 6)2-(3 2+ 6)2 =18+6-12 3-(18+6+12 3) =-24 3.
9.(2018·徐州)已知 x= 3+1,求 x2-2x-3 的值. 解:x2-2x-3=x2-2x+1-4 =(x-1)2-4. 当 x= 3+1 时, 原式=( 3+1-1)2-4 =3-4 =-1.
10.先化简,再求值:(x+1 y+x-1 y)÷xy+1 y2,其中 x= 5+2,y = 5-2.
类型 2 二次根式的运算 4.计算: (1)6 2×13 6; 解:原式=(6×13) 2×6 =2 12 =4 3.
(2)(-4 5)÷5 145;
解:原式=-4
5÷(5×3
5 5)
=-4 5÷3 5
=-34.
(3) 72-32 2+2 18; 解:原式=6 2-23 2+6 2 =221 2.
数学 第十六章 二次根式
小专题(一) 二次根式的性质及运算
类型 1 二次根式的非负性
1.(2018·广东)已知 a-b+|b-1|=0,则 a+1= 2 . 1
2.当 x= 5 时, 5x-1+4 的值最小,最小值是 4 .
3.(2019·河南期末)若 y= x-3+ 3-x+4,则 xy 的平方根 是 ±9 .
解:原式=a2b-ab2=ab(a-b). 当 a=3+2 2,b=3-2 2时, 原式=(3+2 2)(3-2 2)(3+2 2-3+2 2) =4 2.
8.已知实数 a,b,定义“★”运算规则如下:a★b= b(a2a-≤bb2()a,>b),求 7★( 2★ 3)的值.
解:由题意,得 2★ 3= 3. ∴ 7★( 2★ 3)= 7★ 3= 7-3=2.
设 a+b 2=(m+n 2)2(其中 a,b,m,n 均为正整数),则有 a+ b 2=m2+2n2+2 2mn,
∴a=m2+2n2,b=2mn.
这样小明就找到了一种把 a+b 2的式子化为平方式的方法. 请你仿照小明的方法探索并解决下列问题: (1)当 a,b,m,n 均为正整数时,若 a+b 3=(m+n 3)2,用含 m,n 的式子分别表示 a,b,得 a= m2+3n2 ,b= 2mn ; (2)利用所探索的结论,找一组正整数 a,b,m,n 填空:4 +2 3 = ( 1 + 3)2;( 答案不唯一 )
(4)(2 5+ 3)×(2 5- 3).
解:原式=(2 5)2-( 3)2 =20-3 =17.
5.计算:
(1)3 34÷(-21 123);
解:原式=[3÷(-12)]
35 4÷3
=-6
9 20
=-6
9×5 20×5
=-95 5.
(2)( 6+ 10× 15)× 3;
解:原式=3 2+5 6× 3 =3 2+15 2 =18 2.