2013年浙江省高等职业技术教育招生考试数学试卷
2013年浙江卷数学试题及答案(理)

2013·浙江卷(理科数学)1. 已知i 是虚数单位,则(-1+i)(2-i)=( ) A .-3+i B .-1+3i C .-3+3i D .-1+i1.B [解析] (-1+i)(2-i)=-2+i +2i +1=-1+3i ,故选择B. 2. 设集合S ={x |x >-2},T ={x |x 2+3x -4≤0},则(∁S )∪T =( ) A .(-2,1] B .(-∞,-4] C .(-∞,1] D .[1,+∞)2.C [解析] ∁S ={x |x ≤-2},T ={x |(x +4)(x -1)≤0}={x |-4≤x ≤1},所以(∁S )∪T =(-∞,1].故选择C.3., 已知x ,y 为正实数,则( )A .2lg x +lg y =2lg x +2lg yB .2lg(x +y )=2lg x ·2lg yC .2lg x ·lg y=2lg x +2lg y D .2lg(xy )=2lg x ·2lg y3.D [解析] ∵lg(xy )=lg x +lg y ,∴2lg(xy )=2lg x +lg y =2lg x 2lg y ,故选择D. 4. 已知函数f (x )=A cos(ωx +φ)(A >0,ω>0,φ∈),则“f (x )是奇函数”是“φ=π2”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件4.B [解析] f (x )=A cos(ωx +φ)是奇函数的充要条件是f (0)=0,即cos φ=0,φ=k π+π2,k ∈,所以“f (x )是奇函数”是“φ=π2”的必要不充分条件,故选择B.5. 某程序框图如图1-1所示,若该程序运行后输出的值是95,则( )图1-1A .a =4B .a =5C .a =6D .a =75.A [解析] S =1+11×2+12×3+…+1k (k +1)=1+1-12+12-13+…+1k -1k +1=1+1-1k +1=2-1k +1=95,故k =4,k =k +1=5,满足k >a 时,即5>a 时,输出S ,所以a=4,选择A.6. 已知α∈,sin α+2cos α=102,则tan 2α=( ) A.43 B.34 C .-34 D .-43 6.C [解析] 由(sin α+2cos α)2=1022'得sin 2α+4sin αcos α+4cos 2α=104=52,4sin αcos α+1+3cos 2α=52,2sin 2α+1+3×1+cos 2α2=52,故2sin 2α=-3cos 2α2,所以tan 2α=-34,选择C. 7. 设△ABC ,P 0是边AB 上一定点,满足P 0B =14AB ,且对于边AB 上任一点P ,恒有PB →·PC →≥P 0B →·P 0C →,则( )A .∠ABC =90°B .∠BAC =90°C .AB =ACD .AC =BC7.D [解析] 建立以AB 的中点O 为原点的坐标系,如图所示,PB →·PC →=(c -x ,0)·(a -x ,b )=x 2-(a +c )x +ac ,当x =a +c 2时,PB →·PC →最小,而已知P 0B →·P 0C →最小,所以c 2=a +c 2,此时a =0,所以AC =BC ,选择D.8. 已知e 为自然对数的底数,设函数f (x )=(e x -1)(x -1)k (k =1,2),则( ) A .当k =1时,f (x )在x =1处取到极小值 B .当k =1时,f (x )在x =1处取到极大值 C .当k =2时,f (x )在x =1处取到极小值 D .当k =2时,f (x )在x =1处取到极大值8.C [解析] 当k =1时,f (x )=(e x -1)(x -1),f ′(x )=e x (x -1)+(e x -1)=x e x -1,则在x =1处取不到极值.当k =2时,f (x )=(e x -1)(x -1)2,f ′(x )=e x (x -1)2+(e x -1)×2(x -1)=(x -1)(x e x +e x -2),f ′(1)=0,f ′(2)>0,f ′12<0,所以在x =1处取得极小值.图1-29., 如图1-2,F 1,F 2是椭圆C 1:x 24+y 2=1与双曲线C 2的公共焦点,A ,B 分别是C 1,C 2在第二、四象限的公共点.若四边形AF 1BF 2为矩形,则C 2的离心率是( )A. 2B. 3C.32D.629.D [解析] 设双曲线实半轴长为a ,焦半距为c ,|AF 1|=m ,|AF 2|=n ,由题意知c =3,⎩⎪⎨⎪⎧m +n =4,m 2+n 2=(2c )2=12,2mn =(m +n )2-(m 2+n 2)=4,(m -n )2=m 2+n 2-2mn =8,2a =m -n =2 2,a =2,则双曲线的离心率e =c a =32=62,选择D.10. 在空间中,过点A 作平面π的垂线,垂足为B ,记B =f π(A ).设α,β是两个不同的平面,对空间任意一点P ,Q 1=f β[f α(P )],Q 2=f α[f β(P )],恒有PQ 1=PQ 2,则( )A .平面α与平面β垂直B .平面α与平面β所成的(锐)二面角为45°C .平面α与平面β平行D .平面α与平面β所成的(锐)二面角为60°10.A [解析] 当α⊥β,且α∩β=b ,设f α(P )=A ,则P A ⊥α,Q 1=f β[f α(P )]=f β(A ),故AQ 1⊥β;同理设f β(P )=B ,则PB ⊥β,Q 2=f α[f β(P )]=f α(B ),故BQ 2⊥α,故AQ 1∥PB ,P A ∥BQ 2,所以Q 1和Q 2重合,恒有PQ 1=PQ 2,选择A.11. 设二项式x -13x5的展开式中常数项为A ,则A =________.11.-10 [解析] T r +1=C r 5x 5-r 2(-1)r x -r 3=(-1)r C r 5x 15-5r 6,则15-5r 6=0,r =3,故常数项A =T 4=(-1)3C 35=-10.12. 若某几何体的三视图(单位:cm)如图1-3所示,则此几何体的体积等于________cm 3.图1-312.24 [解析] 此几何体知直观图是一个直三棱柱挖去一个三棱锥而得,如图所示,则体积为12×3×4×5-13×12×3×4×3=24.13. 设z =kx +y ,其中实数x ,y 满足⎩⎪⎨⎪⎧x +y -2≥0,x -2y +4≥0,2x -y -4≤0.若z 的最大值为12,则实数k =________.13.2 [解析] 不等式组表示的可行区域为如图所示的三角形ABC 及其内部,A (2,0),B (4,4),C (0,2),要使z 的最大值为12,只能经过B 点,此时12=4k +4,k =2.14. 将A ,B ,C ,D ,E ,F 六个字母排成一排,且A ,B 均在C 的同侧,则不同的排法共有________种(用数字作答).14.480 [解析] 先在6个位置找3个位置,有C 36种情况,A ,B 均在C 的同侧,有CAB ,CBA ,ABC ,BAC ,而剩下D ,E ,F 有A 33种情况,故共有4C 36A 33=480种.15. 设F 为抛物线C :y 2=4x 的焦点,过点P (-1,0)的直线l 交抛物线C 于A ,B 两点,点Q 为线段AB 的中点.若|FQ |=2,则直线l 的斜率等于________.15.±1 [解析] 设直线l :my =x +1,代入y 2=4x 得y 2-4my +4=0,则y A +y B =4m ,因为Q 为线段AB 的中点,则y Q =y A +y B2=2m ,x Q =my Q -1=2m 2-1,故Q (2m 2-1,2m ),又|FQ |2=4,(2m 2-2)2+(2m )2=4⇒m 4-m 2=0,所以m =±1.16. 在△ABC 中,∠C =90°,M 是BC 的中点.若sin ∠BAM =13,则sin ∠BAC =________.16.63 [解析] 设△ABC 的三边长为a ,b ,c ,tan ∠BAM =12 2.