浅析中国剩余定理及其应用

合集下载

中国剩余定理及其应用

中国剩余定理及其应用
⎧f(x) ≡ a1 (mod x-b1 ) ⎪f(x) ≡ a (mod x-b ) ⎪ 2 2 ⎨ ⎪LLLLLLLL ⎪ ⎩f(x) ≡ an (modx-b n )
其中 ai (i = 1, 2,L , n) 是任意给定的常数,且多项式 f ( x) 在 次数不超过 n 的条件下是唯一确定的 . 由 f ( x) ≡ ai (mod x − bi ) 等 价 于 f (bi ) = ai (i = 1, 2,L , n) 知 对 任 意 的 互 不 相 同 的 bi (i = 1, 2,L , n) 及任意的 ai (i = 1, 2,L , n) 存在唯一的次数小于 n , 的多项式 f ( x) ,使 f (bi ) = ai (i = 1, 2,L , n) ,这就是插值多项式 的存在和唯一性定理 . (3) Lagrange 内插多项式 n n
⎧x ⎪x ⎪ ⎨ ⎪x ⎪ ⎩x ≡ 1(mod 5) ≡ 5(mod 6) ≡ 4(mod 7)
≡ 10(mod11)
按照中国属于定理的记号
M = 5 × 6 × 7 × 11 = 2310, M 1 = 6 × 7 × 11 = 462, M 2 = 5 × 7 × 11 = 385,
有正整数解 x ≡ M 1α1c1 + M 2α 2c2 + L + M nα n cn (mod M ) 且解唯一; 其中 α i 是满足 M iα i ≡ 1(mod mi ), k = 1, 2,L , n) 的一个整 数(参阅 [3]). 下面我们先给出裴蜀恒等式和一个性质,然后证明中国 剩余定理 . 裴蜀恒等式 如果两个数的最大公约数是 d ,则必定存 在两个整数 x, y 使得等式 ax + by = d 成立(参阅 [4]). 性质 同余式组 a ≡ b(mod m j ), j = 1, 2,L , n 同时成立的 充要条件是 a ≡ b(mod[m1 , m2 ,L , mn ]) (参阅 [5]). 证明: 先证存在性: M 因为 m1 , m2 ,L , mn ,两两互素, M = m , 故 ( M k , mk ) = 1, k = 1, 2,L , n , 由 裴 蜀 恒 等 式 可 知 一 定 存 在 整 数 α k , βk 使 得 M kα k + β k mk = 1 ,即 M kα k = − β k mk + 1 ,因此必定存在 α k ,使

“中国剩余定理”算理及其应用

“中国剩余定理”算理及其应用

“中国剩余定理”算理及其应用:为什么这样解呢?因为70是5和7的公倍数,且除以3余1。

21是3和7的公倍数,且除以5余1。

15是3和5的公倍数,且除以7余1。

(任何一个一次同余式组,只要根据这个规律求出那几个关键数字,那么这个一次同余式组就不难解出了。

)把70、21、15这三个数分别乘以它们的余数,再把三个积加起来是233,符合题意,但不是最小,而105又是3、5、7的最小公倍数,去掉105的倍数,剩下的差就是最小的一个答案。

用歌诀解题容易记忆,但有它的局限性,只能限于用3、5、7三个数去除,用其它的数去除就不行了。

后来我国数学家又研究了这个问题,运用了像上面分析的方法那样进行解答。

例1:一个数被3除余1,被4除余2,被5除余4,这个数最小是几?题中3、4、5三个数两两互质。

则〔4,5〕=20;〔3,5〕=15;〔3,4〕=12;〔3,4,5〕=60。

为了使20被3除余1,用20×2=40;使15被4除余1,用15×3=45;使12被5除余1,用12×3=36。

然后,40×1+45×2+36×4=274,因为,274>60,所以,274-60×4=34,就是所求的数。

例2:一个数被3除余2,被7除余4,被8除余5,这个数最小是几?题中3、7、8三个数两两互质。

则〔7,8〕=56;〔3,8〕=24;〔3,7〕=21;〔3,7,8〕=168。

为了使56被3除余1,用56×2=112;使24被7除余1,用24×5=120。

使21被8除余1,用21×5=105;然后,112×2+120×4+105×5=1229,因为,1229>168,所以,1229-168×7=53,就是所求的数。

