中国剩余定理
什么是中国剩余定理

什么是中国剩余定理?剩余定理详细解法中国数学史书上记载:在两千多年前的我国古代算书《孙子算经》中,有这样一个问题及其解法:今有物不知其数,三三数之剩二;五五数之剩三:七七数之剩二。
问物几何?意思是说:现在有一堆东西,不知道它的数量,如果三个三个的数最后剩二个,如果五个五个的数最后剩三个,如果七个七个的数最后剩二个,问这堆东西有多少个?你知道这个数目吗?《孙子算经》这道著名的数学题是我国古代数学思想“大衍求一术”的具体体现,针对这道题给出的解法是:N=70×2+21×3+15×2-2×105=23如此巧妙的解法的关键是数字70、21和15的选择: 70是可以被5、7整除且被3除余1的最小正整数,当70×2时被3除余2 21是可以被3、7整除且被5除余1的最小正整数,当21×3时被5除余3 15是可以被3、5整除且被7除余1的最小正整数,当15×2时被7除余2 通过这种构造方法得到的N就可以满足题目的要求而减去2×105 后得到的是满足这一条件的最小正整数。
韩信点兵又称为中国剩余定理,相传汉高祖刘邦问大将军韩信统御兵士多少,韩信答说,每3人一列余1人、5人一列余2人、7人一列余4人、13人一列余6人……。
刘邦茫然而不知其数。
我们先考虑下列的问题:假设兵不满一万,每5人一列、9人一列、13人一列、17人一列都剩3人,则兵有多少?首先我们先求5、9、13、17之最小公倍数9945(注:因为5、9、13、17为两两互质的整数,故其最小公倍数为这些数的积),然后再加3,得9948(人)。
中国有一本数学古书「孙子算经」也有类似的问题:「今有物,不知其数,三三数之,剩二,五五数之,剩三,七七数之,剩二,问物几何?」答曰:「二十三」术曰:「三三数之剩二,置一百四十,五五数之剩三,置六十三,七七数之剩二,置三十,并之,得二百三十三,以二百一十减之,即得。
中国剩余定理(孙子定理)详解

中国剩余定理(孙⼦定理)详解问题:今有物不知其数,三三数之剩⼆,五五数之剩三,七七数之剩⼆。
问物⼏何?简单点说就是,存在⼀个数x,除以3余2,除以5余三,除以7余⼆,然后求这个数。
上⾯给出了解法。
再明⽩这个解法的原理之前,需要先知道⼀下两个定理。
定理1:两个数相加,如果存在⼀个加数,不能被整数a整除,那么它们的和,就不能被整数a整除。
定理2:两数不能整除,若除数扩⼤(或缩⼩)了⼏倍,⽽被除数不变,则其商和余数也同时扩⼤(或缩⼩)相同的倍数(余数必⼩于除数)。
以上两个定理随便个例⼦即可证明!现给出求解该问题的具体步骤:1、求出最⼩公倍数lcm=3*5*7=1052、求各个数所对应的基础数(1)105÷3=3535÷3=11......2 //基础数35(2)105÷5=2121÷5=4 (1)定理2把1扩⼤3倍得到3,那么被除数也扩⼤3倍,得到21*3=63//基础数633、105÷7=1515÷7=2 (1)定理2把1扩⼤2倍得到2,那么被除数也扩⼤2倍,得到15*2=30//基础数30把得到的基础数加和(注意:基础数不⼀定就是正数)35+63+30=1284、减去最⼩公倍数lcm(在⽐最⼩公倍数⼤的情况下)x=128-105=23那么满⾜题意得最⼩的数就是23了。
⼀共有四个步骤。
下⾯详细解释每⼀步的原因。
(1)最⼩公倍数就不解释了,跳过(记住,这⾥讨论的都是两两互质的情况)(2)观察求每个数对应的基础数时候的步骤,⽐如第⼀个。
105÷3=35。
显然这个35是除了当前这个数不能整除以外都能够被其他数整除,就是其他数的最⼩公倍数。
相当于找到了最⼩的起始值,⽤它去除以3发现正好余2。
那么这个基础数就是35。
记住35的特征,可以整除其他数但是不能被3整除,并且余数是2。
体现的还不够明显,再看下5对应的基础数。
21是其他数的最⼩公倍数,但是不能被5整除,⽤21除以5得到的余数是1,⽽要求的数除以5应该是余1的。
中国剩余定理

扩展欧几里德定理
看过《射雕英雄传》的同学应该记得,当年黄蓉身中奇毒, 郭靖将她送到瑛姑那里救治,进入瑛姑茅舍,瑛姑就给他 们出了一题:
“今有物不知其数,三三数之剩二;五五数
之剩三:七七数之剩二。问物几何?”
