六下奥数1中国剩余定理

合集下载

中国剩余定理(模板+详解)

中国剩余定理(模板+详解)

中国剩余定理(模板+详解)问题:今有物不知其数,三三数之剩⼆,五五数之剩三,七七数之剩⼆。

问物⼏何?简单点说就是,存在⼀个数x,除以3余2,除以5余三,除以7余⼆,然后求这个数。

上⾯给出了解法。

再明⽩这个解法的原理之前,需要先知道⼀下两个定理。

定理1:⼏个数相加,如果存在⼀个加数,不能被整数a整除,那么它们的和,就不能被整数a整除。

定理2:两数不能整除,若除数扩⼤(或缩⼩)了⼏倍,⽽被除数不变,则其商和余数也同时扩⼤(或缩⼩)相同的倍数(余数必⼩于除数)。

以上两个定理随便个例⼦即可证明!现给出求解该问题的具体步骤:1、求出最⼩公倍数lcm=3*5*7=1052、求各个数所对应的基础数(1)105÷3=3535÷3=11......2 //基础数35(2)105÷5=2121÷5=4 (1)定理2把1扩⼤3倍得到3,那么被除数也扩⼤3倍,得到21*3=63//基础数633、105÷7=1515÷7=2 (1)定理2把1扩⼤2倍得到2,那么被除数也扩⼤2倍,得到15*2=30//基础数30把得到的基础数加和(注意:基础数不⼀定就是正数)35+63+30=1284、减去最⼩公倍数lcm(在⽐最⼩公倍数⼤的情况下)x=128-105=23那么满⾜题意得最⼩的数就是23了。

⼀共有四个步骤。

下⾯详细解释每⼀步的原因。

(1)最⼩公倍数就不解释了,跳过(记住,这⾥讨论的都是两两互质的情况)(2)观察求每个数对应的基础数时候的步骤,⽐如第⼀个。

105÷3=35。

显然这个35是除了当前这个数不能整除以外都能够被其他数整除,就是其他数的最⼩公倍数。

相当于找到了最⼩的起始值,⽤它去除以3发现正好余2。

那么这个基础数就是35。

记住35的特征,可以整除其他数但是不能被3整除,并且余数是2。

体现的还不够明显,再看下5对应的基础数。

21是其他数的最⼩公倍数,但是不能被5整除,⽤21除以5得到的余数是1,⽽要求的数除以5应该是余1的。

小学奥数中国剩余定理练习

小学奥数中国剩余定理练习
练习与巩固
练习题目的选择
01
02
03
基础题目
选择一些涉及中国剩余定 理基础概念和应用的题目, 帮助小学生理解基本原理。
难度适中
题目难度应适中,既不过 于简单也不过于复杂,适 合小学生的思维能力和理 解能力。
覆盖面广
题目应涵盖中国剩余定理 的不同应用场景,以便学 生全面了解该定理的应用 范围。
练习题目的解答过程
原理
中国剩余定理的基本思想是将同 余方程组转化为线性方程组,然 后利用线性代数的方法求解。
定理的应用范围
解决同余方程组问题
在编码理论中的应用
中国剩余定理主要用于解决同余方程 组问题,特别是当方程个数和未知数 个数相同时,它可以给出唯一解。
中国剩余定理在纠错码和编码理论中 也有广泛应用,它可以用于构造一些 特定的纠错码。
小学奥数中国剩余定理练 习
• 引言 • 中国剩余定理的基本概念 • 小学奥数中的中国剩余定理题目 • 解题技巧与策略 • 练习与巩固 • 总结与反思
01
引言
主题简介
定义
中国剩余定理是指在整数环中,给定 一组两两互质的整数,对于任意一组 不全为0的整数解,存在一个特定的 解法,使得这组解都是方程的解。
反思与总结
引导学生对解题过程进行反思和总 结,帮助他们掌握解题技巧和方法。
举一反三
通过解析一道题目,启发学生思考 类似问题的解决方法,提高他们的 思维能力和解题能力。
06
总结与反思
学习收获与体会
掌握了中国剩余定理的基本原理和应 用方法,能够解决一些复杂的数学问 题。
在学习过程中,逐渐培养了耐心和细 心,能够更好地应对挑战和困难。
通过练习,提高了自己的数学思维能 力和解题技巧,对数学有了更深入的 理解。