而tan ∠BAM =tan(∠BAC -∠CAM )=tan ∠BAC -tan ∠CAM1+tan ∠BAC ·tan ∠CAM=a b -a 2b 1+a b ·a 2b =a 2b 1+a 22b 2=12 2,则2a b =1+a 22b 2⇒a 2b 2-22a b +2=0⇒a b -22=0,故a b =2⇒sin ∠BAC =a c =aa 2+b 2=2b 3b =63. 17. 设1,2为单位向量,非零向量=x 1+y 2,x ,y ∈若1,2的夹角为π6,则|x ||b |的最大值等于________.17.2 [解析] |x ||b |=|x |2|b |2=x 2x 2e 21+2xy e 1·e 2+y 2e 22=x 2x 2+2xy ×32+y 2=11+3y x +y x2=1y x +322+14≤114=2. 18. 在公差为d 的等差数列{a n }中,已知a 1=10,且a 1,2a 2+2,5a 3成等比数列.(1)求d ,a n ;(2)若d <0,求|a 1|+|a 2|+|a 3|+…+|a n |. 18.解:(1))由题意得a 1·5a 3=(2a 2+2)2, 即d 2-3d -4=0. 所以d =-1或d =4.所以a n =-n +11,n ∈*或a n =4n +6,n ∈*.(2)设数列{a n }的前n 项和为S n .因为d <0,由(1)得d =-1,a n =-n +11,则 当n ≤11时,|a 1|+|a 2|+|a 3|+…+|a n | =-12n 2+212n .当n ≥12时, |a 1|+|a 2|+|a 3|+…+|a n |=-S n +2S 11=12n 2-212n +110.综上所述,|a 1|+|a 2|+|a 3|+…+|a n|=⎩⎨⎧-12n 2+212n ,n ≤11,12n 2-212n +110,n ≥12.19. 设袋子中装有a 个红球,b 个黄球,c 个蓝球,且规定:取出一个红球得1分,取出一个黄球得2分,取出一个蓝球得3分.(1)当a =3,b =2,c =1时,从该袋子中任取(有放回,且每球取到的机会均等)2个球,记随机变量ξ为取出此2球所得分数之和,求ξ的分布列;(2)从该袋子中任取(每球取到的机会均等)1个球,记随机变量η为取出此球所得分数.若Eη=53,Dη=59,求a ∶b ∶c .19.解:(1)由题意得,ξ=2,3,4,5,6.P (ξ=2)=3×36×6=14,P (ξ=3)=2×3×26×6=13,P (ξ=4)=2×3×1+2×26×6=518.P (ξ=5)=2×2×16×6=19,P (ξ=6)=1×16×6=136,所以ξ的分布列为ξ 2 3 4 5 6 P141351819136(2)由题意知η的分布列为η 1 2 3 Paa +b +cba +b +cca +b +c所以Eη=a a +b +c +2b a +b +c +3c a +b +c =53,Dη=1-532·a a +b +c +2-532·b a +b +c +3-532·c a +b +c =59,化简得⎩⎪⎨⎪⎧2a -b -4c =0,a +4b -11c =0,解得a =3c ,b =2c ,故a ∶b ∶c =3∶2∶1.图1-4 20., 如图1-4所示,在四面体A -BCD 中,AD ⊥平面BCD ,BC ⊥CD ,AD =2,BD =2 2,M 是AD 的中点,P 是BM 的中点,点Q 在线段AC 上,且AQ =3QC . (1)证明:PQ ∥平面BCD .(2)若二面角C -BM -D 的大小为60°,求∠BDC 的大小.20.解:方法一:(1)证明:取BD 的中点O ,在线段CD 上取点F ,使得DF =3FC .联结OP ,OF ,FQ .因为AQ =3QC ,所以QF ∥AD ,且QF =14AD .因为O ,P 分别为BD ,BM 的中点,所以OP 是△BDM 的中位线,所以 OP ∥DM ,且OP =12DM .又点M 为AD 的中点,所以OP ∥AD ,且OP =14AD .从而OP ∥FQ ,且OP =FQ ,所以四边形OPQF 为平行四边形,故PQ ∥OF .又PQ ⊄平面BCD ,OF ⊂平面BCD ,所以PQ ∥平面BCD . (2)作CG ⊥BD 于点G ,作GH ⊥BM 于点H ,联结CH . 因为AD ⊥平面BCD ,CG ⊂平面BCD ,所以AD ⊥CG .又CG ⊥BD ,AD ∩BD =D ,故CG ⊥平面ABD ,又BM ⊂平面ABD ,所以CG ⊥BM . 又GH ⊥BM ,CG ∩GH =G ,故BM ⊥平面CGH ,所以CH ⊥BM . 所以∠CHG 为二面角C -BM -D 的平面角,即∠CHG =60°. 设∠BDC =θ,在Rt △BCD 中, CD =BD cos θ=2 2cos θ, CG =CD sin θ=2 2cos θsin θ, BG =BC sin θ=2 2sin 2θ,在Rt △BDM 中,HG =BG ·DM BM =2 2sin 2 θ3.在Rt △CHG 中,tan ∠CHG =CG HG =3cos θsin θ= 3. 所以tan θ=3,从而θ=60°, 即∠BDC =60°.方法二:(1)证明:如图所示,取BD 的中点O ,以O 为原点,OD ,OP 所在射线为y ,z 轴的正半轴,建立空间直角坐标系O -xyz .由题意知A (0,2,2),B (0,-2,0),D (0,2,0).设点C 的坐标为(x 0,y 0,0),因为AQ →=3QC →,所以Q34x 0,24+34y 0,12. 因为M 为AD 的中点,故M (0,2,1).又P 为BM 的中点,故P 0,0,12.所以PQ →=34x 0,24+34y 0,0. 又平面BCD 的一个法向量为=(0,0,1),故PQ →·=0. 又PQ ⊄平面BCD ,所以PQ ∥平面BCD .(2)设=(x ,y ,z )为平面BMC 的一个法向量. 由CM →=(-x 0,2-y 0,1),BM →=(0,2 2,1),知⎩⎨⎧-x 0x +(2-y 0)y +z =0,2 2y +z =0.取y =-1,得=y 0+2x 0,-1,2 2.又平面BDM 的一个法向量为=(1,0,0),于是|cos 〈,〉|=|m·n ||m||n|=y 0+2x 09+y 0+2x 02=12,即y 0+2x 02=3.① 又BC ⊥CD ,所以CB →·CD →=0,故(-x 0,-2-y 0,0)·(-x 0,2-y 0,0)=0,即x 20+y 20=2.② 联立①②,解得⎩⎨⎧x 0=0,y 0=-2(舍去)或⎩⎨⎧x 0=±62,y 0=22.所以tan ∠BDC =x 02-y 0= 3.又∠BDC 是锐角,所以∠BDC =60°.图1-521., 如图1-5所示,点P (0,-1)是椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)的一个顶点,C 1的长轴是圆C 2:x 2+y 2=4的直径.l 1,l 2是过点P 且互相垂直的两条直线,其中l 1交圆C 2于A ,B 两点,l 2交椭圆C 1于另一点D .(1)求椭圆C 1的方程;(2)求△ABD 面积取得最大值时直线l 1的方程.21.解:(1)由题意得⎩⎪⎨⎪⎧b =1,a =2,所以椭圆C 的方程为x 24+y 2=1.(2)设A (x 1,y 1),B (x 2,y 2),D (x 0,y 0).由题意知直线l 1的斜率存在,不妨设其为k ,则直线l 1的方程为y =kx -1.又圆C 2:x 2+y 2=4,故点O 到直线l 1的距离d =1k 2+1,所以|AB |=24-d 2=24k 2+3k 2+1. 又l 2⊥l 1,故直线l 2的方程为x +ky +k =0.由⎩⎪⎨⎪⎧x +ky +k =0,x 2+4y 2=4. 消去y ,整理得(4+k 2)x 2+8kx =0. 故x 0=-8k 4+k 2,所以|PD |=8k 2+14+k 2.设△ABD 的面积为S ,则S =12·|AB |·|PD |=8 4k 2+34+k 2,所以S =324k 2+3+134k 2+3≤3224k 2+3·134k 2+3=16 1313,当且仅当k =±102时取等号.所以所求直线l 1的方程为y =±102x -1. 22. 已知a ∈,函数f (x )=x 3-3x 2+3ax -3a +3. (1)求曲线y =f (x )在点(1,f (1))处的切线方程; (2)当x ∈[0,2]时,求|f (x )|的最大值.22.