例3:一个数除以5余4,除以8余3,除以11余2,求满足条件的最小的自然数。

中国剩余定理内涵及其简单应用

中国剩余定理内涵及其简单应用

中国剩余定理内涵及其简单应用
中国剩余定理是数论中的一个重要定理,它提供了求解一类线性同余方程组的方法。

所谓线性同余方程组,是指一组形如x ≡ a1 (mod m1), x ≡ a2 (mod m2), …, x ≡ an (mod mn)的方程,其中x是未知数,a1, a2, …, an是已知数,而m1, m2, …, mn是不同的正整数。

中国剩余定理的内涵是:当所给线性同余方程组的模m1, m2, …, mn 两两互素时,存在唯一解x ≡ X (mod M),其中X是x的一个解,而M = m1 * m2 * … * mn。

简单来说,中国剩余定理告诉我们,当模数两两互素时,我们可以通过对每个方程求解,再通过一定的运算,得到原方程组的解。

中国剩余定理的应用非常广泛,特别是在密码学和计算机科学中。

例如,当我们需要对一个数进行加密和解密时,可以使用中国剩余定理来进行模运算,从而快速计算得到加密后的结果。

此外,在计算机科学中,中国剩余定理也常用于优化算法和并行计算。

由于中国剩余定理能够将一个大问题拆分成多个小问题并行求解,因此可以显著提高计算效率。

总之,中国剩余定理作为数论中的重要定理,不仅具有深刻的理论意义,还具有广泛的实际应用。

通过它,我们可以快速求解线性同余方程组,加密和解密数据,优化算法等,从而提高计算效率和保护数据安全。

浅谈“中国剩余定理”在小学数学学习中的运用

浅谈“中国剩余定理”在小学数学学习中的运用

浅谈“中国剩余定理”在小学数学学习中的运用中国剩余定理是对同余方程组求解的一种方法,它是中国古代数学家在解决实际问题时所创立的。

在小学数学学习中,中国剩余定理也有其应用和意义。

中国剩余定理的核心思想是将一个同余方程组转化为两个同余方程的组合问题,通过求解后再利用同余理论确定唯一解。

其关键在于划定不同同余方程之间的“不干涉区间”,以确保各个同余方程不会互相干扰,从而统一起来保证整个问题的解的统一性。

在小学数学中,我们可以通过举例来说明中国剩余定理的运用。

例如,我们需要求解同余方程组:x ≡ 2 (mod 3)x ≡ 3 (mod 4)首先需要划分不干涉区间,即寻找同时满足以上两个同余方程的最小公因数。

也就是说,要找到一个整数,既能被3整除又能被4整除。

显然,这个数是12,因此我们可以将原来的同余方程组转化为下面这个同余方程组:x ≡ 2 (mod 3)x ≡ 3 (mod 4)x ≡ 8 (mod 12)接下来,我们可以尝试求解这个同余方程组。

首先,通过第一个同余方程,我们可以得到:x = 2 + 3k其中k为整数。

通过对k的求解,我们可以得到所有满足以上两个同余方程的解,即:k = 3 + 4n 或 k = 2 + 4m(其中n,m为整数)将k带入第一个同余方程,我们可以得到最终的解为:x = 11 + 12q(其中q为整数)通过以上步骤,我们成功地将一个同余方程组化简为了一个同余方程,从而得到了其所有解。