中国剩余定理知识点总结

中国剩余定理知识点总结

中国剩余定理知识点总结在初等数论中,我们经常会遇到形如x ≡ a1 (mod m1)x ≡ a2 (mod m2)...x ≡ an (mod mn)的线性同余方程组,其中ai和mi都是整数,m1, m2, ..., mn是两两互质的正整数。

中国剩余定理就是解决这类问题的重要方法。

下面我们来详细介绍一下中国剩余定理的一些基本知识点。

1. 中国剩余定理的表述中国剩余定理可以用如下的形式来表述:对于给定的两两互质的正整数m1, m2, ..., mn,以及任意的整数a1, a2, ..., an,中国剩余定理断言,存在一个解x,使得对于所有的i=1,2,...,n,都有x≡ai(mod mi)。

这个解x是唯一存在的,并且可以用下面的形式来表示:x = a + tM其中a是通解,t是任意整数,M是m1, m2, ..., mn的最小公倍数,即M=lcm(m1, m2, ..., mn)。

2. 中国剩余定理的应用在数论和密码学等领域中,中国剩余定理有着广泛的应用。

例如,可以利用中国剩余定理来解决一些测定一些重要的数学问题,如幂模运算、循环小数、素数和因数分解等问题。

在密码学中,中国剩余定理也被广泛应用。

例如在RSA公钥密码系统中,中国剩余定理能够加速大数的幂模运算,从而大大提高RSA的加密和解密速度。

3. 中国剩余定理的证明中国剩余定理的证明是通过数学归纳法来完成的。

首先我们可以证明当n=2时定理成立,然后利用数学归纳法来证明对于任意n都成立。

具体来说,我们首先假设对于n=k(k≥2)时定理成立,即对于任意的m1, m2, ..., mk,以及任意的整数a1, a2, ..., ak,能够找到一个解x使得x≡ai(mod mi)。

然后我们来考察下一个情况,即n=k+1时定理成立。

我们可以利用n=k时的结果来构造一个新的解x',然后利用一些数论知识来证明x'也满足n=k+1时的情况。

通过这样的数学归纳法的证明,我们可以得出中国剩余定理的正确性。

谈“中国剩余定理”小学解法

谈“中国剩余定理”小学解法

谈“中国剩余定理”小学解法谈“中国剩余定理”小学解法前问题解答中所涉题目属于“中国剩余定理”,也称为鬼谷算,还叫隔墙算,或称为韩信点兵等。

“中国剩余定理”是公元5-6世纪、我国南北朝时期的一部著名算术著作《孙子算经》中的一个“物不知数”的解法问题:今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二。

问物几何?答曰:二十三。

解法后来归结为口诀诗:三人同行七十稀,五树梅花廿一枝,七子团圆月正半,除百零五便得知。

这诗的口诀的解法是:用3除所得的余数乘上70,加上用5除所得余数乘以21,再加上用7除所得的余数乘上15,结果大于105就减去105的倍数,这样就得到所求的数。

如上题解:70×2+21×3+15×2=233, 233-105×2=23但这种解法比较局限,只能是除以3,5,7的,其它的就无法解。

“中国剩余定理”实质是初等数论解一元一次同余式方程组,按小学培优是不定方程组,这对于小学生来讲,无疑过于深奥和复杂。

所以小学涉及到的题目往往比较特殊,因而可以分类使用特殊简单的方法解答。

当然一般复杂的也可使用稍复杂的通解,现整理如下:第一类:余数相同或除数与余数的差相同,那么解答的方法是:除数的公倍数加上相同余数或除数的公倍数减去相同的除数与余数的差。