黄蓉天资聪慧,哪里难得住她,她略微思考,答:23。
大家是不是很好奇,黄蓉是怎么解出这道 题的呢?
现在人的解法:
用各除数的“基础数”法解。
基础数的条件:
(1)此数必须符合除数自身的余数条件;
(2)此数必须是其他所有各除数的公倍数。
第一步: 求各除数的最小公倍数 [3,5,71)[3] 105÷3=35 [35]÷3=11……2 (2)[5] 105 ÷ 5=21 21÷5=4……1(当于3) ∵ 1× 3= 3 21×3=[63] (3)[7] 105 ÷ 7=15 15 ÷ 7=2……1(当于2) ∵ 1× 2= 2 ∴15×2=[30]
其实,这就是享誉中外的《中国剩余定理》。
一、剩余问题 在整数除法里,一个数同时除以几个 数,整数商后,均有剩余;已知各除数及 其对应的余数,从而要求出适合条件的这 个被除数的问题,叫做剩余问题。
古代人的解法:
凡三三数之剩一,则置七十;五五数之剩 一,则置二十一;七七数之剩一则置十五; 一百六以上,以一百零五减之即得。 依定理译成算式解为: 70×2+21×3+15×2=233 233-105×2=23
第三步: 求各基础数的和 35+63+30=128 第四步: 求基准数(最小的,只有一个) 128-105=23 第五步: 求适合条件的数X X=23+105K(K是整数)
中国剩余定理

中国剩余定理我国古代著名的数学书《孙子算经》中有这样一道名题“今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物有几何?”此乃就是著名的“孙子问题”,俗称“韩信点兵”。
关于它的解法就是享誉国内外的“孙子定律”或“孙子定理”。
外国人称之为“中国剩余定理”。
一、“孙子定理”某数除以3余2,除以5余3,除以7余2。
这个数最小是多少?它的解题思路是:除以3余2的数要在5和7的公倍数数中去找。
5和7的最小公倍数是35.35÷3=11 (2)35符合除以3余2的条件。
除以5余3的数要在3和7的公倍数中去找,3和7的最小公倍数是21。
但21÷5=4 (1)条件要求是除以5余3,如果是21,余数只能是1,要满足余数是3的条件,就必须使被除数、除数、商、余数同时扩大3倍。
21×3=63则63÷5=12 (3)63符合除以5余3的条件。
除以7余2的数,要在3和5的公倍数中去找。
3和5的最小公倍数是15,条件要求除以7余2,如果是15,余数只能是1,要满足余数是2的条件,被除数、除数、商、余数,必须扩大2倍。
15×2=3030÷7=4 (2)30符合除以7余2的条件。
把1、2、3式的被除数和起来,35+63+30=128加得的结果128符合题目中所提的全部条件。
因为35加上的都是3的倍数,所以它们的和128,除以3的余数,不会改变;对63来讲,它所加上的数都是5的倍数。
因此,它们的和除以5的余数,也不会改变;对30来讲,它所加上的都是7的倍数,因此,它们的和除以7的余数,也不会改变。
由于3、5、7的最小公倍数是105,题目中要求的是满足条件的最小的数,因此128-105=23,这所得的差,除以3、5、7的余数也没变,所以23符合题目中所有条件的最小的一个数。
这就是著名的“孙子定理”,世界称之为“中国剩余定理”。
二、“变更被除数法”约定:将“N”分别除以n1,n2…nk所得的余数依次为r1、r2…rk。
中国剩余定理

m1 3
m2 5
取
M1 1
M2 1
M3 1
则唯一解为
x 35 (1) 2 211 3 15 1 2 (mod 105) 23
例2 求最小的正整数 n, 使得 n 被 3,5,11 除的 余数分别是 2,3,5
解 对 x 2(mod 3),x 3(mod 5), x 5(mod 11)
x bk (mod mk ) 则 (*) 有解 (mi , m j ) | ai a j
(*)
x 2(mod 3), x 3(mod 5), x 2(mod 7)