这就是中国剩余定理在小学数学中的运用。

总之,中国剩余定理在小学数学中可能不会直接出现,但它的思想和方法可以为学生理解和解决一些实际问题提供帮助。

通过引导学生思考,他们可以深入理解数学的本质和意义,从而更好地掌握其中的知识和技巧。

浅谈“中国剩余定理”在小学数学学习中的运用

浅谈“中国剩余定理”在小学数学学习中的运用

浅谈“中国剩余定理”在小学数学学习中的运用中国剩余定理是数论中的重要定理,它可以解决一类模同余方程组的问题。

在小学数学学习中,中国剩余定理可以通过引入一些简化的概念和方法,帮助学生理解和解决一些相关的数学问题。

本文将从理论与实践两个方面,浅谈中国剩余定理在小学数学学习中的运用。

从理论上来看,中国剩余定理可以帮助小学生理解数字之间的关系及其运算规律。

在小学数学中,我们经常会遇到一些数字之间的关系问题,比如“三个数相除余数都是2,这三个数的积是多少?”或者“一个数被2除余数是1,被3除余数是2,被5除余数是4,这个数是多少?”这类问题都可以通过中国剩余定理来解决。

中国剩余定理的核心思想是利用模同余的思想,将一个复杂的问题转化为若干简单的问题,并通过这些简单的问题的解来得到原问题的解。

对于上述的两个例子,我们可以先将问题转化为模同余方程组:① x≡2(mod3)② x≡2(mod4)③ x≡2(mod7)然后,通过解决方程组求得模同余的解。

以第一个例子为例,通过求解以上方程组,我们可以得到x≡23(mod84)。

这意味着满足方程组的所有解都可以表示为23+84k(k为整数)。

那么,对于这个问题,“三个数相除余数都是2,这三个数的积是多少?”的答案就是23+84k。

同样的,通过类似的方法,我们也可以得到第二个问题的解。

通过这种方法,学生不仅可以通过简化问题的方式解决一些复杂的数学问题,还可以帮助他们理解数之间的关系及其运算规律。

这对于他们今后学习更高级的数学知识也具有一定的帮助。

从实践上来看,中国剩余定理可以通过一些实际问题来引导学生运用和理解。

在小学数学学习中,我们经常会遇到一些实际问题,比如“班级里有多少学生?”,“班级里有多少男生和女生?”,“班级里有多少人的生日是在同一个月的?”等等。

这些问题都可以通过中国剩余定理来解决。

以“班级里有多少男生和女生?”为例,假设班级里有n个学生,男生的人数是x,女生的人数是y。

中国剩余定理matlab

中国剩余定理matlab

中国剩余定理matlab中国剩余定理(Chinese Remainder Theorem)是数论中的一个重要定理,它可以简化模运算的复杂性,并在计算机科学和密码学领域有广泛的应用。

本文将介绍中国剩余定理的原理、应用以及如何使用MATLAB进行实现。

## 1. 中国剩余定理的原理中国剩余定理是根据数论的理论基础,给出了一种求解一组同余方程的方法。

对于一组给定的同余方程:```x ≡ a1 (mod m1)x ≡ a2 (mod m2)...x ≡ an (mod mn)```其中ai为待求解的未知数,mi为不同的正整数模数。