再根据要求加,减公倍数。

如:题1,一个数在100到200之间,除以3余2,除以5余2,除以7余2,这个数是几?解,最小是2,加上(3,5,7)的公倍数105得2+105=107.题2,一个数一个数在100到200之间,除以3余2,除以5余4,除以7余6,这个数是几?解,3-2,5-4,7-6的差是1,所以(3,5,7)的公倍数105减去1得105-1=104昨天问题解答题:一列队伍中的人数比20多,比30少。

按1,2,3,4报数,最后一个人报3,按1,2,3报数,最后一个人报2。

这列队伍的人数是多少?解,差是1,在20到30之间,4和3的公倍数24减1 得24-1=23第二类,部分同第一类,分两步,先按第一类解答出第一步,在试算出第二步。

小学奥数-中国剩余定理

小学奥数-中国剩余定理
实际上70是能被5和7整除但被3除余1,21能被3和7整 除但5除余1,15能被3和5整除但被7除余1。这个系统 算法是南宋时期的数学家秦九韶研究后得到的。 这就是 著名的中国剩余定理。
例6、今有物不知其数, 三三数之剩二, 五五 数之剩三, 七七数之剩二, 问物几何?
题目中此数被3除余2,那就用70乘以2,被5 除余3。
中国剩余定理
2015.08.22
整数除法
被除数÷除数=商+余数(余数<除数) A ÷ B = C + R (被除数-余数)÷除数 = 商 (A - R) ÷ B = C
例1、 一个两位数,用它除58余2,除73 余3,除85余1,求这个两位数
用它除58余2,意外着这个两位数是56(58 - 2)的因数。同样的也是70和84的因数。
BYE
The End! Thank you For your listening!
2015. 08. 22
4。这个数最小是多少?
这道题目同样可以用例5的方法进行计算,但是现在我们准 备采用类似于例6的方法。例6的方法之所以方便,是因为歌 诀中给出了70,21和15这三个数,那么这道题目中又该是 多少呢?
歌诀中的70正好是能被5和7整除,而被3除余1的最小数; 21正好是能被3和7整除,而被5除余1的最小数;15正好是 能被3和5整除,而被7除余1的最小数。
利用这个思路,我们来解答例7。 因为[7,9] =63,63÷5=12……3;而63 x 2=126,
126÷5=25……1。 所以能被7和9整除,而被5除余1的最小数是126。
例7 (续) 、一个数,除以5余1,除以7余2,除
以9余4。这个数最小是多少?
能被7和9整除,而被5除余1的最小数是126。 同样的方法,我们可以找出能被5和9整除,而被7

小学奥数-中国剩余定理ppt课件

小学奥数-中国剩余定理ppt课件
4。这个数最小是多少?
❖ 这道题目同样可以用例5的方法进行计算,但是现在我们准 备采用类似于例6的方法。例6的方法之所以方便,是因为歌 诀中给出了70,21和15这三个数,那么这道题目中又该是 多少呢?
❖ 歌诀中的70正好是能被5和7整除,而被3除余1的最小数; 21正好是能被3和7整除,而被5除余1的最小数;15正好是 能被3和5整除,而被7除余1的最小数。
❖ 利用这个思路,我们来解答例7。 ❖ 因为[7,9] =63,63÷5=12……3;而63 x 2=126,
126÷5=25……1。 ❖ 所以能被7和9整除,而被5除余1的最小数是126。
11
例7 (续) 、一个数,除以5余1,除以7余2,除
以9余4。这个数最小是多少?
❖ 能被7和9整除,而被5除余1的最小数是126。 ❖ 同样的方法,我们可以找出能被5和9整除,而被7
除余1的最小数是225;能被5和7整除,而被9除余1 的最小数是280。 ❖ 1×126+2x225+4×280=696。 ❖ 这个数显然太大,接下来就要减去5、7和9的最小 公倍数315, ❖ 直到最后的结果小于315为止。 ❖ 1696 - 315×5 = 121。 ❖ 所以这个数最小是:121。
❖ 2+11=13,13÷8=1……5,不符合; ❖ 13+11=24,24÷8=3,也不符合; ❖ 24+11=35,35÷8=4……3,符合条件。 ❖ 因此这个数最小是35
6
例5、一堆糖果,4个一数多1个,9个一数多4 个,11个一数多9个。这堆糖果至少有多少个?
❖ 这个问题可以概括为:一个数,除以4余1,除以9余4,除以 11余9。
件; ❖ 130+99 =229,229÷4 =57……1 符合“除以4余1”的条件。 ❖ 因此这堆糖果至少有229个。