a 2 (mod 3), a 0 (mod 5), a 0 (mod 7) b 0 (mod 3), b 3 (mod 5), b 0 (mod 7) c 0 (mod 3), c 0 (mod 5), c 2 (mod 7)
设 因此
g i ( x) (ai a1 )(ai ai 1 )(ai ai 1 )(ai an )
( x a1 )( x ai 1 )( x ai 1 )( x an )
中国剩余定理的代数表示 设 m 1, 则
m 的标准分解式为 m p1 p2 ps
习题
求解 f ( x) 0(mod 35)
f ( x) x 2 x 8 x 9
4 3
1 求最小的正整数 n,使得它的 是一个平方数, 2 1 1 是一个立方数, 是一个5次方数. 3 5
广义的中国剩余定理 设
x b1 (mod m1 ), x b2 (mod m2 ),
(mod 60)
求解
f ( x) 0(mod m)
中国剩余定理

中国古代求解一次同余式组(见同余)的方法。
是数论中一个重要定理。
又称中国剩余定理。
注释:三数为a b c,余数分别为m1 m2 m3,%为求今年余计算,&&是“且”运算。
孙子定理孙子定理1、分别找出能被两个数整除,而满足被第三个整除余一的最小的数。
k1%b==k1%c==0 && k1%a==1;k2%a==k2%c==0 && k2%b==1;k3%a==k3%b==0 && k3%c==1;2、将三个未知数乘对应数字的余数再加起来,减去这三个数的最小公倍数的整数倍即得结果。
Answer = k1×m1 + k2×m2 + k3×m3 - P×(a×b×c);P为满足Answer > 0的最大整数;或者Answer = (k1×m1 + k2×m2 + k3×m3)%(a×b×c) ;解题思路:令某数为M,令素数为A,B,C,D,…,Z,已知M/A余a,M/B余b,M/C余c,M/D余d,…,M/Z余z。
求M=?因为A,B,C,D,…,Z为不同的素数,故,B*C*D*…*Z不可能被A整除,有等差数列(B*C*D*…*Z)+(B*C*D*…*Z)N中取A个连续项,这A个连续项分别除以A的余数必然存在0,1,2,3,…,A-1,所以,从这A个连续项中能寻找到除以A余1的数。
再用除以A余1的这个数*a其积必然除以A余a,这个除以A余a 的数,为能够被素数B*C*D*…*Z整除的数,为第一个数;再按同样的道理,从A*C*D*…*Z的倍数中寻找除以B余b的数,该数具备被素数A,C,D,…,Z整除的特性,为第二个数;因为,第一个数除以A余a,第二个数能被素数A,C,D,…,Z整除,即能被A整除,所以,第一个数+第二个数之和,仍然保持除以A余a;同理,第二个数除以B余b,因第一个数能被B整除,所以,第二个数+第一个数之和,仍然保持除以B余b。
中国剩余定理

汉语余数定理,也称为汉语余数定理,是一个数论中关于一个变量的线性同余方程的定理,它解释了一个变量的线性同余方程的判据和解。
又称“孙子定理”,有“韩新兵”,“孙子定理”,“求术”(宋申国),“鬼谷计算”(宋周密),“隔墙”等古代名称。
计算”(宋周密),“切管”(宋阳辉),“秦王暗中战士”和“无数事物”。
一个变量的线性一致等式的问题最早可以在中国南北朝(公元5世纪)数学书《孙子书经》第26期中找到,这被称为“物是物”。
未知”。
原文如下:未知的事物,三到三个剩下两个,五到五个剩下三个,七到七个剩下两个。
问事物的几何形状?也就是说,将一个整数除以三分之二,五分之三和七分之二以找到该整数。
孙子的《佛经》首次提到了全等式问题和上述特定问题的解决方案。
因此,中国余数定理在中国数学文献中也将称为“孙子定理”。
1247年,宋代数学家秦久绍对“物不知数”问题给出了完整而系统的回答。
明代数学家程大为将解决方案汇编成《孙子的歌》,很容易赶上:三个人一起走了七十次,五棵树有二十一朵梅花,七个儿子团聚了半个半月。
除了一百零五,我们知道这首歌给出了秦绍的全同方程的模3、5和7的解。
意思是:将3除以70得到的余数,再乘以5除以得到的余数。
在图21中,将7除以15得到的余数相乘,将它们全部加起来并减去105或105的整数倍,得到的数字就是答案(除以105