假设mi两两互素,即gcd(mi, mj) = 1(i ≠ j),那么一定存在一个解x,且这个解在模M = m1 * m2 * ... * mn下是唯一的。

## 2. 中国剩余定理的应用中国剩余定理在计算机科学和密码学中有广泛的应用。

其中一些主要应用包括:- 分布式系统:通过中国剩余定理,可以将任务分配到不同的处理器上,并在处理器彼此之间进行通信,从而实现高效的分布式计算。

- 公钥密码学:在RSA算法中,中国剩余定理被用于加速解密过程,提高加密与解密的速度。

- 数据压缩:通过利用中国剩余定理,可以将大数字拆分成若干较小数字进行计算,提高数据的处理速度。

## 3. 使用MATLAB实现中国剩余定理MATLAB是一种功能强大的数学软件,可以用于求解各种数学问题,包括中国剩余定理。

下面是使用MATLAB实现中国剩余定理的一般步骤:首先,定义一组同余方程的系数和模数。

假设有以下同余方程:```x ≡ 2 (mod 5)x ≡ 3 (mod 7)x ≡ 1 (mod 9)```然后,在MATLAB中定义同余方程的系数和模数:```a = [2 3 1];m = [5 7 9];```接下来,使用中国剩余定理的求解公式计算解x:```matlabM = prod(m); % 计算模数的乘积M_i = M ./ m; % 计算Miy = zeros(size(a)); % 初始化yfor i = 1:length(a)[~, ~, r] = gcd(m(i), M_i(i)); % 计算gcd(mi, Mi)y(i) = r * M_i(i); % 计算yendx = sum(a .* y) % 计算最小的非负解x```最后,运行MATLAB代码,即可得到解x的值。

浅谈“中国剩余定理”在小学数学学习中的运用

浅谈“中国剩余定理”在小学数学学习中的运用

浅谈“中国剩余定理”在小学数学学习中的运用中国剩余定理是数论中的一个重要定理,它在数学领域有着重要的应用价值。

而在小学数学学习中,中国剩余定理也可以通过一些简单的案例来引导学生理解和运用。

本文将从中国剩余定理的基本概念、小学数学中的应用以及学生学习中的启示三个方面来探讨中国剩余定理在小学数学学习中的运用。

一、中国剩余定理的基本概念中国剩余定理是由中国古代数学家孙子约公元7世纪所著的《孙子定理》中提出的,它是一个关于模的定理。

主要内容是:如果m1,m2,…,mn 是两两互质的正整数,a1,a2,…,an 是任意整数,那么模方程组x≡a1(mod m1)x≡a2(mod m2)⋯x≡an(mod mn)有唯一的解。

这就是中国剩余定理的基本内容。

一个简单的例子可以帮助我们了解中国剩余定理的基本概念:例:假设一条囚犯刑期是365天,他想用一个长度在35-45之间的鞭认了当前日子。

该如何完成。

解:这个问题可以看作是一个中国剩余定理的实际问题。

因为365=5*73 。

那么鞭的长度模5的余数必须是0。

因为365=8*45+25 ,所以鞭的长度模8的余数必须是5。

通过中国剩余定理可以知道,模45的余数是25的数只有70。

所以囚犯只需要找一个长度为70的鞭。

(这是一个简单的例子,通过它我们可以初步了解中国剩余定理的基本思想和原理。

)二、小学数学中的应用在小学数学学习中,我们可以通过一些简单的案例来引导学生理解和运用中国剩余定理。

可以引导学生用中国剩余定理解决一些有关时间、距离等实际问题。

这样做不仅可以使学生更加深入地理解中国剩余定理的概念和原理,还可以锻炼学生的数学建模能力和解决问题的能力。

一般来说,小学数学的教学案例其实很简单,可以通过直观的案例引导学生理解和运用中国剩余定理。

以时间问题为例,可以设计这样的案例:某人一次修行时间为3天,另一次修行时间为4天,他已经做了第一次修行,那么他接下来需要再修行多久才能修满一年呢?通过这样的案例,学生可以逐步了解并掌握中国剩余定理的基本方法和步骤。

