七年级数学下册:第六章实数同步测试(沪科版)[1]
(完整版)七年级下册数学《第6章实数》单元检测试卷(沪科版含答案)

.精品文档.七年级下册数学?第6章实数?单元检测试卷(沪科版含答案)第6实数一、选择题1.9的立方根是〔〕A. ±3B.3.±D.2.和数轴上的点一一对应的是〔〕A.整数B.有理数.无理数D.实数3.假设a为实数,那么以下说法正确的选项是〔〕A.|﹣a|是正数 B.﹣|a|是负数.是非负数 D.|﹣a|永远大于﹣|a|4.在﹣2、、0、1这四个数中,最小的数是〔〕A.﹣2B..0D.15.把几个数用大括号围起,中间用逗号断开,如:{1,2,3}、{﹣2,7,8,19},我们称之为集合,其中的数称其为集合的元素.如果一个集合满足:当实数a是集合的元素时,实数8﹣a也必是这个集合的元素,这样的集合我们称为好的集合.以下集合为好的集合的是〔〕A.{1,2}B.{1 ,4,7}.{1 ,7,8}D.{ ﹣2,6}a,b两数在数轴上对应的点如下列图,以下结论正确的选项是〔〕A.a<bB. ab<0.b-a>0D.a+b< ;02021全新精品资料-全新公文范文-全程指导写作–独家原创1/7.精品文档.7.以下说法中,正确的个数有〔〕①不带根号的数都是有理数;②无限小数都是无理数;③任何实数都可以进行开立方运算;④不是分数.A.0 个B.18.化简|1-|+1个.2 个D.3的结果是〔个〕A.2-B.2+.D.2估算﹣的值在相邻整数〔〕之间.A.4 和5B.5 和6.6 和7D.7 和810.以下说法中错误的选项是()A.0的算术平方根是0B.36的平方根为±6.=5D.-4的算术平方根是-211.正方形的面积是17,那么它的边长在〔A.5 与6之间B.4 与5之间.3 与4之间D.2〕与3之间12.实数 a在数轴上对应的点如下列图,那么a、-a、1 的大小关系正确的选项是〔〕A. -a<a<1B.a <-a<1.1 <-a<aD.a <1<a二、填空题比较大小:________.〔填“>〞“<〞或“=〞〕2021全新精品资料-全新公文范文-全程指导写作–独家原创2/7.精品文档.无理数5﹣的整数局部为________.比较大小:2________5.16.如果4是5+1的算术平方根,那么2﹣10=________〔Ⅰ〕阅读下面材料:点A、B在数轴上分别表示实数a、b,A、B两点之间的距离表示为|AB|.当A、B两点中有一点在原点时,不妨设点A在原点,如图1,|AB|=|B|=|b|=|a ﹣b|;当A、B两点都不在原点时,①如图2,点A、B都在原点的右边,|AB|=|B|﹣|A|=|b|﹣|a|=ba=|a﹣b|;②如图3,点A、B都在原点的左边,|AB|=|B| ﹣|A|=|b||a|=﹣b﹣〔﹣a〕=|a﹣b|;③如图4,点A、B 在原点的两边,|AB|=|B|+|A|=|a|+|b|=a+ 〔﹣b〕=|a﹣b|;〔Ⅱ〕答复以下问题:①数轴上表示2和5的两点之间的距离是________,数轴上表示﹣2和﹣5的两点之间的距离是________;数轴上表示1和﹣3的两点之间的距离是________;②数轴上表示x和﹣1的两点A和B之间的距离是________;③如果|x+3|=2,那么x为________;④代数式|x+3|+|x ﹣2|最小值是________,当代数式|x+3|+|x ﹣2|取最小值时,相应的x的取值范围是________.2021全新精品资料-全新公文范文-全程指导写作–独家原创3/7.精品文档.假设x2=4,y2=9,|x+y|=________把以下各数分填入相的大括号5,||,0,3.14,,12,0.1010010001⋯,+1.5,30%,〔6〕,正有理数集合:{________⋯}非正整数集合:{________⋯}分数集合:{________⋯}无理数集合:{________⋯}.写出一个小于1无理数,个无理数可以是________.21.取=1.4142135623731⋯的近似,假设要求精确到0.01,=________.22.假设一正数的两个平方根分是a 3和3a 1,个正数是________.三、解答:2+2的平方根是±4,3+n+1的平方根是±5,求+2n的.a的算平方根是3,b的立方根是2,求ab的平方根.下面材料:随着人的不断深入,达哥拉斯学派逐承不是有理数,并出了明.假是有理数,那么存在两个互的正整数p,q,使得= ,于是p=2021全新精品资料-全新公文范文-全程指导写作–独家原创4/7.精品文档.q,两平方得p2=2q2.因2q2是偶数,所以p2是偶数,而只有偶数的平方才是偶数,所以p也是偶数.因此可p=2s,代入上式,得4s2=2q2,即q2=2s2,所以q也是偶数,,p和q都是偶数,不互,与假p,q互矛盾,个矛盾明,不能写成分数的形式,即不是有理数.你有似的方法,明不是有理数.26.〔1〕假设5+的小数局部a,5 的小数局部b,求a2 b2的.2〕假设:x=,y=,求的.参考答案一、DDABD ADBD二、填空<1<-283;3;4;+1;1或5;5;3≤x≤21或519.| | ,,+1.5,〔6〕;5,0,12;3.14,30%,;0.1010010001⋯,2021全新精品资料-全新公文范文-全程指导写作–独家原创5/7.精品文档.、1.101001⋯,π〔答案不唯一〕1.414三、解答解:∵2+2的平方根是±4,3+n+1的平方根是±5,∴2+2=16,3+n+1=25,立解得,=7,n=3,+2n=7+2×3=13解:根据意得:a=9,b=8,∴ab=98=1,1的平方根±1,ab的平方根±1解:假是有理数,存在两个互的正整数,n,使得= ,于是有23=n3,n3是2的倍数,∴n是2的倍数,n=2t〔t是正整数〕,n3=8t3,即8t3=23,∴4t3=3,∴也是2的倍数,∴,n都是2的倍数,不互,与假矛盾,∴假,∴不是有理数2021全新精品资料-全新公文范文-全程指导写作–独家原创6/7.精品文档.〔1〕解:5+的小数局部为a=﹣3,5﹣的小数局部为b=5﹣=4﹣,所以a2﹣b2=〔﹣3〕2﹣〔4﹣〕2=212〕解:∵x==5﹣2,y==5+2,∴===982021全新精品资料-全新公文范文-全程指导写作–独家原创7/7。
精品试卷沪科版七年级数学下册第6章 实数同步测试练习题(无超纲)