得到的余数就是最小答案)。
例如,在上述事物数量未知的问题中,使用上述方法进行计算,根据民谣计算出的结果为23。
中国剩余定理计算过程

中国剩余定理计算过程摘要:一、引言二、中国剩余定理的概念与基本原理1.定义2.基本原理三、中国剩余定理的计算过程1.确定方程组2.求解模数3.计算解四、实例演示五、中国剩余定理的应用与意义1.在数论中的运用2.在密码学中的作用六、总结与展望正文:一、引言在中国数学史上,剩余定理是一项重要的成果。
它起源于古代数学家对分数问题的研究,经过一系列的发展,最终形成了现在我们所熟知的中国剩余定理。
本文将详细介绍中国剩余定理的计算过程及其在实际应用中的重要性。
二、中国剩余定理的概念与基本原理1.定义中国剩余定理(Chinese Remainder Theorem)是一种数论中的结果,它可以用来求解一组同余方程。
设m1、m2、…、mk 为正整数,a1、a2、…、ak 为整数,且gcd(m1,a1)=1,gcd(m2,a2)=1,…,gcd(mk,ak)=1,则同余方程组x ≡ a1 (mod m1)x ≡ a2 (mod m2)…x ≡ ak (mod mk)有唯一解x0,且x0 ≡ ai (mod mi),其中i=1,2,…,k。
2.基本原理中国剩余定理基于以下两个原理:(1)同余方程的解具有唯一性;(2)同余方程的解可以通过模线性方程组求解。
三、中国剩余定理的计算过程1.确定方程组给定同余方程组:x ≡ a1 (mod m1)x ≡ a2 (mod m2)…x ≡ ak (mod mk)首先确定方程组中的模数mi(i=1,2,…,k)。
2.求解模数根据同余方程组的性质,我们可以通过求解模数来进一步求解原方程组。
求解模数的过程如下:(1)计算mi 与m1、m2、…、mk 的最大公约数,记为d;(2)求解x ≡ 0 (mod mi);(3)计算x0 = mi × (a1 × d / mi + a2 × (d / m2) + … + ak × (d / mk));(4)检验x0 是否为方程组的解,若为解,则求解完毕;若不是解,则继续求解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例题:1一个数被3除余1,被4除余2,被5除余4,这个数最小是几?题中3、4、5三个数两两互质。
则〔4,5〕=20;〔3,5〕=15;〔3,4〕=12;〔3,4,5〕=60。
为了使20被3除余1,用20×2=40;使15被4除余1,用15×3=45;使12被5除余1,用12×3=36。
然后,40×1+45×2+36×4=274,因为,274>60,所以,274-60×4=34,就是所求的数。
2.一个数被3除余2,被7除余4,被8除余5,这个数最小是几?题中3、7、8三个数两两互质。
则〔7,8〕=56;〔3,8〕=24;〔3,7〕=21;〔3,7,8〕=168。
为了使56被3除余1,用56×2=112;使24被7除余1,用24×5=120。
使21被8除余1,用21×5=105;然后,112×2+120×4+105×5=1229,因为,1229>168,所以,1229-168×7=53,就是所求的数。
3.一个数除以5余4,除以8余3,除以11余2,求满足条件的最小的自然数。
题中5、8、11三个数两两互质。
则〔8,11〕=88;〔5,11〕=55;〔5,8〕=40;〔5,8,11〕=440。
为了使88被5除余1,用88×2=176;使55被8除余1,用55×7=385;使40被11除余1,用40×8=320。
然后,176×4+385×3+320×2=2499,因为,2499>440,所以,2499-440×5=299,就是所求的数。
4.有一个年级的同学,每9人一排多5人,每7人一排多1人,每5人一排多2人,问这个年级至少有多少人?(幸福123老师问的题目)题中9、7、5三个数两两互质。
则〔7,5〕=35;〔9,5〕=45;〔9,7〕=63;〔9,7,5〕=315。