中国剩余定理简单公式

中国剩余定理简单公式

中国剩余定理简单公式中国剩余定理,又称孙子定理,是一种用来求解一类模线性方程组的方法。

它的基本思想是将一个复杂的方程组化简成一些简单的方程,并通过求解这些简单方程来得到原方程的解。

中国剩余定理的简单公式可以表示为:假设给定一组模数m1, m2, ..., mn,并且这些模数两两互素(即最大公约数为1),同时给定一组余数a1, a2, ..., an,那么存在一个整数x,满足以下条件:x ≡ a1 (mod m1)x ≡ a2 (mod m2)...x ≡ an (mod mn)其中≡表示'同余'关系,即两个数除以某个数的余数相等。

中国剩余定理的求解过程可以按照以下步骤进行:1. 计算模数的乘积M = m1 * m2 * ... * mn。

2. 计算每个模数除以M的余数Mi,即 Mi = M / mi。

3. 计算Mi关于模数mi的乘法逆元ni,即满足 Mi * ni ≡ 1 (mod mi)。

4. 计算解x,即 x = (a1 * Mi * ni + a2 * Mi * ni + ... + an * Mi * ni) % M。

通过以上步骤,就可以得到模线性方程组的解x。

中国剩余定理在密码学、编码理论、计算机科学等领域有着重要的应用。

它可以高效地求解大数模运算问题,同时也可以用来对数据进行加密和解密,保护数据的安全性。

此外,中国剩余定理还可以用来加速计算,提高算法的效率。

总结起来,中国剩余定理是一种非常有用的数学工具,它通过将复杂的方程组转化为简单的方程,大大简化了问题的求解过程。

无论是在理论研究还是实际应用中,中国剩余定理都具有重要的价值和意义。

【小学精品奥数】中国剩余定理及余数性质拓展.学生版

【小学精品奥数】中国剩余定理及余数性质拓展.学生版

1. 系统学习中国剩余定理和新中国剩余定理2. 掌握中国剩余定理的核心思想,并灵活运用一、中国剩余定理——中国古代趣题(1)趣题一 中国数学名著《孙子算经》里有这样的问题:“今有物,不知其数,三三数之,剩二,五五数之,剩三,七七数之,剩二,问物几何?”答曰:“二十三。

”此类问题我们可以称为“物不知其数”类型,又被称为“韩信点兵”。

韩信点兵又称为中国剩余定理,相传汉高祖刘邦问大将军韩信统御兵士多少,韩信答说,每3人一列余1人、5人一列余2人、7人一列余4人、13人一列余6人……。

刘邦茫然而不知其数。

我们先考虑下列的问题:假设兵不满一万,每5人一列、9人一列、13人一列、17人一列都剩3人,则兵有多少?首先我们先求5、9、13、17之最小公倍数9945(注:因为5、9、13、17为两两互质的整数,故其最小公倍数为这些数的积),然后再加3,得9948(人)。

孙子算经的作者及确实著作年代均不可考,不过根据考证,著作年代不会在晋朝之后,以这个考证来说上面这种问题的解法,中国人发现得比西方早,所以这个问题的推广及其解法,被称为中国剩余定理。