沪科版七年级数学下册第6章 实数同步测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列说法:①-27的立方根是3;②36的算数平方根是6±;③18的立方根是123±.其中正确说法的个数是( )A .1B .2C .3D .42、在实数3.1415,227,2.8181181118…(相邻两个8之间1的个数逐次加1)中,无理数有( )A .1个B .2个C .3个D .4个3、0.64的平方根是( )A .0.8B .±0.8C .0.08D .±0.084 )A .2B .3C .4D .55、在 0,0.2,3π,227,6.1010010001…,13111中,无理数有( )个 A .1个 B .2个 C .3个 D .4个6、下列实数比较大小正确的是( )A .14<-B .10000.01->-C .2334>D .227π-<-7、下列各数:﹣2,13,02之间0的个数逐次加1),其中无理数的个数是( )A .4B .3C .2D .18、规定一种新运算:b a b a a *=-,如2424412*=-=-.则()2*3-的值是(). A .10- B .6- C .6 D .89、在3.141590,π,这4个数中,无理数的个数有( )A .1个B .2个C .3个D .4个10、下列各数中,最小的数是( )A .0BC .π-D .﹣3第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1___.2a =___.3、比较大小:213-_____.41.(填“>”、“<”或“=”).5、在﹣(﹣12),﹣1,|3﹣π|,0这四个数中,最小的数是 _____.三、解答题(5小题,每小题10分,共计50分)1、计算:(10.(2)22、计算:(1)﹣5+7﹣(﹣8)(2)(﹣3)2|﹣2|.3、如果一个四位数m 满足各数位上的数字均不为0,将它的千位数字与百位数字之积记为1m ,十位数字与个位数字之和记为2m ,记F (m )12m m =,若F (m )为整效,则称这个数为“运算数“,例如:∵F (5332)5332⨯==+3,3是整数,∴5332是“运算数”;∵F (1722)177224⨯==+,74不是整数,∴1722不是“运算数”.(1)请判断9981与2314是否是“运算数”,并说明理由.(2)若自然数s 和t 都是“运算数”,其中s =8910+11x (2≤x ≤8,且x 为整数);t 的千位上的数字等于百位上的数字,十位上的数字比个位上的数字大2,且F (t )=4,规定:k ()2t F s =-,求所有k 的值.4、众所周知,所有实数都可以用数轴上的点来表示.其中,我们将数轴上表示正整数的点称为“正点”.取任意一个“正点”P ,该数轴上到点P 距离为1的点所对应的数分别记为a ,b (a <b ).定义:若数m =b 3﹣a 3,则称数m 为“复合数”.例如:若“正点”P 所表示的数为3,则a =2,b =4,那么m =43﹣23=56,所以56是“复合数”.(提示:b 3﹣a 3=(b ﹣a )(b 2+ab +a 2).)(1)请直接判断12是不是“复合数”,并且证明所有的“复合数”与2的差一定能被6整除;(2)已知两个“复合数”的差是42,求这两个“复合数”.5、计算:(12; (2)38(3)27x --=.-参考答案-一、单选题1、A【分析】分别进行立方根运算、算术平方根运算、平方根运算逐个判断即可.【详解】解:①-27的立方根是-3,错误;②36的算数平方根是6,错误;③18的立方根是12,正确;∴正确的说法有1个,故选:A.【点睛】本题考查立方根、算术平方根、平方根,熟练掌握算术平方根和平方根的区别是解答的关键.2、B【分析】分别根据无理数、有理数的定义即可判定选择项.【详解】2.818118111811118⋯(相邻两个8之间1的个数逐次增加1)是无理数,故选:B.【点睛】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,0.8080080008⋯(每两个8之间依次多1个0)等形式.3、B【分析】根据如果一个正数x 的平方等于a ,那么这个正数x 叫做a 的算术平方根,由此求解即可.【详解】解:∵(±0.8)2=0.64 ,∴0.64的平方根是±0.8,故选:B .【点睛】本题主要考查了平方根的概念,解题的关键在于掌握平方根的正负两种情况.4、A【分析】根据无理数的估算先判断23< 2.5=,6.255> 2.5<,即可求得答案【详解】解:23< 2.5=,6.255>,∴2< 2.5< 2故选A【点睛】本题考查了无理数的估算,掌握无理数的估算是解题的关键.5、C【分析】根据无理数的定义“无理数就是无限不循环小数”找出题干中的无理数,即可选择.【详解】在这些实数中,无理数为3π,6.1010010001⋯3个,故选:C.【点睛】本题考查了无理数,理解无理数的定义是解答本题的关键.6、D【分析】根据有理数比较大小的法则对各选项进行比较即可.【详解】解:A、1>-4,故本选项错误;B、-1000<-0.001,故本选项错误;C、2893==312124<,故本选项错误;D、223.1428 3.141597π-≈-<-≈-,故本选项正确;故选:D.【点睛】本题考查的是实数的大小比较,即正数都大于0;负数都小于0;正数大于一切负数;两个负数,绝对值大的其值反而小.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.【详解】解:﹣2,0,是整数,属于有理数;13是分数,属于有理数; 无理数有﹣π,0.020*******…(相邻两个2之间0的个数逐次加1),共2个.故选:C .【点睛】本题考查无理数,掌握无理数的概念是解题关键.8、C【分析】根据新定义计算法则把()2*3-转化为常规下运算得出()()()32*322-=---,然后按有理数运算法则计算即可.【详解】解:∵b a b a a *=-,∴()()()32*322286-=---=-+=.故选择C .【点睛】本题考查新定义运算,掌握新定义运算的要点,含乘方的有理数混合运算是解题关键.【分析】根据同类项、整式、多项式的定义逐个分析.【详解】π是无理数,故无理数有2个,故选:B .【点睛】本题考查无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.10、C【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【详解】 解:30π-<-<∴所给的各数中,最小的数是π-.故选:C .【点睛】本题主要考查了有理数大小比较的方法,解题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.二、填空题1、1【分析】根据平方和立方根的定义分别化简,再计算算术平方根即可.【详解】1==,故答案为:1.【点睛】本题考查了实数的运算,解题的关键是掌握算术平方根和立方根的定义.2、256【分析】根据平方根与算术平方根的定义即可求解.【详解】16,∴256a =,故答案为:256.【点睛】此题主要考查实数的性质,解题的关键是熟知平方根与算术平方根的定义:如果()()20a b b ±=≥,那么a ±就叫做b 的平方根,如果对于两个正数有2a b =,则a 是b 的算术平方根.3、>【分析】先求解两个实数的绝对值,再利用近似值比较它们绝对值的大小,利用两个负数绝对值大的反而小可得答案.【详解】解:2211 1.67,33 1.73,33而1.67 1.73,21 3.3故答案为:>【点睛】本题考查的是实数的大小比较,掌握“两个负实数的大小比较的方法”是解本题的关键.4、<【分析】根据12、12解答即可.【详解】2,12,<3,,故答案为:<.【点睛】本题考查无理数的估算、实数的大小比较,熟练掌握无理数的估算是解答的关键.5、-1【分析】先运用去括号、去绝对值的知识化简各数,然后根据实数的大小比较法则解答即可.【详解】解∵﹣(﹣12)=12,﹣1,|3﹣π|=π-3,0,∴−1<0<π-3<12,∴这四个数中,最小的数是−1.故填:−1.【点睛】本题主要考查了实数的大小比较法则、去绝对值、去括号等知识点,正数都大于零,负数都小于零,正数大于负数;两个正数比较大小,绝对值大的数大;两个负数比较大小,绝对值大的数反而小.