浅谈“中国剩余定理”在小学数学学习中的运用

浅谈“中国剩余定理”在小学数学学习中的运用

浅谈“中国剩余定理”在小学数学学习中的运用“中国剩余定理”是一种数论定理,它可以用来解决“同余方程组”的问题。

在小学数学学习中,可以通过讲解“中国剩余定理”帮助学生理解和运用同余关系,培养学生解决实际问题的思维能力。

本文将从小学数学的教学内容和学生的认知能力出发,浅谈“中国剩余定理”在小学数学学习中的运用。

对于小学生来说,他们对于整数的认知是基础性的。

在学习整数的过程中,可以逐步引入同余关系的概念。

同余关系是指两个数除以同一个数所得到的余数相等,即两个数在模n的意义下相等。

这样,运用同余关系可以将整数分为若干个同余类。

引入同余关系后,可以通过一些简单的例子来培养学生对同余关系的理解。

师生可以让学生计算100以内的所有奇数,然后让学生观察这些数之间能否建立同余关系。

通过观察可以发现,这些奇数在模2的意义下都相等,即它们与2的余数都是1。

再举一个例子,让学生计算100以内的所有能被3整除的数,同样可以观察到这些数在模3的意义下都相等,即它们与3的余数都是0。

通过这样的讨论和练习,可以帮助学生理解同余关系的概念和内涵。

然后,可以通过解决一些实际问题来引入“中国剩余定理”。

在小学数学学习中,可以选取一些简单的问题,如鸡兔同笼问题、购买水果问题等,来让学生运用“中国剩余定理”解决。

这样的问题有一个特点,就是它们都可以归纳为同余方程组的形式,例如鸡兔同笼问题实际上就是一个同余方程组:x≡1(mod2),x≡3(mod4)。

通过让学生运用“中国剩余定理”,可以简化解题过程,培养学生解决实际问题的能力。

为了引导学生理解和运用“中国剩余定理”,在教学中可以采取一些设问和讨论的方式。

可以提问如下问题:如果有两个数除以3的余数都是1,那么这两个数除以6的余数呢?如果有两个数除以4的余数都是2,那么这两个数除以8的余数呢?通过这样的讨论,可以引导学生发现规律和核心思想。

在教学中还可以通过一些游戏和活动来激发学生的兴趣和主动性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浅析中国剩余定理及其应用
李辉
(井冈山学院数理学院信息与计算科学 343009)
指导老师颜昌元
[摘要]:本文阐述了中国剩余定理的由来,介绍了它的几种解法,及其它在多项式,现代密码学,生活方面的应用.
[关键词]:中国剩余定理;解法;多项式;现代密码学
引言在中国,以剩余定理为代表的同余理论源远流长,可追溯到《周易》中的卜筮古法.秦九韶说:“圣有大衍,微寓于《易》”,即指此意.另外,同余理论的另一个来源是古代制定历法的需要.实际上,从汉末到宋末1000余年的时间中,有很多天文学家熟悉一次同余式的解法,他们在编制历法时利用它来推算“上元积年”.中国剩余定理对现代数学的研究有很强的启迪意义.特别是在多项式,密码学中的应用非常关键.
一中国剩余定理的由来
我国古代《孙子算经》中有一著名而又重要的问题:“今有物不知其数,三三数之剩二、五五数之剩三,七七数之剩二,问物几何.答曰:二十三”.这一问题可译为:一个数除以3余2,除以5余3,除以7余2.求适合条件的最小的数.题中还介绍了它的解法:“术曰:三三数之剩二,置一百四十;五五数之剩三,置六十三;七七数之剩二,置三十;并之,得二百三十三,以二百十减之,即得.”意即:物数W=70×2+21×3+15×2-2×105=23.接下来又给出了这类题的一般解法(余数为一的情况):术文说:“凡三三数之剩一,则置七十;五五数之剩一,则置二十一;七七数之剩一,则置十五.一百六以上,以一百五减之,即得.”这个问题及其解法,在世界数学史上占有重要的地位,因此,中外数学家都尊称为“孙子定理”或“中国剩余定理”.
为了比较清楚地了解“中国剩余定理”这一名称的由来,我们不妨先引进同余定义:一般地,若两个整数a、b被同一个大于1的整数m除有相同的余数,那么称a、b对于模m同余.记作: a≡b (mod m)应用同余原理,我们把“物不知其数”问题用整数的同余式符号表达出来,是:设N≡2 (mod 3)≡3 (mod 5)≡2 (mod 7),求最小的数N.答案是N=23.
书中问题及其解法,建立起数学模型就是:
设a、b、c为余数, P为整数,则N≡a(mod 3)≡b(mod 5)≡c(mod 7)
的解是: N=70a+21b+15c-105P (1)
现在,我们把上述解法中的a,b,c作一分析:设M=3×5×7,则
70=2×5×7=2×(3×5×7)/3=2×M/3。

相关文档
最新文档