解:(1)由题意 f ′(x )=3x 2-6x +3a ,故 f ′(1)=3a -3. 又f (1)=1,所以所求的切线方程为y =(3a -3)x -3a +4. (2)由于f ′(x )=3(x -1)2+3(a -1),0≤x ≤2,故①当a ≤0时,有f ′(x )≤0,此时f (x )在[0,2]上单调递减,故 |f (x )|max =max {|f (0)|,|f (2)|}=3-3a .②当a ≥1时,有f ′(x )≥0,此时f (x )在[0,2]上单调递增,故 |f (x )|max =max {|f (0)|,|f (2)|}=3a -1.③当0<a <1时,设x 1=1-1-a ,x 2=1+1-a ,则 0<x 1<x 2<2,f ′(x )=3(x -x 1)(x -x 2). 列表如下: x 0 (0,x 1) x 1 (x 1,x 2) x 2 (x 2,2) 2 f ′(x ) + 0 - 0 + f (x ) 3-3a单调 递增极大值 f (x 1)单调 递减极小值 f (x 2)单调 递增3a -1由于f (x 1)=1+2(1-a )1-a ,f (x 2)=1-2(1-a )1-a , 故f (x 1)+f (x 2)=2>0,f (x 1)-f (x 2)=4(1-a )1-a >0. 从而f (x 1)>|f (x 2)|.所以|f (x )|max =max{f (0),|f (2)|,f (x 1)}. (Ⅰ)当0<a <23时,f (0)>|f (2)|.又f (x 1)-f (0)=2(1-a )1-a -(2-3a )=a 2(3-4a )2(1-a )1-a +2-3a >0,故|f (x )|max =f (x 1)=1+2(1-a )1-a .(Ⅱ)当23≤a <1时,|f (2)|=f (2),且f (2)≥f (0).又f (x 1)-|f (2)|=2(1-a )1-a -(3a -2)=a 2(3-4a )2(1-a )1-a +3a -2.所以(i)当23≤a <34时,f (x 1)>|f (2)|.故f (x )max =f (x 1)=1+2(1-a )1-a . (ii)当34≤a <1时,f (x 1)≤|f (2)|.故f (x )max =|f (2)|=3a -1. 综上所述,|f (x )|max=⎩⎪⎨⎪⎧3-3a ,a ≤0;1+2(1-a )1-a ,0<a <34;3a -1,a ≥34.自选模块1. (1)解不等式|x -1|+|x -4|≥5.(2)求函数y =|x -1|+|x -4|+x 2-4x 的最小值.1.解:(1)当x <1时,1-x +4-x ≥5,得x ≤0,此时x ≤0; 当1≤x ≤4时,x -1+4-x ≥5,得3≥5,此时x ∈∅; 当x >4时,x -1+x -4≥5,得x ≥5,此时x ≥5.综上所述,原不等式的解集是(-∞,0]∪[5,+∞). (2)因为|x -1|+|x -4|≥|(x -1)-(x -4)|=3, 当且仅当1≤x ≤4时取等号;x 2-4x =(x -2)2-4≥-4,当且仅当x =2时取等号.故|x -1|+|x -4|+x 2-4x ≥3-4=-1,当x =2时取等号.所以y =|x -1|+|x -4|+x 2-4x 的最小值为-1.2., 已知a ∈“矩阵与变换和坐标系与参数方程”模块(1)以极坐标系Ox 的极点O 为原点,极轴Ox 为x 轴正半轴建立平面直角坐标系xOy ,并在两种坐标系中取相同的长度单位.把极坐标方程cos θ+ρ2sin θ=1化成直角坐标方程.(2)在直角坐标系xOy 中,曲线C :⎩⎨⎧x =2cos θ,y =sin θ(θ为参数),过点P (2,1)的直线与曲线C 交于A ,B 两点.若|P A |·|PB |=83,求|AB |的值. 2.解:(1)极坐标方程两边同乘以ρ得ρcos θ+ρ3sin θ=ρ.又在直角坐标系下,ρcos θ=x ,ρsin θ=y ,ρ2=x 2+y 2,故化成直角坐标方程为x +y (x 2+y 2)=x 2+y 2.又(0,0)满足原极坐标方程.故所求的直角坐标方程为x +y (x 2+y 2)=x 2+y 2.(2)由题意,曲线C 的直角坐标方程为x 2+2y 2=2.设过点P (2,1),倾斜角为α的直线的参数方程为⎩⎪⎨⎪⎧x =2+t cos α,y =1+t sin α(t 为参数). 及点A ,B 对应的参数分别为t 1,t 2.将直线的参数方程代入x 2+2y 2=2得(2+t cos α)2+2(1+t sin α)2-2=0.即(1+sin 2α)t 2+4(sin α+cos α)t +4=0.则Δ=16(2sin αcos α-sin 2 α)>0,且t 1+t 2=-4(sin α+cos α)1+sin 2 α,t 1t 2=41+sin 2 α, 由|P A |·|PB |=83得|t 1t 2|=41+sin 2 α=83. 故sin 2 α=12.又由Δ>0得0<tan α<2. 故t 1+t 2=8 23,t 1t 2=83. 所以|AB |=|t 1-t 2|=(t 1+t 2)-4t 1t 2=4 23.。
2013年普通高等学校招生全国统一考试数学理试题(浙江卷,有答案)

2013年普通高等学校招生全国统一考试(浙江)数学(理科)选择题部分(共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知i 是虚数单位,则(-1+i)(2-i)=A 、-3+iB 、-1+3iC 、-3+3iD 、-1+i 2. 设集合S={x|x>-2},T={x|x 2+3x -4≤0},则(C R S )∪T=A 、(-2,1]B 、(-∞,-4]C 、(-∞,1]D 、[1,+∞) 3. 已知x,y 为正实数,则A.2lgx+lgy =2lgx +2lgyB. 2lg(x+y)=2lgx ·2lgyC. 2lgx·lgy=2lgx +2lgy D. 2lg(xy)=2lgx ·2lgy4. 已知函数f(x)=Acos(ωx+ϕ)(A>0, ω>0,ϕ∈R),则“f(x)是奇函数”是“ϕ=2π”的A 、充分不必要条件B 、必要不充分条件C 、充分必要条件D 、既不充分也不必要条件 5. 某程序框图如图所示,若该程序运行后输出的值是95,则A .a=4 B.a=5 C.a=6 D.a=76. 已知α∈R ,sin α+2cos α,则tan2α= A .43 B.34 C.-34 D.-43(第5题图)7. 设△ABC ,P 0是边AB 上一定点,满足P 0B =14AB ,且对于边AB 上任一点P ,恒有00PB PC P B PC ⋅≥⋅ ,则A .∠ABC =90°B .∠BAC=90° C.AB=AC D.AC=BC 8. 已知e 为自然对数的底数,设函数f(x)=(e x -1)(x -1)k (k=1,2),则 A .当k=1时,f(x)在x=1处取到极小值 B .当k=1时,f(x)在x=1处取到极大值 C .当k=2时,f(x)在x=1处取到极小值D .当k=2时,f(x)在x=1处取到极大值9. 如图F 1、F 2是椭圆C 1:x 24+y 2=1与双曲线C 2的公共焦点,A 、B 分别是C 1、C 2在第二、四象限的公共点,若四边形AF 1BF 2为矩形,则C 2的离心率是 A 、2 B 、3 C 、32 D 、62(第9题图)10. 在空间中,过点A 作平面π的垂线,垂足为B ,记B =f π(A)。
2013年普通高等学校招生全国统一考试数学(浙江卷)理