三、解答题1、(1)3-;(2)92 【分析】(1)先根据立方根、算术平方根和零指数幂的意义化简,再根据有理数的运算法则计算;(2)先根据立方根和算术平方根的意义化简,再根据有理数的运算法则计算.【详解】(1)原式221=--+,3=-;(2)原式1322=+-,92=. 【点睛】此题考查了实数的运算,熟练掌握立方根和算术平方根的意义是解本题的关键.2、(1)10;(2)8.【分析】(1)原式利用减法法则变形,计算即可求出值;(2)原式利用乘方的意义,绝对值、立方根定义计算即可求出值.【详解】解:(1)﹣5+7﹣(﹣8)原式=-5+7+8=10;(2)(﹣3)2|﹣2|原式=9-3+2=8.【点睛】本题考查了实数的运算,熟练掌握运算法则是解本题的关键.3、(1)9981是“运算数”,2314不是“运算数”;(2)738.5【分析】(1)根据“运算数”的定义计算即可;(2)根据28x ≤≤找出s ,设100010010(2)t a a b b =++++,其中19,17a b ≤≤≤≤,且,a b 为整数,由()4F t =,找出,a b 的值,代入()2t k F s =-中即可得解. 【详解】(1)99(9981)981F ⨯==+,9是整数,∴9981是“运算数”, 236(2314)145F ⨯==+,65不是整数,∴2314不是“运算数”; (2)891011s x =+,28x ≤≤且x 为整数,s ∴可为:8932,8943,8954,8965,8976,8987,8998,s 是“运算数”,8954s ∴=,89()854F s ⨯==+, t 的千位上的数字等于百位上的数字,十位上的数字比个位上的数字大2,设百位上的数字为a ,个位数上的数字为b ,则千位上的数字为a ,十位上的数字为(2)b +,其中19,17a b ≤≤≤≤且,a b 为整数,100010010(2)t a a b b ∴=++++,()4F t =,2422a b ∴=+,即288a b =+, 当1b =时,4a =,其他情况不满足题意,10004100410314431t ∴=⨯+⨯+⨯+=,()4431738.5282t k F s ∴===--. 【点睛】本题考查新定义下的实数运算,掌握“运算数”的定义是解题的关键.4、(1)12不是复合数;证明见解析;(2)98和56.【分析】(1)直接利用定义进行判断12不是复合数,利用定义对复合数进行变形即可证明;(2)借助(1)的证明,所有的复合数都可以写成6x 2+2,设出两个复合数进行转化.【详解】(1)12不是复合数,∵找不到两个整数a ,b ,使a 3﹣b 3=12,故12不是复合数,设“正点”P所表示的数为x(x为正整数),则a=x﹣1,b=x+1,∴(x+1)3﹣(x﹣1)3=(x+1﹣x+1)(x2+2x+1+x2﹣1+x2﹣2x+1)=2(3x2+1)=6x2+2,∴6x2+2﹣2=6x2一定能被6整除;(2)设两个复合数为6m2+2和6n2+2(m,n都是正整数),∵两个“复合数”的差是42,∴(6m2+2)﹣(6n2+2)=42,∴m2﹣n2=7,∵m,n都是正整数,∴71m nm n+=⎧⎨-=⎩,∴43mn=⎧⎨=⎩,∴6m2+2=98,6n2+2=56,这两个“复合数”为98和56.【点睛】本题考查关于实数的新定义题型,理解新定义是解题的关键.5、(1)12;(2)32x=【分析】(1)分别进行算术平方根运算和立方根运算,再进行加减运算即可;(2)利用立方根解方程的方法求解即可.【详解】(1)原式1432=--, 12=; (2)38(3)27x --=,327(3)8x -=-,3x -= 332x -=-, 32x ∴=. 【点睛】本题考查算术平方根、立方根、利用立方根解方程,熟练掌握运算法则,会运用立方根解方程是解答的关键.。
沪科版七年级数学下册第六章实数测试卷

第六章实数测试题一、选择题(每小题4分,共40分)1.16的算术平方根是( )A.-4B.4C.±4D.±62.下列运算正确的是( )A.9=±3B.|-3|=-3C.-9=-3D.-32=03.下列各组数中互为相反数的是( )A.-2与(-2)2B.-2与3-8 C.-2与-12D.2与|-2|4.若a为实数,则下列式子中一定是负数的是( )A.-a2B.-(a+1)2C.-a2D.-(|-a|+1)5.有如下说法:①负数没有立方根;②一个实数的立方根不是正数就是负数;③一个正数或负数的立方根与这个数同号;④如果一个数的立方根是这个数本身,那么这个数是±1或0.其中错误的是( )A.①②③B.①②④C.②③④D.①②6.在实数5,227,0,π2,36,-1.414中,无理数有( )A.1个B.2个C.3个D.4个7.设面积为18的正方形的边长为a.下列关于a的四种说法:①a是无理数;②a可以用数轴上的一个点来表示;③3<a<4;④a是18的算术平方根.其中,所有正确说法的序号是( )A.①④B.②③C.①②④D.①③④8.若a=2,则(2a-5)2-1的立方根是( )A.4B.2C.±4D.±29.若x,y都是实数,且2x-1+1-2x+y=4,则xy的值是( )A.0B.12C.2D.不能确定10.如图,数轴上表示1,2的对应点分别为A,B,点A是线段BC的中点,则点C表示的数是( )A.2-1B.1- 2C.2- 2D.2-2二、填空题(每小题5分,共20分)11.-6的相反数是________,绝对值等于2-2的数是________,|3-π|=________.12.比较下列实数的大小:140=________12; 3-12________0.5;27=________4 2.13.若25.36≈5.036,253.6≈15.925,则253 600≈________.14.若正数m的两个平方根分别是5a+1和a-19,则m的值是________.三、解答题(共90分)15.(8分)计算:(1)6×(16-6); (2)3-27-0-14+30.125+31-6364.16.(8分)求下列各式中的x的值:(1)4x2-16=0; (2)27(x-3)3=-64.17.(10分)设2+6的整数部分和小数部分分别是x,y,试求x,y的值与x -1的算术平方根.18.(10分)已知a,b满足2a+10+|b-5|=0,解关于x的方程(a+4)x+b2=a-1.19.(12分)已知3y-1和33-2x互为相反数,且x-y+4的平方根是它本身,求x,y的值.20.(12分)如图,△ABC中,∠C=90°,BC=30 cm,AC=40 cm,点P从点C 开始沿CA边以4 cm/s的速度向点A移动,同时,另一点Q由点C开始以3 cm/s的速度沿着CB边向点B移动,求几秒后,△PCQ的面积等于△ABC面积的1 4 .21.(14分)我们知道:任意一个有理数与无理数的和为无理数,任意一个不为零的有理数与一个无理数的积为无理数,而零与无理数的积为零.由此可得:如果ax+b=0,其中a,b为有理数,x为无理数,那么a=0且b=0.运用上述知识,解决下列问题:(1)如果2(a-2)+b+3=0,其中a,b为有理数,那么a=________,b =________;(2)如果(2+2)a-(1-2)b=5,其中a,b为有理数,求a+2b的值.22.(16分)观察下图,每个小正方形的边长均为1,(1)图中阴影部分的面积是多少?阴影部分正方形的边长是多少?(2)估计边长的值在哪两个整数之间?(3)把边长在数轴上表示出来.(4)在5×5的方格中作出长为13,5,8的线段.。