为了使35被9除余1,用35×8=280;使45被7除余1,用45×5=225;使63被5除余1,用63×2=126。
然后,280×5+225×1+126×2=1877,因为,1877>315,所以,1877-315×5=302,就是所求的数。
5.有一个年级的同学,每9人一排多6人,每7人一排多2人,每5人一排多3人,问这个年级至少有多少人?(泽林老师的题目)题中9、7、5三个数两两互质。
则〔7,5〕=35;〔9,5〕=45;〔9,7〕=63;〔9,7,5〕=315。
为了使35被9除余1,用35×8=280;使45被7除余1,用45×5=225;使63被5除余1,用63×2=126。
然后,280×6+225×2+126×3=2508,因为,2508>315,所以,2508-315×7=303,就是所求的数。
6.例:一个住校生,家里每星期给他36元生活费。
该生每天实际只用生活费5元,某天他小姨到学校看他并给了50元钱,他用此钱买了两本喜爱的课外读物花10元,买学习用具花2元,放假回家后说明情况并给家长交回55元。
问:该生带几个星期的生活费?实际在校住几天?一共有多少钱?花去多少钱?用方法二解:列式(36×□+50-10-2)÷5=□……55元{36×(5+55-50+10+2)+50-10-2}÷(5×36)=(36×22+50-10-2)÷180=830÷180 (110)答; 1,(110-50+10+2)÷36=2,(括号内□内最小数)2,(110-55)÷5=11,(括号外□内最小数)3 36×2+50=122,4,122-55=67。
答:该生带2个星期的生活费,实际住校11天,一共有122元,花去67元。
2008.08.08中国剩余定理年级班姓名得分一、填空题1. 有一个数,除以3余数是1,除以4余数是3,这个数除以12余数是_____.2. 一个两位数,用它除58余2,除73余3,除85余1,这个两位数是_____.3. 学习委员收买练习本的钱,她只记下四组各交的钱,第一组2.61元,第二组3.19元,第三组2.61元,第四组3.48元,又知道每本练习本价格都超过1角,全班共有_____人.4. 五年级两个班的学生一起排队出操,如果9人排一行,多出一个人;如果10人排一行,同样多出一个人.这两个班最少共有_____人.5. 一个数能被3、5、7整除,若用11去除则余1,这个数最小是_____.6. 同学们进行队列训练,如果每排8人,最后一排6人;如果每排10人,最后一排少4人.参加队列训练的学生最少有_____人.7. 把几十个苹果平均分成若干份,每份9个余8个,每份8个余7个,每份4个余3个.这堆苹果共有_____个.8. 一筐苹果,如果按5个一堆放,最后多出3个.如果按6个一堆放,最后多出4个.如果按7个一堆放,还多出1个.这筐苹果至少有_____个.9. 除以3余1,除以5余2,除以7余4的最小三位数是_____.10. 有一筐鸡蛋,当两个两个取、三个三个取、四个四个取、五个五个取时,筐内最后都是剩一个鸡蛋;当七个七个取出时,筐里最后一个也不剩.已知筐里的鸡蛋不足400个,那么筐内原来共有_____个鸡蛋.二、解答题11.有一盒乒乓球,每次8个8个地数,10个10个地数,12个12个地数,最后总是剩下3个.这盒乒乓球至少有多少个?12. 求被6除余4,被8除余6,被10除余8的最小整数.13. 一盒围棋子,三只三只数多二只,五只五只数多四只,七只七只数多六只,若此盒围棋子的个数在200到300之间,问有多少围棋子?14. 求一数,使其被4除余2,被6除余4,被9除余8.---------------答案----------------------1. 7因为除以3余数是1的数是1,4,7,10,13,16,19,22,25,28,31,…除以4余数是3的数是3,7,11,15,19,23,27,31…所以,同时符合除以3余数是1,除以4余数是3的数有7,19,31,…这些数除以12余数均为7.2. 