浙江理科选择题部分(共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2013浙江,理1)已知i是虚数单位,则(-1+i)(2-i)=().A.-3+iB.-1+3iC.-3+3iD.-1+i答案:B解析:(-1+i)(2-i)=-2+i+2i-i2=-1+3i,故选B.2.(2013浙江,理2)设集合S={x|x>-2},T={x|x2+3x-4≤0},则(∁R S)∪T=().A.(-2,1]B.(-∞,-4]C.(-∞,1]D.[1,+∞)答案:C解析:由题意得T={x|x2+3x-4≤0}={x|-4≤x≤1}.又S={x|x>-2},∴(∁R S)∪T={x|x≤-2}∪{x|-4≤x≤1}={x|x≤1},故选C.3.(2013浙江,理3)已知x,y为正实数,则().A.2lg x+lg y=2lg x+2lg yB.2lg(x+y)=2lg x·2lg yC.2lg x·lg y=2lg x+2lg yD.2lg(xy)=2lg x·2lg y答案:D解析:根据指数与对数的运算法则可知,2lg x+lg y=2lg x·2lg y,故A错,B错,C错;D中,2lg(xy)=2lg x+lg y=2lg x·2lg y,故选D.”的().4.(2013浙江,理4)已知函数f(x)=A cos(ωx+φ)(A>0,ω>0,φ∈R),则“f(x)是奇函数”是“φ=π2A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件答案:B解析:若f(x)是奇函数,则φ=kπ+π2,k∈Z;若φ=π2,则f(x)=A cos(ωx+φ)=-A sinωx,显然是奇函数.所以“f(x)是奇函数”是“φ=π2”的必要不充分条件.5.(2013浙江,理5)某程序框图如图所示,若该程序运行后输出的值是95,则().A.a=4B.a=5C.a=6D.a=7答案:A解析:该程序框图的功能为计算1+11×2+12×3+…+1a(a+1)=2-1a+1的值,由已知输出的值为95,可知当a=4时2-1a+1=95.故选A.6.(2013浙江,理6)已知α∈R,sinα+2cosα=√102,则tan2α=().A.43B.34C.-34D.-43答案:C解析:由sin α+2cos α=√102得,sin α=√102-2cos α.①把①式代入sin 2α+cos 2α=1中可解出cos α=√1010或3√1010, 当cos α=√1010时,sin α=3√1010; 当cos α=3√1010时,sin α=-√1010. ∴tan α=3或tan α=-13,∴tan 2α=-34.7.(2013浙江,理7)设△ABC ,P 0是边AB 上一定点,满足P 0B=14AB ,且对于边AB 上任一点P ,恒有PB⃗⃗⃗⃗⃗ ·PC ⃗⃗⃗⃗⃗ ≥P 0B ⃗⃗⃗⃗⃗⃗⃗ ·P 0C ⃗⃗⃗⃗⃗⃗ ,则( ). A.∠ABC=90° B.∠BAC=90° C.AB=AC D.AC=BC答案:D解析:设PB⃗⃗⃗⃗⃗ =t AB ⃗⃗⃗⃗⃗ (0≤t ≤1), ∴PC⃗⃗⃗⃗⃗ =PB ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ =t AB ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ , ∴PB⃗⃗⃗⃗⃗ ·PC ⃗⃗⃗⃗⃗ =(t AB ⃗⃗⃗⃗⃗ )·(t AB ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ )=t 2AB ⃗⃗⃗⃗⃗ 2+t AB ⃗⃗⃗⃗⃗ ·BC ⃗⃗⃗⃗⃗ . 由题意PB ⃗⃗⃗⃗⃗ ·PC ⃗⃗⃗⃗⃗ ≥P 0B ⃗⃗⃗⃗⃗⃗⃗ ·P 0C ⃗⃗⃗⃗⃗⃗ ,即t 2AB ⃗⃗⃗⃗⃗ 2+t AB ⃗⃗⃗⃗⃗ ·BC ⃗⃗⃗⃗⃗ ≥14AB ⃗⃗⃗⃗⃗ (14AB ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ ) =(14)2AB⃗⃗⃗⃗⃗ 2+14AB ⃗⃗⃗⃗⃗ ·BC , 即当t=14时PB ⃗⃗⃗⃗⃗ ·PC⃗⃗⃗⃗⃗ 取得最小值.由二次函数的性质可知:-AB ⃗⃗⃗⃗⃗⃗ ·BC ⃗⃗⃗⃗⃗ 2AB⃗⃗⃗⃗⃗⃗ 2=14,即:-AB ⃗⃗⃗⃗⃗ ·BC ⃗⃗⃗⃗⃗ =12AB⃗⃗⃗⃗⃗ 2, ∴AB ⃗⃗⃗⃗⃗ ·(12AB⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ )=0. 取AB 中点M ,则12AB ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ =MB ⃗⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ =MC ⃗⃗⃗⃗⃗⃗ , ∴AB⃗⃗⃗⃗⃗ ·MC ⃗⃗⃗⃗⃗⃗ =0,即AB ⊥MC. ∴AC=BC.故选D .8.(2013浙江,理8)已知e 为自然对数的底数,设函数f (x )=(e x -1)(x-1)k (k=1,2),则( ). A.当k=1时,f (x )在x=1处取到极小值 B.当k=1时,f (x )在x=1处取到极大值 C.当k=2时,f (x )在x=1处取到极小值 D.当k=2时,f (x )在x=1处取到极大值 答案:C解析:当k=1时,f (x )=(e x -1)(x-1),f'(x )=x e x -1,∵f'(1)=e -1≠0,∴f (x )在x=1处不能取到极值;当k=2时,f (x )=(e x -1)(x-1)2,f'(x )=(x-1)(x e x +e x -2), 令H (x )=x e x +e x -2,则H'(x )=x e x +2e x >0,x ∈(0,+∞). 说明H (x )在(0,+∞)上为增函数, 且H (1)=2e -2>0,H (0)=-1<0,因此当x 0<x<1(x 0为H (x )的零点)时,f'(x )<0,f (x )在(x 0,1)上为减函数. 当x>1时,f'(x )>0,f (x )在(1,+∞)上是增函数.∴x=1是f(x)的极小值点,故选C.9.(2013浙江,理9)如图,F1,F2是椭圆C1:x 24+y2=1与双曲线C2的公共焦点,A,B分别是C1,C2在第二、四象限的公共点.若四边形AF1BF2为矩形,则C2的离心率是().A.√2B.√3C.32D.√62答案:D解析:椭圆C1中,|AF1|+|AF2|=4,|F1F2|=2√3.又因为四边形AF1BF2为矩形,所以∠F1AF2=90°.所以|AF1|2+|AF2|2=|F1F2|2,所以|AF1|=2-√2,|AF2|=2+√2.所以在双曲线C2中,2c=2√3,2a=|AF2|-|AF1|=2√2,故e=ca =√3√2=√62,故选D.10.(2013浙江,理10)在空间中,过点A作平面π的垂线,垂足为B,记B=fπ(A).设α,β是两个不同的平面,对空间任意一点P,Q1=fβ[fα(P)],Q2=fα[fβ(P)],恒有PQ1=PQ2,则().A.平面α与平面β垂直B.平面α与平面β所成的(锐)二面角为45°C.平面α与平面β平行D.平面α与平面β所成的(锐)二面角为60°答案:A非选择题部分(共100分)二、填空题:本大题共7小题,每小题4分,共28分.11.(2013浙江,理11)设二项式(√x -√x3)5的展开式中常数项为A ,则A= .答案:-10解析:T r+1=C 5r (√x )5-r·(√x3)r =C 5r x5-r2·(-1)r·x -r3=(-1)r C 5rx5-r 2-r 3=(-1)r C 5rx15-5r 6.令15-5r=0,得r=3,所以A=(-1)3C 53=-C 52=-10.12.(2013浙江,理12)若某几何体的三视图(单位:cm)如图所示,则此几何体的体积等于 cm 3.答案:24解析:由三视图可知该几何体为如图所示的三棱柱割掉了一个三棱锥.V A 1EC 1-ABC =V A 1B 1C 1-ABC −V E -A 1B 1C 1=12×3×4×5-13×12×3×4×3=30-6=24.13.(2013浙江,理13)设z=kx+y ,其中实数x ,y 满足{x +y -2≥0,x -2y +4≥0,2x -y -4≤0.若z 的最大值为12,则实数k= . 答案:2解析:画出可行域如图所示.由可行域知,最优解可能在A(0,2)或C(4,4)处取得.若在A(0,2)处取得不符合题意;若在C(4,4)处取得,则4k+4=12,解得k=2,此时符合题意.14.(2013浙江,理14)将A,B,C,D,E,F六个字母排成一排,且A,B均在C的同侧,则不同的排法共有种(用数字作答).