2022年沪科版七年级数学下册第6章 实数同步测评练习题(含详解)

沪科版七年级数学下册第6章 实数同步测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列等式正确的是( ).A 8±B .8=C .8=±D 4=±2、下列各数是无理数的为( )A .0.105B .0.1010010001C .π2 D3、在12-,227,2022这四个数中,无理数是( )A .12- B .227 C D .20224、下列说法中正确的有( )①±2都是8的立方根=x32.A .1个B .2个C .3个D .4个5、下列各数是无理数的是( )A .0B .πC .-3.1415D .2276、估计)2的值应该在( ). A .1和2之间 B .2和3之间 C .3和4之间 D .4和5之间7、下列各数中,无理数是( )A .227B .πC D8、下列各数2272π,其中无理数的个数有( ) A .4个 B .3个C .2个D .1个9、下列各数:﹣2,13,02之间0的个数逐次加1),其中无理数的个数是( )A .4B .3C .2D .110、﹣π,﹣3 )A .3π-<-B .3π-<-<C .3π-<-D .3π-<-<<第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、下列各数:-1、2π227,0.1010010001…(相邻两个1之间0的个数增加1),其中无理数的个数是______.2、在实数3,13,0.3,0π,3.141开始不断增大的每两个连续正整数间都有一个零)中,无理数有 ___个.3、如图,在数轴上,点O 所对应的实数是0,点A 所对应的实数是2,过点A 作数轴的垂线段AB ,且1AB =,连接OB .以O 为圆心,OB 的长为半径画弧,交数轴的负半轴于点C ,则点C 对应的实数为______.4、如图,正方形OABC 的边OC 落在数轴上,OC =2,以O 为圆心,OB 长为半径作圆弧与数轴交于点D ,则点D 表示的数是 _______.5、规定了一种新运算:11*11a b a b a b⨯=+,计算:(3*4)*5=___. 三、解答题(5小题,每小题10分,共计50分)1、如图是一个无理数筛选器的工作流程图.(1)当x 为16时,y 值为______;(2)是否存在输入有意义的x 值后,却始终输不出y 值?如果存在,写出所有满足要求的x 值;如果不存在,请说明理由;(3)如果输入x 值后,筛选器的屏幕显示“该操作无法运行”,请你分析输入的x 值可能是什么情况?(4)当输出的y x 值是否唯一?如果不唯一,请写出其中的三个.2、求下列各式的值:(1(2)(33、已知:37x y ++的立方根是3,25的算术平方根是2x y -,求:(1)x 、y 的值;(2)22x y +的平方根.4、已知a 2=16,b 3=27,求a b 的值.5、已知,a b 是正数m 的两个平方根,且322a b +=,求,a b 值,及m 的值.-参考答案-一、单选题1、C【分析】分别利用平方根和算术平方根以及立方根得出各选项是否正确即可.【详解】解:A 8,故此选项错误;B 、8±,故此选项错误;C 、由B 得此选项正确;D 4,故此选项错误.故选:C .【点睛】此题主要考查了立方根、平方根、算术平方根等知识,正确把握各定义是解题关键.2、C【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】解:A 、0.105是无限循环小数,属于有理数,故本选项不合题意;B、0.1010010001是有限小数,属于有理数,故本选项不合题意;C、π2是无理数,故本选项符合题意;D,是整数,属于有理数,故本选项不合题意.故选:C.【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.3、C【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】解:A、12-是分数,属于有理数,不符合题意;B、227是分数,属于有理数,不符合题意;CD、2022是整数,属于有理数,不符合题意;故选C.【点睛】本题主要考查了无理数的定义,解题的关键在于能够熟练掌握有理数和无理数的定义.4、B【分析】根据平方根和立方根的定义进行判断即可.【详解】解:①2是8的立方根,-2不是8的立方根,原说法错误;=x,正确;9=,9的平方根是±3,原说法错误;,正确;综上,正确的有②④共2个,故选:B.【点睛】本题考查了立方根,平方根,熟练掌握立方根的定义是解本题的关键.5、B【分析】根据无理数是无限不循环小数,可得答案.【详解】解:A、0是有理数,故此选项不符合题意;B、π是无理数,故此选项符合题意;C、-3.1415是小数,属于有理数,故此选项不符合题意;D、227是分数,是有理数,故此选项不符合题意;故选:B.【点睛】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如8之间依次多1个0)等形式.6、C【分析】根据25<29<36)2的范围.【详解】解:∵25<29<36,56.由不等式的性质可知:5-22<6-2,即3−2<4.故选:C.【点睛】本题主要考查的是估算无理数的大小,明确被开方数越大对应的算术平方根也越大是解题的关键.7、B【详解】解:A、是有理数,故本选项不符合题意;B、是无理数,故本选项符合题意;C2是有理数,故本选项不符合题意;D2是有理数,故本选项不符合题意;故选:B【点睛】本题主要考查了无理数的定义,熟练掌握无限不循环小数是无理数是解题的关键.8、C【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】3=,是整数,属于有理数;227是分数,属于有理数;2π,共2个 故选:C .【点睛】 此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001……,等有这样规律的数.9、C【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.【详解】解:﹣2,0,是整数,属于有理数;13是分数,属于有理数; 无理数有﹣π,0.020*******…(相邻两个2之间0的个数逐次加1),共2个.故选:C .【点睛】本题考查无理数,掌握无理数的概念是解题关键.10、B【分析】根据实数的大小比较法则即可得.【详解】解: 3.1430π-≈-<-<,1.5=,1.5=,则3π-<-<故选:B .【点睛】本题考查了实数的大小比较,熟练掌握实数的大小比较法则是解题关键.二、填空题1、3【分析】无理数就是无限不循环小数;有理数是整数与分数的统称,即有限小数和无限循环小数是有理数,由此即可判定.【详解】在-1、2π227,0.1010010001…(相邻两个1之间0的个数增加1)中,无理数有2π1之间0的个数增加1)共3个. 故答案为:3.