中国剩余定理(Chinese Remainder Theorem )在近代抽象代数学中占有一席非常重要的地位。

(2)趣题二我国明朝有位大数学家叫程大位,他在解答“物不知其数”问题(即:有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?)时用四句诗概括出这类问题的优秀解法:“三人同行七十稀,五树梅花廿一枝,七子团圆正月半,除百零五便得知.”这首诗就是解答此类问题的金钥匙,它被世界各国称为“中国剩余定理”(ChineseRemainder Theorem ),是我国古代数学的一项辉煌成果.诗中的每一句话都表示一个步骤:三人同行七十稀,是说除以3所得的余数用70乘.知识点拨教学目标5-5-4.中国剩余定理及余数性质拓展五树梅花廿一枝,是说除以5所得的余数用21乘.七子团圆正月半,是说除以7所得的余数用15乘.除百零五便得知,是说把上面乘得的3个积加起来,减去105的倍数,减得差就是所求的数.此题的中国剩余定理的解法是:用70乘3除所得的余数,21乘5除所得的余数,15乘7除所得的余数,把这3个结果加起来,如果它大于105,则减去105,所得的差如果仍比105大,则继续减去105,最后所得的整数就是所求.也就是270321215233⨯+⨯+⨯=,-=233105128-=,12810523为什么70,21,15,105有此神奇效用?70,21,15,105是从何而来?先看70,21,15,105的性质:70被3除余1,被5,7整除,所以70a是一个被3除余a而被5与7整除的数;21是5除余1,被3与7整除的数,因此21b是被5除余b,被3与7整除的数;同理15c是被7除余c,被3、5整除的数,105是3,5,7的最小公倍数.也就是说,702115++是被3除余a,被5除余b,被7除余c的数,这个数可能是解答,但不a b c一定是最小的,因此还要减去它们的公倍数.了解了“剩余定理”的秘密后,对类似于上面的题目,我们都可以用中国剩余定理来解答.二、核心思想和方法对于这一类问题,我们有一套看似繁琐但是一旦掌握便可一通百通的方法,下面我们就以《孙子算经》中的问题为例,分析此方法:今有物,不知其数,三三数之,剩二,五五数之,剩三,七七数之,剩二,问物几何?题目中我们可以知道,一个自然数分别除以3,5,7后,得到三个余数分别为2,3,2.那么我们首先构造一个数字,使得这个数字除以3余1,并且还是5和7的公倍数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

六下奥数1
论述中国剩余定理的形成及对教育的影响
摘要:“中国剩余定理”是由秦九韶从“孙子定理”的基础上推广而来的,本文从论述中国剩余定理的形成到中国剩余定理的主要方法和对现代教育的影响来写。