答案:480解析:如图六个位置若C放在第一个位置,则满足条件的排法共有A55种情况;若C放在第2个位置,则从3,4,5,6共4个位置中选2个位置排A,B,再在余下的3个位置排D,E,F,共A42·A33种排法;若C放在第3个位置,则可在1,2两个位置排A,B,其余位置排D,E,F,则共有A22·A33种排法或在4,5,6共3个位置中选2个位置排A,B,再在其余3个位置排D,E,F,共有A32·A33种排法;若C在第4个位置,则有A22A33+A32A33种排法;若C在第5个位置,则有A42A33种排法;若C在第6个位置,则有A55种排法.综上,共有2(A55+A42A33+A32A33+A22A33)=480(种)排法.15.(2013浙江,理15)设F为抛物线C:y2=4x的焦点,过点P(-1,0)的直线l交抛物线C于A,B两点,点Q 为线段AB的中点,若|FQ|=2,则直线l的斜率等于.答案:±1解析:设直线l的方程为y=k(x+1),A(x1,y1),B(x2,y2).由{y2=4x,y=k(x+1)联立,得k2x2+2(k2-2)x+k2=0,∴x1+x2=-2(k 2-2)k2,∴x1+x22=-k2-2k2=-1+2k2,y1+y22=2k,即Q(-1+2k2,2 k ).又|FQ|=2,F(1,0),∴(-1+2k 2-1)2+(2k)2=4,解得k=±1.16.(2013浙江,理16)在△ABC 中,∠C=90°,M 是BC 的中点.若sin ∠BAM=13,则sin ∠BAC= .答案:√63解析:如图以C 为原点建立平面直角坐标系,设A (0,b ),B (a ,0),则M (a 2,0),AB ⃗⃗⃗⃗⃗ =(a ,-b ),AM ⃗⃗⃗⃗⃗⃗ =(a2,-b),cos ∠MAB=AB ⃗⃗⃗⃗⃗⃗ ·AM ⃗⃗⃗⃗⃗⃗⃗ |AB ⃗⃗⃗⃗⃗⃗||AM⃗⃗⃗⃗⃗⃗⃗ |=a 22+b2√a 2+b 2·√a 4+b 2.又sin ∠MAB=13,∴cos ∠MAB=√1-(13)2=√89.∴(a 22+b2)2(a 2+b 2)(a 24+b 2)=89,整理得a 4-4a 2b 2+4b 4=0, 即a 2-2b 2=0,∴a 2=2b 2, sin ∠CAB=a√a 2+b =a√3b 2=√2b √3b=√63.17.(2013浙江,理17)设e 1,e 2为单位向量,非零向量b =x e 1+y e 2,x ,y ∈R .若e 1,e 2的夹角为π6,则|x ||b |的最大值等于 . 答案:2解析:|b |2=(x e 1+y e 2)2=x 2+y 2+2xy e 1·e 2=x 2+y 2+√3xy.∴|x ||b |=√x 2+y 2+√3xy,当x=0时,|x ||b |=0;当x ≠0时,|x ||b |=√(y x)2+√3yx +1=√(y x+√32)2+14≤2.三、解答题:本大题共5小题,共72分.解答应写出文字说明、证明过程或演算步骤.18.(2013浙江,理18)(本题满分14分)在公差为d 的等差数列{a n }中,已知a 1=10,且a 1,2a 2+2,5a 3成等比数列. (1)求d ,a n ;(2)若d<0,求|a 1|+|a 2|+|a 3|+…+|a n |. 解:(1)由题意得5a 3·a 1=(2a 2+2)2,即d 2-3d-4=0, 故d=-1或d=4.所以a n =-n+11,n ∈N *或a n =4n+6,n ∈N *. (2)设数列{a n }的前n 项和为S n . 因为d<0,由(1)得d=-1,a n =-n+11.则当n ≤11时,|a 1|+|a 2|+|a 3|+…+|a n |=S n =-12n 2+212n.当n ≥12时,|a 1|+|a 2|+|a 3|+…+|a n |=-S n +2S 11=12n 2-212n+110.综上所述,|a 1|+|a 2|+|a 3|+…+|a n |={-12n 2+212n ,n ≤11,12n 2-212n +110,n ≥12.19.(2013浙江,理19)(本题满分14分)设袋子中装有a 个红球,b 个黄球,c 个蓝球,且规定:取出一个红球得1分,取出一个黄球得2分,取出一个蓝球得3分.(1)当a=3,b=2,c=1时,从该袋子中任取(有放回,且每球取到的机会均等)2个球,记随机变量ξ为取出此2球所得分数之和,求ξ的分布列;(2)从该袋子中任取(每球取到的机会均等)1个球,记随机变量η为取出此球所得分数.若E η=53,D η=59,求a ∶b ∶c.解:(1)由题意得ξ=2,3,4,5,6.故P (ξ=2)=3×36×6=14,P (ξ=3)=2×3×26×6=13,P (ξ=4)=2×3×1+2×26×6=518, P (ξ=5)=2×2×16×6=19,P (ξ=6)=1×16×6=136, 所以ξ的分布列为(2)由题意知η的分布列为所以E (η)=aa+b+c +2ba+b+c +3ca+b+c =53,D (η)=(1-53)2·aa+b+c +(2-53)2·ba+b+c +(3-53)2·c a+b+c =59, 化简得{2a -b -4c =0,a +4b -11c =0.解得a=3c ,b=2c ,故a ∶b ∶c=3∶2∶1.20.(2013浙江,理20)(本题满分15分)如图,在四面体A-BCD 中,AD ⊥平面BCD ,BC ⊥CD ,AD=2,BD=2√2.M 是AD 的中点,P 是BM 的中点,点Q 在线段AC 上,且AQ=3QC.(1)证明:PQ ∥平面BCD ;(2)若二面角C-BM-D 的大小为60°,求∠BDC 的大小.方法一:(1)证明:取BD 的中点O ,在线段CD 上取点F ,使得DF=3FC ,连结OP ,OF ,FQ ,因为AQ=3QC ,所以QF ∥AD ,且QF=14AD.因为O ,P 分别为BD ,BM 的中点, 所以OP 是△BDM 的中位线,所以OP ∥DM ,且OP=12DM.又点M 为AD 的中点,所以OP ∥AD ,且OP=14AD. 从而OP ∥FQ ,且OP=FQ ,所以四边形OPQF 为平行四边形,故PQ ∥OF.又PQ⊄平面BCD,OF⊂平面BCD,所以PQ∥平面BCD.(2)解:作CG⊥BD于点G,作CH⊥BM于点H,连结CH.因为AD⊥平面BCD,CG⊂平面BCD,所以AD⊥CG,又CG⊥BD,AD∩BD=D,故CG⊥平面ABD,又BM⊂平面ABD,所以CG⊥BM.又GH⊥BM,CG∩GH=G,故BM⊥平面CGH,所以GH⊥BM,CH⊥BM.所以∠CHG为二面角C-BM-D的平面角,即∠CHG=60°.设∠BDC=θ.在Rt△BCD中,CD=BD cosθ=2√2cosθ,CG=CD sinθ=2√2cosθsinθ,BG=BC sinθ=2√2sin2θ.在Rt△BDM中,HG=BG·DMBM =2√2sin2θ3.在Rt△CHG中,tan∠CHG=CGHG =3cosθsinθ=√3.所以tanθ=√3.从而θ=60°.即∠BDC=60°.方法二:(1)证明:如图,取BD的中点O,以O为原点,OD,OP所在射线为y,z轴的正半轴,建立空间直角坐标系Oxyz.由题意知A (0,√2,2),B (0,-√2,0),D (0,√2,0). 设点C 的坐标为(x 0,y 0,0).因为AQ⃗⃗⃗⃗⃗ =3QC ⃗⃗⃗⃗⃗ ,所以Q (34x 0,√24+34y 0,12). 因为M 为AD 的中点,故M (0,√2,1). 又P 为BM 的中点,故P (0,0,12),所以PQ ⃗⃗⃗⃗⃗ =(34x 0,√24+34y 0,0). 又平面BCD 的一个法向量为u =(0,0,1),故PQ ⃗⃗⃗⃗⃗ ·u =0. 又PQ ⊄平面BCD ,所以PQ ∥平面BCD. (2)解:设m =(x ,y ,z )为平面BMC 的一个法向量. 由CM ⃗⃗⃗⃗⃗⃗ =(-x 0,√2-y 0,1),BM ⃗⃗⃗⃗⃗⃗ =(0,2√2,1), 知{-x 0x +(√2-y 0)y +z =0,2√2y +z =0.取y=-1,得m =(y 0+√2x 0,-1,2√2).又平面BDM 的一个法向量为n =(1,0,0),于是|cos <m ,n >|=|m ·n ||m ||n |=|y 0+√2x |√9+(y 0+√2x 0)2=12,即(y 0+√2x 0)2=3.①又BC ⊥CD ,所以CB ⃗⃗⃗⃗⃗ ·CD ⃗⃗⃗⃗⃗ =0, 故(-x 0,-√2-y 0,0)·(-x 0,√2-y 0,0)=0,即x 02+y 02=2.