【点睛】本题考查了实数的分类,理解有理数与无理数的概念是解题的关键.2、5【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】解:在实数3,13,0.304,π,3.1421π,0.102030405…(从1开始不断增大的每两个连续正整数间都有一个零),∴无理数有5个,故答案为:5.【点睛】 此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001……,等有这样规律的数.3、【分析】根据勾股定理,计算OB OC ,根据点C 的位置确定数即可.【详解】∵1AB =∴OBOC ,∵点C在原点的左边,∴点C对应的实数为故答案为:【点睛】本题考查了实数与数轴的关系,正确运用勾股定理计算OB的长是解题的关键.4、﹣【分析】根据勾股定理求出OB的长,即OD的长,再根据两点间的距离求出点D对应的数.【详解】解:由勾股定理知:OB==,∴OD=∴点D表示的数为﹣故答案为:﹣【点睛】此题考查了正方形的性质,勾股定理和实数与数轴,得出OD的长是解题的关键.5、7 36【分析】根据新定义的运算法则先将3*4转化为常规运算,再计算(3*4)*5即可.【详解】解:(3*4)*5=111117517 34755=5=== 11111736+7+134557⨯⎛⎫⨯⎪⎛⎫=**⎪ ⎪⎝⎭⎪+⎝⎭.故答案为736.【点睛】本题考查新运算的理解,有理数乘除混合运算,倒数和与积,掌握新定义运算法则是解题关键.三、解答题1、(1(2)0,1(3)x<0(4)x=3或x=9或x=81.【分析】(1)根据运算规则即可求解;(2)根据0的算术平方根是0,即可判断;(3)根据二次根式有意义的条件,被开方数是非负数即可求解;(4)根据运算法则,进行逆运算即可求得无数个满足条件的数.(1)解:当x=162,则y;.(2)解:当x=0,1时,始终输不出y值.因为0,1的算术平方根是0,1,一定是有理数;(3)解:当x<0时,导致开平方运算无法进行;(4)解:x的值不唯一.x=3或x=9或x=81.【点睛】本题考查了算术平方根及无理数,正确理解给出的运算方法是关键.2、(1)6;(2)12;(3)169【分析】利用立方与开立方互为逆运算进行化简求值.【详解】解:(1236=⨯=(2)==11()22=--=(34416 399=+=.【点睛】本题考查了立方与立方根.解题的关键在于正确计算开方、立方与开立方的运算.3、(1)x=5,y=5;(2【分析】根据立方根、算术平方根以及平方根的定义解决此题.【详解】解:(13=2x y =-.∴3x +y +7=27且2x -y =5.∴x =5,y =5;(2)由(1)可知:x =5,y =5.∴x 2+y 2=52+52=50.∴x 2+y 2.【点睛】本题主要考查了立方根、算术平方根、平方根的定义以及解二元一次方程组,熟练掌握立方根、算术平方根、平方根的定义以及解二元一次方程组是解决本题的关键.4、64或﹣64【分析】根据平方根、立方根、有理数的乘方解决此题.【详解】解:∵a 2=16,b 3=27,∴a =±4,b =3.当a =4,b =3时,a b =43=64.当a =﹣4,b =3时,a b =(﹣4)3=﹣64.综上:a b =64或﹣64.【点睛】本题主要考查立方根、平方根及有理数的乘方运算,熟练掌握立方根、平方根及有理数的乘方运算是解题的关键.5、2a =, 2b =-,4m =.【分析】根据正数的平方根有2个,且互为相反数,以及322a b +=求出a 与b 的值即可.【详解】解:因为a ,b 是正数m 的两个平方根,可得:a b =-,把a b =-代入322a b +=,322b b -+=,解得:2b =-,所以2a =,所以4m =.【点睛】此题考查了平方根,明确一个正数的两个平方根互为相反数,和为0是解题的关键.。
七年级下沪科版数学第六章实数测试卷

第六章实数测试卷(120分)一、选择题(每小题3分,共30分)1.下列语句中准确的是 ( ) A.49的算术平方根是7 B.49的平方根是-7 C.-49的平方根是7 D.49的算术平方根是7±2.下列实数33,9,15.3,2,0,87,3--π中,无理数有 ( ) A.1个 B.2个 C.3个 D.4个 3.8-的立方根与4的算术平方根的和是 ( ) A.0 B.4 C.2± D.4± 4.下列说法中准确的是 ( ) A.无理数都是开方开不尽的数 B.无理数能够用数轴上的点来表示 C.无理数包括正无理数、零、负无理数 D.无理数是无限小数 5.下列各组数中互为相反数的是 ( ) A. 2-与2)2(- B. 2-与38- C. 2-与21- D.2-与2 6.圆的面积增加为原来的n 倍,则它的半径是原来的 ( ) A. n 倍; B. 倍2n C. n 倍 D. n 2倍. 7.实数在数轴上的位置如下图,那么化简2a b a --的结果是 ( ) A.b a -2 B.bC.b -D.b a +-28.若一个数的平方根是它本身,则这个数是 ( ) A 、1 B 、-1 C 、0 D 、1或09.一个数的算术平方根是x ,则比这个数大2的数的算术平方根是 ( ) A.22+x B 、2+x C.22-x D.22+x 10.若033=+y x ,则y x 和的关系是 ( ) A.0==y x B. y x 和互为相反数 C. y x 和相等 D. 不能确定 二、填空题(每小题3分,共21分)11.2)4(-的平方根是_______,36的算术平方根是______ ,1258-的立方根是________ .38-的相反数是______,2π-的倒数是______.12.若一个数的算术平方根与它的立方根相等,那么这个是 . 13.下列判断:① 3.0-是09.0的平方根;② 只有正数才有平方根;③ 4-是16-的平方根;④2)52(的平方根是52±.准确的是______________(写序号).14.3±,则317-a = .15.比较大小:516.满足52<<-x 的整数x 是 .17.小成编写了一个如下程序:输入x →2x →立方根→倒数→算术平方根→21,则x 为______________ .三.解答题(共69分): 18.(每小题4分,共16分)(1)求x 的值 4)12(2=-x (2) 081)2(33=-+x(3)计算 2232+- (4)33323272)21()4()4()2(--⨯-+-⨯-19.解答题(每小题8分,共24分) (1)已知09222=-++b b a ,求b a +的值.(2)已知下面代数式有意义,求该代数式的值:______2112=-+-+-x x x .(3)若9的平方根是a,b 的绝对值是4,求a+b 的值?20.(9分)一种长方体的书,长与宽相等,四本同样的书叠在一起成一个正方体,体积为216立方厘米,求这本书的高度.21.(10分)例如∵,974<<即372<<,∴7的整数部分为2,小数部分为27-,如果2小数部分为a ,3的小数部分为b ,求2++b a 的值.22.(10分)如图,有高度相同的A 、B 、C 三只圆柱形杯子,A 、B 两只杯子已经盛满水,小颖把A 、B 两只杯子中的水全部倒进C 杯中,C 杯恰好装满,小颖测量得A 、B 两只杯子底面圆的半径分别是3厘米和4厘米,你能求出C 杯底面的半径是多少吗?A B C。
沪科版 七年级下数学第六章实数测试卷