中国剩余定理在高中有初步的基础应用,在大学中的初等数论中该定理得到了仔细的讲解。

中国剩余定理的思想方法和原则不仅有光辉的历史意义,而且在近代数学中仍然有着重大影响和作用。

引言
随着数学学科的发展,数学方面的知识得到了不断的更新和强化。

在数学发展史上,剩余问题(即:在整数除法里,一个数同时除以几个数,整数商后,均有剩余;已知各除数及其对应的余数,要求适合条件的这个被除数。

这类问题统称剩余问题)曾经困扰过人们很长一段时间。

这个问题的解决,是我们中国人迈出了开拓性的第一步。

如果说,一部中国数学发展史像一条源远流长的河流,那么几千年来祖先们取得的辉煌成就,就是这河流中耀眼的浪花。

在祖先取得的成就中有一个“中国剩余定理”。

大家都知道,“勾股定理”最早是由我国西周时期的商高发现的,但国外却称其为“毕达哥拉斯定理”,法国称为“驴桥定理”,埃及称为“埃及三角形”等。

还有“增乘开方法”,最早是由我国宋代的贾宪发明的,但现代数学却称其为“霍纳法”,贾宪的发明比霍纳早了800年。

而中国剩余定理则是唯一一个以我国国名命名的定理,大家一定对这个定理很感兴趣,很想知道关于这个定理的故事。

现在我就为大家简单介绍一下“中国剩余定理”。

1、中国剩余定理的简介及形成
在我国古代劳动人民中,长期流传着“隔墙算”、“剪管术”、“秦王暗点兵”等数学游戏。

有一首“孙子歌”,甚至远渡重洋,输入日本:“三人同行七十稀,五树梅花廿一枝,七子团圆正半月,除百零五便得知。

”这些饶有趣味的数学游戏,以各种不同形式,介绍世界闻名的“孙子问题”的解法,通俗地反映了中国古代数学一项卓越的成就。

“孙子问题”在现代数论中是一个一次同余问题,它最早出现在我国公元四世纪的数学著作《孙子算经》中。

《孙子算经》是算经十书之一,又作《孙子算术》。

现有传本《孙子算经》分上、中、下共3卷。

该书作者和确切成书年代均无法考证,大约成书于公元400年前后。

中国古代求解一次同余式组(见同余)的方法。

是数论中一个重要定理。

又称中国剩余定理。

一千多年前的《孙子算经》中,有这样一道算术题:“今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?”按照今天的话来说:一个数除以三余二,除以五余三,除以七余二,求这个数。

《孙子算经》给出了一个非常有效的巧妙解法。

术曰:“三、三数之剩二,置一百四十;五、五数之剩三,置六十三;七、七数之剩二,置三十,并之,得二百三十三。

以二百一十减之,即得。

凡三、三数之剩一,则置七十;五、五数之剩一,则置二十一;七、七数之剩一,则置十五。

一百六以上,一百五减之,即得。

在中国数学史上,广泛流传着一个“韩信点兵”的故事:韩信是汉高祖刘邦手下的大将,他英勇善战,智谋超群,为汉朝的建立立下了卓绝的功劳。

据说韩信的数学水平也非常高超,他在点兵的时候,为了保住军事机密,不让敌人知道自己部队的实力,先令士兵从1至3报数,然后记下最后一个士兵所报之数;再令士兵从1至5报数,也记下最后一个士兵所报之数;最后令士兵从1至7报数,又记下最后一个士兵所报之数;这样,他很快就算出了自己部队士兵的总人数,而敌人则始终无法弄清他的部队究竟有多少名士兵?因为《孙子算经》对这类问题的研究只是初具雏形,还远远谈不上完整,其不足之处在于:
(1 )没有把解法总结成文,致使后人研究多凭猜测;
(2 )模数仅限于两两互质的正整数,未涉及一般情况;
(3 )未能进一步探究同余式(组)有解的条件等理论问题。