14用一个两位数除58余2,除73余3,除85余1,那么58-2=56, 73-3=70,85-1=84能被这个两位数整除,这个两位数一定是56、70和84的公约数.2 56 70 847 28 35 424 5 6由可可见,56、70、84的两位数公约数是2 7=14,可见这个两位数是14.3. 41根据题意得319-261=练习本单价第二、一组人数之差,348-319=练习本单价第四、二组人数之差.即练习本单价第二、一组人数之差=58,练习本单价第四、二组人数之差=29,所以,练习本单价是58与29的公约数,这样,练习本的单价是29分,即0.29元.因此,全班人数是(2.61 2+3.19+3.48) 0.29=11.89 0.29=41(人)[注]这里为了利用练习本单价是总价的公约数这一隐含条件,将小数化成整数来考虑,为解决问题提供了方便.这里也可直接找261、319和348的公约数,但比较困难.上述解法从一定意义上说是受了辗转相除法的启示.4. 91如果将两个班的人数减少1人,则9人一排或10人一排都正好排完没有剩余,所以两班人数减1是9和10的公倍数,又要求这两班至少有几人,可以求出9和10的最小公倍数,然后再加上1.所以,这两个班最少有9 10+1=91(人)5. 210一个数能被3,5,7整除,这个数一定是3,5,7的公倍数.3,5,7的公倍数依次为:105,210,315,420,……,其中被11除余数为1的最小数是210,所以这个最小数是210.6. 46人.如果总人数少6人,则每排8人和每排10人,均恰好排完无剩余.由此可见,人数比10和8的最小公倍数多6人,10和8的最小公倍数是40,所以参加队列训练的学生至少有46人.7. 71依题意知,这堆苹果总个数,添进1个苹果后,正好是9,8,4的倍数.因为9,8,4的最小公倍数是9 8=72,所以这堆苹果至少有9 8-1=71(个).[注]本题为什么求9,8,4的最小公倍数呢?这是根据限制条件"这堆苹果共几十个"决定的.若限制条件改为"这堆苹果的个数在100-200之间"的话,那么这堆苹果共有9 8 2-1=141(个).因此,在解答问题时,一定要把条件看清楚,尤其要注意"隐含条件"的应用.8. 148从6和7的公倍数42,84,126,……中找到除以5余3的数是378(可以先找到除以5余1的数126,再乘以3即可).从5和7的公倍数35,70,……中找到除以6余4的数是70.从5和6的公倍数30,60,90,120,……中找到除以7余1的数是120.5,6,7的最小公倍数是5 6 7=210.所以,这筐苹果至少有568-210 2=148个.9. 172因为除以3余1,除以5余2的最小数是22,而3和5的最小公倍数是15,所以符合条件的数可以是22,37,52,67,…….又因为67 7=9…4,所以67是符合题中三个条件的最小数,而3,5和7的最小公倍数是105,这样符合条件的数有67,172,277,….所以,符合条件的最小三位数是172.10. 301先求出2,3,4,5的最小公倍数是60,然后用试验法求出60的倍数加1能被7整除的数60+1=6160 2+1=12160 3+1=18160 4+1=24160 5+1=301其中301能被7整除.所以筐内原来有301个鸡蛋.11. 如果这盒乒乓球少3个的话,8个8个地数,10个10个地数,12个12个的数都正好无剩余,也就是这盒乒乓球减少3个后是8,10,12的公倍数,又要求至少有多少个乒乓球,可以先求出8,10,12的最小公倍数,然后再加上3.2 8 10 122 4 5 62 5 3故8,10,12的最小公倍数是2 2 2 5 3=120.所以这盒乒乓球有123个.12. 设所求数为 ,则 +2就能同时被6,8,10整除.由于[6,8,10]=120,所以 =120-2=11813. 设有个围棋子,则 +1是3,5,7的倍数, +1是[3,5,7]=3 5 7=105的倍数, +1=210, =209.14. 无解,若该数存在必为8+18 ( 为整数),它被6除只能余2,矛盾。