七年级数学《实数》测试题一(120分)一、选择题(每小题3分,共30分)1.下列语句中正确的是( )A.49的算术平方根是7B.49的平方根是-7C.-49的平方根是7D.49的算术平方根是7±2.下列实数33,9,15.3,2,0,87,3--π中,无理数有( ) A.1个 B.2个 C.3个 D.4个3.8-的立方根与4的算术平方根的和是 ( )A.0B.4C.2±D.4±4.下列说法中正确的是( )A.无理数都是开方开不尽的数B.无理数可以用数轴上的点来表示C.无理数包括正无理数、零、负无理数D.无理数是无限小数5.下列各组数中互为相反数的是( )A.2-与2)2(- B.2-与38- C.2-与21- D.2-与26.圆的面积增加为原来的n 倍,则它的半径是原来的( )A. n 倍;B. 倍2nC. n 倍D. n 2倍.7.实数在数轴上的位置如下图,那么化简2a b a --的结果是( )A.b a -2B.bC.b -D.b a +-28.若一个数的平方根是它本身,则这个数是( )A 、1B 、-1C 、0D 、1或09.一个数的算术平方根是x ,则比这个数大2的数的算术平方根是 ( )A.22+x B 、2+x C.22-x D.22+x10.若033=+y x ,则y x 和的关系是 ( )A.0==y xB. y x 和互为相反数C. y x 和相等D. 不能确定二、填空题(每小题3分,共21分)11.2)4(-的平方根是_______,36的算术平方根是______ ,1258-的立方根是________ .38-的相反数是______,2π-的倒数是______.12.若一个数的算术平方根与它的立方根相等,那么这个是 .13.下列判断:① 3.0-是09.0的平方根;② 只有正数才有平方根;③ 4-是16-的平方根;④2)52(的平方根是52±.正确的是______________(写序号).14.3±,则317-a = .15.比较大小:516.满足52<<-x 的整数x 是 .17.小成编写了一个如下程序:输入x →2x →立方根→倒数→算术平方根→21,则x 为______________ . 三.解答题(共69分):18.(每小题4分,共16分)(1)求x 的值 4)12(2=-x (2) 081)2(33=-+x(3)计算 2232+-(4)()()()3233232721442-⎪⎭⎫ ⎝⎛-⨯-+-⨯-19.解答题(每小题8分,共24分)(1)已知09222=-++b b a ,求b a +的值.(2)已知下面代数式有意义,求该代数式的值:2112-+-+-x x x(3)若9的平方根是a,b 的绝对值是4,求a+b 的值?20.(9分)一种长方体的书,长与宽相等,四本同样的书叠在一起成一个正方体,体积为216立方厘米,求这本书的高度.21.(10分)例如∵,974<<即372<<,∴7的整数部分为2,小数部分为27-,如果2小数部分为a ,3的小数部分为b ,求2++b a 的值.22.(10分)如图,有高度相同的A 、B 、C 三只圆柱形杯子,A 、B 两只杯子已经盛满水,小颖把A 、B 两只杯子中的水全部倒进C 杯中,C 杯恰好装满,小颖测量得A 、B 两只杯子底面圆的半径分别是3厘米和4厘米,你能求出C 杯底面的半径是多少吗?A B C。
沪科版七年级下册数学第6章 实数含答案【考试真题】

沪科版七年级下册数学第6章实数含答案一、单选题(共15题,共计45分)1、下列各组数中互为倒数的是().A. 与2B. 与C. 与D. 与2、在下列实数:、、、、、﹣0.0010001中,有理数有()A.1个B.2个C.3个D.4个3、下列语句正确的是()A.如果一个数的立方根是这个数的本身,那么这个数一定是零B.一个数的立方根不是正数就是负数C.负数没有立方根D.一个数的立方根与这个数同号,零的立方根是零4、所表示的是()A.9的平方根B.3的平方根C.9的算术平方根D.3的算术平方根5、下列个数中,小于-2的数是()A.-B.-C.-D.-16、一个数的平方等于它本身,这个数是()A.1B.1,0C.0D.0,±17、实数a在数轴上的位置如图所示,则a,-a,,a2的大小关系是()A.a<-a< <a 2B.-a< <a<a 2C. <a<a 2<-aD. <a 2<a<-a8、实数a在数轴上的位置如图所示,则化简|1﹣a|+ 的结果是()A.﹣1B.1C.2a﹣3D.3﹣2a9、是一个数的算术平方根,则这个数为()A.4B.1C.D.±10、的平方根是()A.9B.±9C.±3D.311、已知,,表示取三个数中最小的那个数﹒例如:当,,,= ,, =3﹒当,,= 时,则的值为()A. B. C. D.12、下列实数,介于5和6之间的是()A. B. C. D.13、下列说法正确的是()A.﹣a一定是负数B.一个数的绝对值一定是正数C.一个数的平方等于16,则这个数是4D.平方等于本身的数是0和114、若某数的立方根等于这个数的算术平方根,则这个数等于( )A.0B.±1C.-1或0D.0或115、如图,在平面直角坐标系中,点P坐标为(-2,3),以点O为圆心,以OP的长为半径画弧,交x轴的负半轴于点A,则点A的横坐标介于()A.-4和-3之间B.3和4之间C.-5和-4之间D.4和5之间二、填空题(共10题,共计30分)16、计算:﹣(﹣)﹣2+(π﹣2017)0=________.17、已知关于的一元一次不等式的解集是,如图,数轴上的A,B,C,D四个点中,实数m对应的点可能是________.18、计算:________.19、如果a与b互为倒数,c与d互为相反数,那么﹣﹣1的值是________.20、①在数轴上没有点能表示+1;②无理数是开不尽方的数;③存在最小的实数;④4的平方根是±2,用式子表示是=±2;⑤某数的绝对值,相反数,算术平方根都是它本身,则这个数是0,其中正确的是________.21、计算:________.22、已知5+ 小数部分为m,11﹣为小数部分为n,则m+n=________.23、如图,数轴上的点A表示的数为a,则化简的结果为________.24、满足- <x< 的整数x是________.25、计算:|π﹣3.14|0﹣+(﹣)﹣2+2sin45°=________.三、解答题(共5题,共计25分)26、计算:+|1﹣|﹣2sin60°+(π﹣2017)0﹣.27、已知有理数a、 b在数轴上的位置如图所示,试用“<”号按从小到大的顺序,将数a、 b、 0、-a、-b连接起来。
沪科版七年级数学下册第6章实数测试卷及解析