②联立①,②,解得{x 0=0,y 0=-√2,(舍去)或{x 0=±√62,y 0=√22.所以tan ∠BDC=|√2-y 0|=√3.又∠BDC 是锐角,所以∠BDC=60°.21.(2013浙江,理21)(本题满分15分)如图,点P (0,-1)是椭圆C 1:x 2a2+y 2b 2=1(a>b>0)的一个顶点,C 1的长轴是圆C 2:x 2+y 2=4的直径,l 1,l 2是过点P 且互相垂直的两条直线,其中l 1交圆C 2于A ,B 两点,l 2交椭圆C 1于另一点D.(1)求椭圆C 1的方程;(2)求△ABD 面积取最大值时直线l 1的方程. 解:(1)由题意得{b =1,a =2.所以椭圆C 的方程为x 24+y 2=1. (2)设A (x 1,y 1),B (x 2,y 2),D (x 0,y 0).由题意知直线l 1的斜率存在,不妨设其为k , 则直线l 1的方程为y=kx-1.又圆C 2:x 2+y 2=4,故点O 到直线l 1的距离d=√k +1,所以|AB|=2√4-d 2=2√4k 2+3k 2+1.又l 2⊥l 1,故直线l 2的方程为x+ky+k=0.由{x +ky +k =0,x 2+4y 2=4,消去y ,整理得(4+k 2)x 2+8kx=0, 故x 0=-8k4+k 2.所以|PD|=8√k 2+14+k 2.设△ABD 的面积为S ,则S=12|AB|·|PD|=8√4k 2+34+k 2, 所以S=√4k +3+134k 2+3≤2√√4k 2+3·13√4k 2+3=16√1313, 当且仅当k=±√102时取等号.所以所求直线l 1的方程为y=±√102x-1.22.(2013浙江,理22)(本题满分14分)已知a ∈R ,函数f (x )=x 3-3x 2+3ax-3a+3. (1)求曲线y=f (x )在点(1,f (1))处的切线方程; (2)当x ∈[0,2]时,求|f (x )|的最大值. 解:(1)由题意f'(x )=3x 2-6x+3a ,故f'(1)=3a-3.又f (1)=1,所以所求的切线方程为y=(3a-3)x-3a+4. (2)由于f'(x )=3(x-1)2+3(a-1),0≤x ≤2,故①当a ≤0时,有f'(x )≤0,此时f (x )在[0,2]上单调递减,故|f (x )|max =max{|f (0)|,|f (2)|}=3-3a.②当a ≥1时,有f'(x )≥0,此时f (x )在[0,2]上单调递增, 故|f (x )|max =max{|f (0)|,|f (2)|}=3a-1. ③当0<a<1时,设x 1=1-√1-a ,x 2=1+√1-a , 则0<x 1<x 2<2,f'(x )=3(x-x 1)(x-x 2). 列表如下:由于f (x 1)=1+2(1-a )√1-a ,f (x 2)=1-2(1-a )√1-a , 故f (x 1)+f (x 2)=2>0,f (x 1)-f (x 2)=4(1-a )√1-a >0, 从而f (x 1)>|f (x 2)|.所以|f (x )|max =max{f (0),|f (2)|,f (x 1)}. 当0<a<23时,f (0)>|f (2)|.又f (x 1)-f (0)=2(1-a )√1-a -(2-3a )=22(1-a )√1-a+2-3a>0,故|f (x )|max =f (x 1)=1+2(1-a )√1-a . 当23≤a<1时,|f (2)|=f (2),且f (2)≥f (0).又f (x 1)-|f (2)|=2(1-a )√1-a -(3a-2)=22(1-a )√1-a+3a -2,所以当23≤a<34时,f (x 1)>|f (2)|. 故f (x )max =f (x 1)=1+2(1-a )√1-a .当34≤a<1时,f(x1)≤|f(2)|.故f(x)max=|f(2)|=3a-1.综上所述,|f(x)|max={3-3a,a≤0,1+2(1-a)√1-a,0<a<34,3a-1,a≥34.。
职高数学试卷答卷答案详解

2013学年第一学期期中试卷高二职高数学本试题卷共4页,五大题17小题。
全卷满分100分。
考试用时100分钟注意事项:答题前,考生务必将自己的姓名、准考证号填写在试题卷一、选择题(本大题共l2小题.每小题4分,共48分在每小题给出的四个选项中,只有一项是满足题目要求的)1、已知 A (-5,2)B (0,-3)则直线AB 斜率为 ( ) A 、 -1 B 、1 C 、31D 、0 2、经过点(1,2)且倾斜角为450的直线方程为 ( ) A 、1+=x y B 、x y 2= C 、3+-=x y D 、x y 2-= 3、如图直线1l ,2l ,3l 的斜率分别为1k ,2k ,3k 则 ( ) A 、1k >2k >3k B 、2k >1k >3k C 、3k >2k >1k D 、2k >3k >1k4、直线06=+-y x 与直线0=+y x 的交点坐标为 ( ) A 、 (-3,3) B 、 (3,-3) C 、(4,2) D 、(3,3)5、直线1l 的倾斜角130α=o,直线12l l ⊥,则直线2l 的斜率为 ( )A 3-B 3C 33-D 336、经过点)4,1(-A 且与直线0532=++y x 平行的直线方程为 ( ) A 23100x y -+= B 01032=++y x C 23100x y +-= D 23100x y --=7、过点(2,1)A ,且与直线0102=-+y x 垂直的直线l 的方程为 ( ) A 20x y += B 20x y -= C 02=-y x D 20x y +=8、三条直线相交于一点,可以确定的平面个数是 ( )A 、1个B 、3个C 、4个D 、1个或3个9、下列选项中,能确定一个平面的是 ( ) A 、三个点 B 、一点和一条直线 C 、两条直线 D 、两条平行直线 10、若直线a 平行于平面α内的一条直线,则a 与平面α的位置关系是 ( ) A 、α//a B 、α⊂aC 、α//a 或α⊂aD 、α//a 或a 与α相交 11、用符合语言表示“点P 在直线l 上,l 在平面α内”,正确的是 ( ) A 、α∈∈l l P , B 、α⊂∈l l P , C 、α∈⊂l l P , D 、α⊂⊂l l P ,12、圆心为(-1,4),半径为5的圆的方程为 ( ) A 、25)4()1(22=++-y x B 、25)4()1(22=-++y x C 、5)4()1(22=++-y x D 、5)4()1(22=-++y x二、填空题(本大题共5小题,每小题4分,共20分.请将答案填在对应的位置上,其答案书写不清,模棱两可均不得分)13x+y+1=0的倾斜角为 ___ 14、原点到直线0834=+-y x 的距离为____________15、已知圆的方程为x 2+y 2-2x +4y =0,则圆心坐标为__________,半径为___________ 16、已知正方体1111ABCD A B C D -中,棱所在的直线总共有_______对是异面直线 17、已知c b a ,,是三条直线,给出下列命题:(1)若a 与b 垂直,c 与b 垂直,则a 与c 也垂直;(2)若a 与b 是异面直线,c 与b 是异面直线,则a 与c 也是异面直线;(3)若a 与b 是相交直线,c 与b 是相交直线,则a 与c 也是相交直线;(4)若a 与b 共面,c 与b 共面,则a 与c 也共面。
浙江高等职业技术教育招生考试数学试题分类汇编—13.圆锥曲线

A.圆
B.椭圆
C.双曲线
D.椭圆或圆
13.焦点在 x 轴上,焦距为 8 的双曲线,其离心率 e 2 ,则双曲线的标准方程为( )
A. x2 y2 1 4 12
B. x2 y2 1 12 4
C. y2 x2 1 4 12
D. y2 x2 1 12 4
2
14.(2015 浙高职)已知抛物线 x2 4 y ,斜率为 k 的直线 l 过其焦点 F 且与抛物线交于
浙高职)双曲线
x2 a2
y2 8
1的离心率 e
3 ,则实半轴长 a _______________.
21.(2018
x2
浙高职)如图所示,椭圆
a2
y2 b2
1的两个焦点坐标为 F1(
2, 0)、F2 (
2, 0) ,
两个顶点和两个焦点构成一个正方形.
⑴求椭圆的标准方程和离心率;
⑵求以点 A(a,0) 为顶点,且关于 x 轴对称的内接等腰直角三角形的周长.