因此,后人把这一命题及其解法成为“孙子定理”主要是推崇《孙子算经》在这一类问题的处理上时间领先,其实想方法的成熟,还有待提高。

为了解决这一类“孙子问题”中的不足,秦九韶从孙子定理中推广了“孙子问题”的解法形成了“中国剩余定理”。

秦九韶(秦九韶,字道古,生活于南宋时期,自幼喜好数学,经过长期积累和苦心钻研,干公元1247年写成《数书九章》。

这部中世纪的数学杰作,在许多方面都有创造,其中求解一次同余组的“大衍求一术”和求高次方程数值解的“正负开方术”,更是具有世界意义的成就。

秦九韶在《数书九章》中明确地系统地叙述了求解一次同余组的一般计算步骤。

秦的方法,正是前述的剩余定理。

)提出了乘率、定数、衍母、衍数等一系列数学概念,并详细叙述了“大衍求一术”的完整过程。

直到此时,由《孙子算经》“物不知数”题开创的一次同余式问题,才真正得到了一个普遍的解法,才真正上升到了“中国剩余定理”的高度。

这个故事中所说的韩信点兵的计算方法,就是现在被称为“中国剩余定理”的一次同余式解法。

后来流传的《孙子歌》中所说“七十稀”、“廿一枝”和“正半月”,就是暗指这三个关键的数字。

《孙子算经》没有说明这三个数的来历。

实际上,它们具有如下特性:也就是说,这三个数可以从最小公倍数M=3×5×7=105中各约去模数3、5、7后,再分别乘以整数2、1、1而得到。

假令k1=2,K2=1,K3=1,那么整数Ki(i=1,2,3)的选取使所得到的三数70、21、15被相应模数相除的时候余数都是1。

由此出发,立即可以推出,在余数是R1、R2、R3的情况下的情况。

应用上述推理,可以完全类似地把孙子算法推广到一般情形:设有一数N,分别被两两互素的几个数a1、a2、……an相除得余数R1、R2、……Rn,即N≡Ri(mod ai)(i=1、2、……n),只需求出一组数K,使满足1(mod ai)(i=1、2、……n),那么适合已给一次同余组的最小正数解是P是整数,M=a1×a2×……×an),就是现代数论中著名的剩余定理。

2、中国剩余定理在中学中案例及其应用
有余数除法的定理
定理1 如果被除数加上(或减去)除数的整数倍,除数不变,则余数不变。

定理2 如果被除数扩大(或缩小)几倍,除数不变,则余数也扩大(或缩小)同样的倍数。

定理3 如果整数a除以自然数b(b≠0),余数r仍不小于b,则r除以b的余数等于a除以b所得余数。

引入过程:
1成语故事引入:
引入“韩信点兵,多多益善”的故事。

2独立思考:
每3人站成一排,最后一排只有1人;每5人站成一排,最后一排也只有1人;每7人站成一排,最后一排还是1人。

你能推算出最少有多少人?
3、每3人站成一排,最后一排只有2人;每5人站成一排,最后一排只有4人;每7人站成一排,最后一排是6人。

你能推算出最少有多少人?
4、每3人站成一排,最后一排差1人;每5人站成一排,最后一排有2人;每7人站成一排,最后一排还差5人。

你能推算出最少有多少人?
5通过例题,适时介绍孙子算法。

3、4、1、每3人站成一排,最后一排只有2人;每5人站成一排,最后一排站了3人;每7人站成一排,最后一排有4人。

你能推算出最少有多少人?
赏析:学生产生怀疑为什么这一题转化来转化去不行了呢?老师列出算式:70×2+21×3+15×4=263人,263-105×2=53人。

让学生用这个结果进行验算,学生通过验算发现正确。

6、出示孙子算法:
三人同行七十稀,五树梅花开一枝,
七子团圆正月半,除百零五便得知。

赏析:通过改题,把上面的题目改为“只有2、4、6”然后学生进行验证,都是正确的。

这时老师出示孙子算法。

让学生在惊讶之后惊叹中国古代数学文化的博大精深和源远流长,同时领略中国古代数学文化的魅力。

接着借用数学家陈省身的话“21世纪的中国是数学大国。

”来激起学生热爱祖国深厚文化的热情。

7一个数被3除余1,被4除余2,被5除余4,这个数最小是几?
题中3、4、5三个数两两互质。

则〔4,5〕=20;〔3,5〕=15;〔3,4〕=12;
〔3,4,5〕=60。

为了使20被3除余1,用20×2=40;使15被4除余1,用15×3=45;
使12被5除余1,用12×3=36。

然后,40×1+45×2+36×4=274,因为,274>60,所以,274-60×4=34,就是所求的数。

8四年级的同学,每9人一排多5人,每7人一排多1人, 每5人一排多2人,问这个年级至少有多少人?
题中9、7、5三个数两两互质。

则〔7,5〕=35;〔9,5〕=45;〔9,7〕=63;〔9,7,5〕=315。

为了使35被9除余1,用35×8=280;使45被7除余1,用45×5=225;使63被5除余1,用63×2=126。

然后,280×5+225×1+126×2=1877,因为,1877>315,所以,1877-315×5=302,就是所求的数。

9引出《孙子算经》中的“今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物有几何?。

相关文档
最新文档