沪科版七年级数学下册第6章实数测试卷注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I 卷(选择题)一、选择题( )A. 5B. √3C. πD. -82.下列各数:0,32,(-5)2,-4,-|-16|,π,其中有平方根的个数是( )A. 3个B. 4个C. 5个D. 6个3.如图,数轴上的A 、B 、C 、D 四点中,与数﹣√3表示的点最接近的是( )A. 点AB. 点BC. 点CD. 点D 4.下列式子中,正确的是( )A. √−73=-√73B. √36=±6C. -√3.6=-0.6D. √−82=-85.在-3.5,227,0, π2,-√2,-√0.0013,0.161161116…(相邻两个6之间依次多一个1)中,无理数有( )A. 1个B. 2个C. 3个D. 4个6.下列说法中,正确的是( )A. 不带根号的数不是无理数B. √64的立方根是±2C. 绝对值等于√3的实数是√3D. 每个实数都对应数轴上一个点 7.-27的立方根与√81的平方根之和是( )A. 0B. -6C. 0或-6D. 68.比较√7-1与√72的大小,结果是( )A. 后者大B. 前者大C. 一样大D. 无法确定9.已知0<x <1,那么在x,1x,√x,x 2中,最大的数是( ) A. x B. 1x C. √x D. x 2第II 卷(非选择题)二、解答题(题型注释)①0,②√−8273,③3.1415,④π5, ⑤-0.3507,⑥-2.3131131113…, ⑦-6133,⑧-√8,⑨√(−4)2,⑩√0.9.11.计算: (1)|-5|+(-2)2+√−273-√(−2)2-1; (2)√0.1253-√3116×3×√(−18)2. 12.求下列各式中x 的值: (1)25x 2=9; (2)(x +3)3=8.13.计算:(1)3π-√132+78(精确到0.01); (2)2√10×√5÷√6(精确到0.01).14.已知21a -的平方根是3±, 31a b +-的算术平方根是4,求2a b +的平方根?15.如图所示,数轴的正半轴上有A 、B 、C 三点,表示1A 、B ,点B 到点A 的距离与点C 到点O 的距离相等,设点C 所表示的数为x .(1)请你写出数x 的值;(2)求(x 2的立方根.16.某地气象资料表明:当地雷雨持续的时间t (h)可以用下面的公式来估计:t 2=d 3900,其中d (km)是雷雨区域的直径.(1)如果雷雨区域的直径为9km,那么这场雷雨大约能持续多长时间?(2)如果一场雷雨持续了1h,那么这场雷雨区域的直径大约是多少(结果精确到0.1km)? 17.如图是一个数值转换器.(1)当输入x=25时,求输出的y的值;(2)是否存在输入x的值后,始终输不出y的值?如果存在,请直接写出所有满足要求的x 值;如果不存在,请说明理由;(3)输入一个两位数x,恰好经过三次取算术平方根才能输出无理数y,则x=________(只填一个即可).18.如图1,有5个边长为1的小正方形组成的纸片,可以把它剪拼成一个正方形.(1)拼成的正方形的面积是,边长是;(2)仿照上面的做法,你能把下面这十个小正方形组成的图形纸,剪开并拼成一个大正方形吗?若能,在图2中画出拼接后的正方形,并求边长;若不能,请说明理由.三、填空题,1的算术平方根是________.1620.已知x-1是64的算术平方根,则x的算术平方根是________.21.若x,y为实数,且|x+2|+√y−1=0,则(x+y)2018=________.22.对于“√5”,有下列说法:①它是一个无理数;②它是数轴上离原点√5个单位长度的点所表示的数;③若a<√5<a+1,则整数a为2;④它表示面积为5的正方形的边长.其中正确的说法是________(填序号).参考答案1.A【解析】1.试题因为-8<√3<π<5,所以最大的数是5,故选:A .2.B【解析】2.由于负数没有平方根,先计算所给的数,再根据平方根的定义即可判断. ∵(-5)2=25>0,-4<0,-|-16|=-16<0,题中数据非负数有0,32,(-5)2=25,π,共4个.故选B .3.B【解析】3.−√3≈−1.732,计算-1.732与-3,-2,-1的差的绝对值,确定绝对值最小即可. |−1.732−(−3)|≈1.268 ,|−1.732−(−2)|≈0.268,|−1.732−(−1)|≈0.732,因为0.268<0.732<1.268,所以−√3 表示的点与点B 最接近,故选B.4.A【解析】4.根据平方根,立方根,算术平方根求出每个式子的值,再判断即可.A 、√−73=-√73,故本选项正确;B 、√36=6,故本选项错误;C 、-√0.36=-0.6,故本选项错误;D 、√(−8)2=8,故本选项错误;故选A .5.C【解析】5.有理数能写成有限小数和无限循环小数,而无理数只能写成无限不循环小数,据此判断出无理数有哪些即可.∵-3.5是有限小数,−√0.0013=-0.1,∴-3.5、-√0.0013是有理数;∵227=22÷7=3.142857是循环小数, ∴227是有理数;∵0是整数,∴0是有理数;∵π2,-√2,0.161161116…都是无限不循环小数, ∴π2,-√2,0.161161116…都是无理数,∴无理数有3个:π2,-√2,0.161161116….故选C .6.D【解析】6.A.有理数能写成有限小数和无限循环小数,而无理数只能写成无限不循环小数,不带根号的数不一定不是无理数,据此判断即可;B.√64=8,一个数的立方根只有一个,正数的立方根是正数,据此判断即可;C.绝对值是√3的实数是±√3,据此解答即可; D.根据数轴的特征,可得每个实数都对应数轴上对一个点,据此判断即可.∵无理数只能写成无限不循环小数,不带根号的数不一定不是无理数,例如π不带根号,但是π是无理数,∴选项A 错误;∵√64=8,8的立方根是2,∴选项B 错误;∵绝对值是√3的实数是±√3, ∴选项C 错误;根据数轴的特征,可得每个实数都对应数轴上对一个点,∴选项D 正确.故选D .7.C【解析】7.根据立方根的定义求得-27的立方根是-3,根据平方根的性质,√81的平方根是±3,由此即可得到它们的和.∵-27的立方根是-3,而√81=9,9的平方根是±3,所以它们的和为0或-6.故选C .8.B【解析】8.根据题意,比较出2√7-2与√7的大小,即可比较出√7-1与√72的大小关系;然后根据(2√7−√7)2=(√7)2=7,22=4,7>4,可得(2√7−√7)2>22,所以2√7-2>√7,因此√7-1>√72,据此解答即可. 因为(2√7−√7)2=(√7)2=7,22=4,7>4,所以(2√7−√7)2>22,所以2√7-2>√7,因此√7-1>√72,即前者大.故选B .9.B【解析】9.根据0<x <1,可设x=12,从而得出x ,1x ,√x ,x 2分别为12,2,√22,14,再找出最小值即可. ∵0<x <1,∴设x=12,∴x ,1x ,√x ,x 2分别为12,2,√22,14, 故2的值最大,故选B .10.①②③⑤⑦⑨ ⑥⑧ ③④⑨⑩ ①②⑤⑥⑦⑧【解析】10.首先实数可以分为有理数和无理数,无限不循环小数称之为无理数,除了无限不循环小数以外的数统称有理数;正整数、0、负整数统称为整数;正实数是大于0的所有实数,由此即可求解.根据定义知:有理数有:①②③⑤⑦⑨;负无理数有:⑥⑧;正实数有:③④⑨⑩;负实数有:①②⑤⑥⑦⑧.11.(1)3 (2)−532【解析】11.(1)原式利用乘方的意义,平方根及立方根定义计算即可得到结果;(2)原式利用平方根及立方根的定义化简即可得到结果.(1)原式=5+4-3-2-1=3.(2)原式=0.5-74×3×18=-532.12.(1)x =±35 (2)x =-1【解析】12.(1)方程变形后,利用平方根的定义化简求出解;(2)方程利用立方根的定义化简,即可求出解.(1)x 2=925,x =±√925,x =±35. (2)x +3=√83,x +3=2,x =-1.13.(1)8.50 (2)5.77【解析】13.各个无理数的近似值代入,然后计算即可.解:(1)原式≈3×3.142-3.6062+0.875≈8.50. (2)原式≈2×3.162×2.236÷2.449≈5.77.14.3±【解析】14.