⑴若以 O 为原点,水平方向为 x 轴,1m 为单位长度建立直角坐标系.求该抛物线的标准方
程;(5 分)
⑵求射箭方向 AD (即与抛物线相切于 A 点的切线方向)与水平方向夹角 的正切值.(4
分)
17.(2018 浙高职)双曲线 x2 y2 1的焦点坐标为( ) 16 9
A. ( 7, 0)
B. (0, 7)
6.(2012 浙高职)已知点 (4,
15) 在双曲线
x2 m
y2 5
1 上,直线 l 过双曲线的左焦点 F1 且
与 x 轴垂直,并交双曲线于 A、B 两点. ⑴求 m 的值;(3 分)
⑵求 | AB | .(4 分)
浙江省2013年7月高等教育自学考试

浙江省2013年7月高等教育自学考试高等数学(工专)试题课程代码:00022请考生按规定用笔将所有试题的答案涂、写在答题纸上。
选择题部分注意事项:1. 答题前,考生务必将自己的考试课程名称、姓名、准考证号用黑色字迹的签字笔或钢笔填写在答题纸规定的位置上。
2. 每小题选出答案后,用2B铅笔把答题纸上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
不能答在试题卷上。
一、单项选择题(本大题共5小题,每小题2分,共10分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其选出并将“答题纸”的相应代码涂黑。
错涂、多涂或未涂均无分。
1.函数1()sinf xx=在其定义域内是A.无界函数B.偶函数C.有界函数D.单调函数2.函数y=|x|+1在x=0处A.无定义B.不连续C.可导D.连续但不可导3.设y=f(e x)且函数f(x)可导,则dy=A.f'(e x)dxB.f'(e x)e x dxC.f'(e x)e x de xD.[f(e x)]'de x4.要使304050x ky zy zkx y z+-=⎧⎪+=⎨⎪--=⎩有非零解,可取A.k=-1B.k=1C.k=0D.k=35.设矩阵C=(c ij)m*n,矩阵A,B满足AC=CB,则A与B分别是____阶矩阵.A.n×m、m×nB.m×n、n×nC.n ×m 、m ×mD.m ×m 、n ×n非选择题部分注意事项:用黑色字迹的签字笔或钢笔将答案写在答题纸上,不能答在试题卷上。
二、填空题(本大题共10小题,每小题3分,共30分)6.设函数f (x )=ln(5-x 2),则f (f (2))=____.7.极限21lim 21xx x x →∞-⎛⎫ ⎪+⎝⎭=____________. 8.设当x →0时,ax 2与tan 24x 为等价无穷小,则a =____. 9.比较积分大小:20xdx π⎰____20sin xdx π⎰. 10.曲线y =2x 3-6x 2-18x -7的单调增加区间是____.11.微分方程(1+x 2)dy +(1+y 2)dx =0的通解为____.12.过曲线y =f (x )上点(2,12)处的切线方程为y -12=3(x -2),则f '(2)=____. 13.反常积分2011dx x +∞+⎰=________. 14.已知矩阵A =312752157,519245421B --⎛⎫⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,并且A +2X =B ,则矩阵X =__________. 15.已知级数1n n us ∞==∑,则级数11()n n n u u ∞+=+∑的和是________. 三、计算题(本大题共8小题,每小题6分,共48分)16.计算0sin lim cos x x x x x x→--. 17.求定积分941x dx x -⎰. 18.隐函数y =y (x )由方程y =1+xe y 确定,求y '及y '(0).19.设22ln(1)x t t y t ⎧=+⎨=+⎩,求dy dx . 20.求不定积分xxe dx -⎰.21.设a b A c d ⎛⎫= ⎪⎝⎭,试问a ,b ,c ,d 满足什么条件时,矩阵A 可逆?当A 可逆时,求出其逆A -1. 22.设f (x )=2211,1x ax x x b x ⎧++≠⎪-⎨⎪=⎩在x =1点处连续,求常数a ,b . 23.已知函数f (x )=1sin ()2xt k dt t t-⎰在6x π=处有极值,求k ,并讨论是极大值还是极小值. 四、综合题(本大题共2小题,每小题6分,共12分)24.设f (x )在[a ,b ]上连续,证明()().bba a f x dx f ab x dx =+-⎰⎰ 25.求由曲线y =1-x 2与直线32y x =所围成的图形的面积.。
浙江高等职业技术教育招生考试数学试题分类汇编—11.立体几何

浙江高职考数学试题分类汇编—立体几何1.(2011浙高职)在空间中,两两相交的三条直线可以确定平面的个数为()个或个 D.4个A.1个B.3个C.132.(2011浙高职)如果圆柱高为4cm,底面周长位10πcm,那么圆柱的体积等于_________.V-中,底面边长等于6,侧面与底面所成3.(2011浙高职)如图所示,在正三棱锥ABC60.的二面角为0V-的体积;(4分)⑴求正三棱锥ABC⑵求侧棱VA的长.(3分)AD,,作三棱锥的高VO.)(提示:取BC的中点D,连接VD3.(2012浙高职)如图,在正方体1111ABCD A B C D -中,两异面直线AC 与1BC 所成角的大小为()A.030B.045C.060D.0904.(2012浙高职)已知圆锥的侧面展开图是一个半径为4cm 的半圆,则此圆锥的体积是_________.5.(2012浙高职)如图,已知ABCD 是正方形,P 是平面ABCD 外一点,且ABCD PA 平面⊥,3==AB PA .⑴求二面角A CD P --的大小;(4分)⑵求三棱锥ABD P -的体积.(3分)6.(2013浙高职)已知直线a 平行于平面β,点β∈A ,则过点A 且平行于a 的直线()A.只有一条,且一定在平面β内B.只有一条,但不一定在平面β内C.有无数条,但不都在平面β内D.有无数条,都在平面β内7.(2013浙高职)用平面去截半径5=R 的球,所得小圆的半径4=r ,则截面与球心的距离等于_____________.8.(2013浙高职)如图,在棱长为2的正方体''''ABCD A B C D -中.⑴求二面角D D A B --''的平面角的正切值;⑵求三棱锥'BCC A -的体积.9.(2014浙高职)在空间中,下列结论正确的是()A.空间三点确定一个平面B.过直线外一点有且仅有一条直线与已知直线垂直C.如果一条直线与平面内的一条直线平行,那么这条直线与此平面平行D.三个平面最多可将空间分成八部分.10.(2014浙高职)已知圆柱的底面半径2=r ,高3=h ,则其轴截面的面积为_________.11.⑴画出底面边长为4cm ,高为2cm 的正四棱锥ABCD P -的示意图;(3分)⑵由所作的正四棱锥ABCD P -,求二面角C AB P --的度数.(4分)12.(2015浙高职)在下列命题中,真命题的个数是()①b a b a ⊥⇒⊥αα,//;②b a b a ////,//⇒αα;③b a b a //,⇒⊥⊥αα;④αα⊥⇒⊂⊥a b b a ,.A.0个B.1个C.2个D.3个13.(2015浙高职)体对角线为3cm 的正方体,其体积=V ____________________.14.(2015浙高职)如图所示,在棱长为a 的正方体1111ABCD A B C D -中,平面C AD 1把正方体分成两部分.⑴求直线B C 1与平面C AD 1所成的角;(2分)⑵求平面D C 1与平面C AD 1所成的二面角的平面角的余弦值;(3分)⑶求两部分中体积大的部分的体积.(2分)15.(2016浙高职)下列说法正确的是()A.若直线a 平行于平面α,则a 平行于平面α内的所有直线B.过直线a 外一点可以作无数条直线与a 成异面直线C.若直线b a ,与平面α所成的角相等,则b a //D.两条不平行直线确定一个平面16.(2016浙高职)圆柱的底面面积为已2cm π,体积为34cm π,一个球的直径和圆柱的高相等,则此球的体积V =_______________3cm .17.如图⑴所示,已知菱形ABCD 中,2,600==∠AB BAD ,把菱形ABCD 沿对角线BD 折为060的二面角,连接AC ,如图⑵所示.⑴求折叠后AC 的距离;(3分)⑵求二面角B AC D --的平面角的余弦值.(4分)18.(2017浙高职)已知圆锥底面半径为4,侧面面积为60,则母线长为()A.152B.15C.152πD.15π19.(2017浙高职)如图,在正方体''''ABCD A B C D -中,下列结论错误的是()A.⊥C A '平面'DBC B.平面//''D AB 平面'BDCC.⊥'BC 'ABD.平面⊥''D AB 平面ACA '20.如图⊥PC 平面ABC ,,2==BC AC 3=PC ,0120=∠BCA .⑴求二面角C AB P --的大小;(5分)⑵求锥体ABC P -的体积.(4分)21.(2018浙高职)下列命题正确的是()A.垂直于同一面的两个平面垂直B.垂直于同一面的两条直线垂直C.垂直于同一面的两个平面平行D.垂直于同一面的两条直线平行22.(2018浙高职)如图所示,相传这个图形表达了古希腊数学家阿基米德最引为自豪的发现:圆柱内切一个球,球的直径与圆柱的高相等,则圆柱的体积与球的体积之比等于圆柱的全面积与球的表面积之比,这个比值为_______________.23.(2018浙高职)如图所示,圆锥SO 的母线cm SC SA 13==,底面半径为2cm ,OAC ∆为正三角形.⑴求圆锥SO 的侧面积与体积;⑵求二面角O AC S --的大小.24.(2019浙高职)已知两直线ββ//,//21l l ,则21,l l 的位置关系为()A.平行B.相交C.异面D.以上情况都有可能25.(2019浙高职)圆柱的轴截面是边长为3的正方形,则圆柱的体积等于____________.26.(2019浙高职)如图,正三棱锥ABC P -的侧棱长为32,底面边长为4.⑴求正三棱锥ABC P -的全面积;(4分)⑵线段AC AB PA 、、的中点分别为F E D 、、,求二面角A EF D --的余弦值.(6分)。