试题分析:利用平方根及算术平方根的定义列出方程组,求出方程组的解得到a 与b 的值,确定出a+2b 的值,即可确定出平方根.试题解析:由题意得2a-1=9,3a+b-1=16, 解得:a=5,b=2, 则a+2b=9, 则9的平方根为3或-3,即求2a b +的平方根是3±.15.(1)1;(2)1.【解析】15.试题分析:(1)根据数轴上两点间的距离求出AB 之间的距离即为x 的值;(2)把x 的值代入所求代数式进行计算即可.试题解析:(1)∵点A 、B 分别表示1,∴1,即1;(2)∵1,∴原式22=1.∴1的立方根为1.16.(1)0.9h (2)9.7km【解析】16.(1)根据t 2=d 3900,其中d=9(km )是雷雨区域的直径,开立方,可得答案; (2)根据t 2=d 3900,其中t=1h 是雷雨的时间,开立方,可得答案. (1)当d =9时,则t 2=d 3900,因此t =√d 3900=0.9. 答:如果雷雨区域的直径为9km ,那么这场雷雨大约能持续0.9h.(2)当t =1时,则d 3900=12,因此d =√9003≈9.65≈9.7. 答:如果一场雷雨持续了1h ,那么这场雷雨区域的直径大约是9.7km.17.(1)√5 (2)x =0或1时,始终输不出y 的值 (3)81【解析】17.(1)根据运算的定义即可直接求解;(2)始终输不出y 值,则x 的任何次方根都是有理数,则只有0和1;(3)写出一个无理数,平方是有理数,然后两次平方即可.解:(1)由输入x =25得√25=5.因为5是有理数,不能输出,再取5的算术平方根得√5.因为√5是无理数,所以输出y ,所以输入x =25时,输出的y 的值是√5.(2)x =0或1时,始终输不出y 的值.(3)81(答案不唯一)18.(1)5;√5 (2)√10【解析】18.(1)一共有5个小正方形,那么组成的大正方形的面积为5,边长为5的算术平方根;(2)一共有10个小正方形,那么组成的大正方形的面积为10,边长为10的算术平方根,在所给图形中截取两条长为√10的且互相垂直的线段,进而拼合即可.(1)拼成的正方形的面积是:5,边长为:√5.(2)如图所示,能,正方形的边长为√10.19.14【解析】19.试题−√5的绝对值是√5,116的算术平方根是14,故答案为:√5;14.20.3【解析】20.根据算术平方根的定义求出64的算术平方根,然后列出方程求出x的值,再根据算术平方根的定义解答.∵82=64,∴64的算术平方根8,∴x-1=8,解得x=9,∵32=9,∴x的算术平方根是3.故答案为:3.21.1【解析】21.根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.∵|x+2|+√y−1=0,∴x+2=0且y-1=0,解得:x=-2、y=1,则原式=(-2+1)2018=(-1)2018=1,故答案为:1.22.①③④【解析】22.根据无理数的意义和数轴的性质进行判断即可.√5是一个无理数,A正确;±√5是数轴上离原点√5个单位长度的点表示的数,B错误;∵2<√5<2+1,∴若a<√5<a+1,则整数a为2,C正确;√5表示面积为5的正方形的边长,D正确,说法正确是①③④,故答案为①③④.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章 复习同步测试卷
一、选择题(每小题3分,共30分)
1.下列语句中正确的是 ( ) A.49的算术平方根是7 B.49的平方根是-7 C.-49的平方根是7 D.49的算术平方根是7±
2.下列实数3
3
,
9,15.3,2,0,87,3--
π中,无理数有 ( ) A.1个 B.2个 C.3个 D.4个
3.8-的立方根与4的算术平方根的和是 ( ) A.0 B.4 C.2± D.4±
4.下列说法中:(1)无理数就是开方开不尽的数;(2)无理数是无限小数;(3)无理数包括正无理数、零、负无理数;(4)无理数可以用数轴上的点来表示,共有( )个是正确的.
A. 1
B. 2
C. 3
D. 4
5.下列各组数中互为相反数的是 ( )
A. 2-与2
)2(- B. 2-与38- C. 2-与2
1
-
D.2-与2 6.圆的面积增加为原来的n 倍,则它的半径是原来的
( )
A. n 倍;
B. 倍2
n
C. n 倍
D. n 2倍.
7.实数在数轴上的位置如图16--C ,那么化简2a b a -
-的结果是 ( )
A.b a -2
B.b
C.b -
D.b a +-2
8.若一个数的平方根是它本身,则这个数是 ( ) A 、1 B 、-1 C 、0 D 、1或0
9.一个数的算术平方根是x ,则比这个数大2的数的算术平方根是 ( )
A.22
+x B 、2+x C.22-x D.22+x
10.若033=+y x ,则y x 和的关系是 ( ) A.0==y x B. y x 和互为相反数 C. y x 和相等 D. 不能确定 一、填空题(每小题3分,共30分)
11.2)4(-的平方根是_______,36的算术平方根是______ ,125
8
-的立方根是________ . 12.38-的相反数是______,2
π
-
的倒数是______.
13.若一个数的算术平方根与它的立方根相等,那么这个数是 . 14.下列判断:① 3.0-是09.0的平方根;② 只有正数才有平方根;③ 4-是16-的平方
根;④2
)5
2(的平方根是5
2
±
.正确的是______________(写序号). 15.
3±,则317-a = . 16.比较大小:
52
17.满足52<<-x 的整数x 是 . 18.用两个无理数列一个算式,使得它们和为有理数______. 19.计算:______2112=-+-+
-x x x .
20.小成编写了一个如下程序:输入x →2
x →立方根→倒数→算术平方根→2
1
,则x 为______________ .
11.若13是m 的一个平方根,则m 的另一个平方根为 .
12.在下列说法中①0.09是0.81的平方根;②-9的平方根是±3;③2(5)-的算术平方根是-5
0的相反数和倒数都是0
;⑥2=±;⑦已知a
是实数,则
||a =;⑧全体实数和数轴上的点一一对应.正确的个数是 .
13.比较大小
2
π
,
14
.满足不等式x <的非正整数x 共有 个.
15.若a 、b 都是无理数,且2a b +=,则a 、b 的值可以是 (填上一组满足条件的值).
16.若实数x 、y
0=,则x 与y 的关系是 . 17.-64
. 18.若2
(23)a +
= .
19.一长方体的体积为1623
cm ,它的长、宽、高的比为3:1:2,则它的表面积为 2cm . 20
= . 三.解答题(共60分): 21.(8分)求x
(1) 4)12(2=-x (2) 081)2(33=-+x
22.(8分)计算 (1) 2232+-
(2)333
23272)2
1()4()4()2(--⨯-+-⨯-
23.(8分)已知0922
2
=-++b b a ,求b a +的值.
24.若9的平方根是a,b 的绝对值是4,求a+b 的值?
25.(10分)例如∵,974<<
即372<<,∴7的整数部分为2,小数部分为
27-,如果2小数部分为a ,3的小数部分为b ,求2++b a 的值.。