2013年专升本高数真题答案解析(浙江)

浙江省2013年选拔优秀高职高专毕业生进入本科学习统一考试高等数学参考答案选择题部分一、选择题:本大题共5小题,每小题4分,共20分。
题号12345答案AADDB1.A 解析:因为1)2sin(cos1≤≤-x,所以函数)2sin(cos )(x x f =是有界函数,而且是非奇非偶函数,非周期函数,所以选项A 正确。
2.A 解析:由可积的充要条件可知,函数)(x f 在闭区间]5,1[上的连续,可推得)(x f 在闭区间]5,1[上可积,所以选项A 正确。
3.D 解析:()()2cos sin sin )(sin cos 0000-==-==⎰⎰⎰πππππx xdx x x x xd xdx x ,可见选项D 正确。
4.D 解析:根据题意可知:6121322132211231=-=-⎪⎪⎭⎫ ⎝⎛=-⎰x dx x ,所以选项D 正确。
5.B 解析:21x e x f x 2sin 23)(2=,(利用公式x x x 2sin 21cos sin =),故设特解为:)2sin 2cos(2x b x a e y x +=*,可见选项B 正确。
非选择题部分二、填空题:本大题共10小题,每小题4分,共40分。
6.0解析:0)cos(2lim )()sin()cos(2lim 1)sin(ln lim )sin(ln lim 2022202020=-=-⋅==→→→→x x x x x x xx x x x x x x7.[]()2,(21)ππ+∈k k k z 解析:由0sin 1≤≤x ,解得()2(21)ππ≤≤+∈k x k k z 8.2-解析:000(1)(1)(1)(1)(1)(1)limlim lim ∆→∆→∆→-∆-+∆-∆--+∆=+∆∆∆x x x f x f x f x f f f x x x x0(1)(1)(1)(1)limlim 2(1)2∆→∆→-∆--+∆'=--=-=--∆-∆x x f x f f f x f x x9.yxe e y ycos 1sin sin -解析:隐函数方程求导可知,方程sin 1=+yy xe两边同时对x 求导,得:sin sin cos ''=+⋅yyy e xey y ,即:yxe e y y ycos 1sin sin -='10.C x +ln ln (C 为任意常数)解析:(ln )ln ln ln ln ==+⎰⎰dx d x x C x x x (C 为任意常数)11.1sin ⎰x xdx解析:利用定积分的定义求极限可知,原式10111122331lim (sin sin sin sin1)lim sin sin →∞→∞==+++⋅⋅⋅+=⋅=∑⎰n n n i n i i x xdxn n n n n n n n n nn 12.(1,1)-解析:2123211lim )()(lim )(x x n n x x u x u x n n n nn n =⋅+==++∞→+∞→ρ,令1)(2<=x x ρ,解得:()1,1-∈x ,因此收敛区间为:()1,1-13.])([1)()(C dx e x Q eydx x P dxx P +⎰⎰⋅-⎰=-(C 为任意常数)解析:由伯努利方程,令y z 1=,z y 1=,dxdzz dx dy ⋅-=21,所以原方程可化为:221)(1)(1z x Q z x P dx dz z ⋅=⋅+⋅-,即:)()(x Q z x P dxdz -=⋅-,由一阶线性微分方程的通解公式可得:])([)()(C dx e x Q e z dx x P dx x P +⎰⎰⋅-⎰=-,即:])([1)()(C dx e x Q eydxx P dxx P +⎰⎰⋅-⎰=-(C 为任意常数)14.0323=-+-z y x 解析:由点法式可知,平面方程为:0)1(2)0(3)1(=-+---z y x ,即:0323=-+-z y x 15.264-解析:球心坐标为:)2,0,0(,半径2=R ,球心到平面2260+-+=x y z 的距离为:64)1(12262222=-+++-=h ,故所求距离为:264-=-=R h d三、计算题:本题共有8小题,其中16-19小题每小题7分,20-23小题每小题8分,共60分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013年浙江省高等职业技术教育招生考试
数学试卷
本试卷共三大题。
全卷共4页。
满分120分,考试时间120分钟。
一、单项选择题(本大题共18小题,每小题2分,共36分)
1、全集{}h g f e d c b a U ,,,,,,,=,集合{}h e c a M ,,,=,则=M C U ()A .{}h e c a ,,,B .{}g f d b ,,,C .{}h g f e d c b a ,,,,,,,D .φ
2、已知()2
2-=x f ,则()=0f ()
A .0
B .3-
C .32
-D .1
-3、下列四个直线方程中有三个方程表示的是同一条直线,则表示不同直线方程的是()A .012=+-y x B .112=+-y
x
C .12+=x y
D .()
021-=-x y 4、对于二次函数322--=x x y ,下述结论中不正确的是()
A .开口向上
B .对称轴为1
=x C .与x 轴有两个交点D .在区间()1,∞-上单调递增
5、函数()42-=x x f 的定义域为()
A .()+∞,2
B .[)+∞,2
C .(][)+∞⋃-∞-,22,
D .R
6、在︒︒360~0范围内,与︒1050终边相同的角是()
A .︒330
B .︒60
C .︒210
D .︒
3007、=--→→→BC AC AB ()
A .→BC 2
B .→CB 2
C .→0
D .0
8、若54
sin -=α,α是第四象限角,则=αcos ()
A .54-
B .54
C .53
D .5
3
-9、直线a 平行于平面β,点β∈A ,则过点A 且平行于a 的直线()
A .只有一条,且一定在平面β内
B .只有一条,但不一定在平面β内
C .有无数条,但不都在平面β内
D .有无数条,都在平面β内
10、根据数列 ,75,37,19,9,5,2找出规律,可得=7a (
)A .140B .142C .146D .149
11、已知点()2,1-A 、()0,3B ,则下列各点在线段AB 垂直平分线上的是(
)A .()4,1B .()1,2C .()
0,3D .()1,012、条件“b a =”是结论“122=+by ax 所表示曲线为圆”的(
)A .充分非必要条件
B .必要非充分条件
C .充要条件
D .既非充分又非必要条件
13、乘积()()︒-⋅︒⋅︒-700tan 320cos 110sin 的最后结果为(
)A .正数B .负数C .正数或负数D .零
14、函数x x y cos sin +=的最大值和最小正周期分别为(
)A .π2,2B .π2,2C .π,2D .π
,215、若直线062:1=++y x l 与直线013:2=-+ky x l 互相垂直,则=k (
)A .23
-B .23
C .32
-D .3
2
16、在ABC ∆中,若3:2:1::=∠∠∠C B A ,则三边之比=c b a ::(
)A .3:2:1B .3:2:1C .9:4:1D .2
:3:117、用5,4,3,2,1五个数字组成五位数,共有不同的奇数(
)A .36个B .48个C .72个
D .120个18、直线0234=+-y x 与圆()()161422=-+-y x 的位置关系是()
A .相切
B .相交
C .相离
D .不确定
二、填空题(本大题共8小题,每小题3分,共24分)
19、已知116log =a ,82=b ,则=-b a ____________.
20、双曲线14
22
=-y x 的焦距为____________.21、求值=︒+︒15tan 75tan ____________.
22、已知等比数列的前n 项和公式为n S 11-=,则公比=q ____________.23、已知0,0>>y x ,32=+y x ,则xy 的最大值等于____________.
24、经过点()1,2-P ,且斜率为0的直线方程一般式为____________.
25、用平面截半径5=R 的球,所得小圆的半径4=r ,则截面与球心的距离为____________.
26、给出︒-=120α,在所给的直角坐标系中画出角α的图像____________.
三、解答题(本大题共8小题,共60分,解答时应写出必要的文字说明、演算步骤)
27、(6分)比较()4-x x 与()2
2-x 的大小.28、(6分)已知椭圆的中心在原点,有一个焦点与抛物线x y 82-=的焦点重合,且椭圆的离心率3
2=e ,求椭圆的标准方程.29、(7分)在等差数列{}n a 中,已知12=a ,207=a .
(1)求12a 的值.(2)求和654321a a a a a a +++++.
30、(8分)若角α的终边是一次函数()02≥=x x y 所表示的曲线,求α2sin .
31、(8分)在直角坐标系中,若()1,1A ,()0,2-B ,()1,0-C ,求ABC ∆的面积.
32、(7分)如图在棱长为2的正方形''''D C B A ABCD -中,求:(1)两面角D
D A B --''
的平面角的正切值.(2)三棱锥'BCC A -的体积.
33、(8分)若展开式()n
x 1+中第六项的系数最大,求展开式的第二项.34、(10分)有()m 60长的钢材,要制作一个如图所示的窗框.
(1)求窗框面积()2m
y 与窗框宽()m x 的函数关系式.(2)求窗框宽()m x 为多少时,窗框
面积()2m y 有最大值.(3)求窗框的最大面积.。