2013届高三北师大版文科数学一轮复习课时作业(41)空间点、直线、平面之间的位置关系
高考数学一轮总复习课时规范练34空间点直线平面之间的位置关系北师大版

课时规范练34空间点、直线、平面之间的位置关系基础巩固组1.已知a,b是异面直线,直线c平行于直线a,那么c与b()A.一定是异面直线B.一定是相交直线C.不可能是平行直线D.不可能是相交直线2.如图,E,F分别是正方体ABCD-A1B1C1D1的棱A1D1与AA1的中点,则下列判断正确的是()A.直线AC与BF是相交直线B.直线C1E与AC互相平行C.直线C1E与BF是异面直线D.直线DB与AC互相垂直3.(2020浙江,6)已知空间中不过同一点的三条直线l,m,n.“l,m,n共面”是“l,m,n两两相交”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件4.l1,l2,l3是空间三条不同的直线,则下列命题正确的是()A.l1⊥l2,l2⊥l3⇒l1∥l3B.l1⊥l2,l2∥l3⇒l1⊥l3C.l1∥l2∥l3⇒l1,l2,l3共面D.l1,l2,l3共点⇒l1,l2,l3共面5.正方体ABCD-A1B1C1D1的棱长为2,E是棱B1C1的中点,则平面AD1E截该正方体所得的截面面积为()A.4√2B.2√2C.4D.926.如图,点P,Q,R,S分别在正方体的四条棱上,且是所在棱的中点,则直线PQ与RS不是共面直线的是()7.已知,在梯形ABCD中,AB∥CD,AB⊂平面α,CD⊄平面α,则直线CD与平面α内的任意一条直线m的位置关系是.8.如图,平面α∩平面β=l,A∈α,B∈α,AB∩l=D,C∈β,C∉l,则平面ABC与平面β的交线是.9.如图,点A在平面α外,△BCD在平面α内,E,F,G,H分别是线段BC,AB,AD,DC的中点.(1)求证:E,F,G,H四点在同一平面上;(2)若AC=6,BD=8,异面直线AC与BD所成角为60°,求EG的长.综合提升组10.如图,ABCD-A1B1C1D1是长方体,O是B1D1的中点,直线A1C交平面AB1D1于点M,则下列结论不正确的是()A.A,M,O三点共线B.A,M,O,A1四点共面C.C1,O,C,M四点共面D.D,B1,O,M四点共面11.在正方体ABCD-A1B1C1D1中,N为底面ABCD的中心,P为线段A1D1上的动点(不包括两个端点),M 为线段AP的中点,则下列说法中不正确的是()A.CM与PN是异面直线B.CM>PNC.平面PAN⊥平面BB1D1DD.过P,A,C三点的正方体的截面一定是等腰梯形12.在正方体ABCD-A1B1C1D1中,E,F分别为棱AA1,CC1的中点,则在空间中与三条直线A1D1,EF,CD都相交的直线有条.13.(2021湖南长沙一中月考)在长方体ABCD-A1B1C1D1中,E为棱CC1上一点,F为棱AA1的中点,且CE=2C1E,AB=2,AA1=3,BC=4,则平面BEF截该长方体所得截面为边形,截面与侧面ADD1A1,侧面CDD1C1的交线长度之和为.14.如图,平面ABEF ⊥平面ABCD ,四边形ABEF 与ABCD 都是直角梯形,∠BAD=∠FAB=90°,BC ∥AD ,且BC=12AD ,BE ∥AF 且BE=12AF ,G ,H 分别为FA ,FD 的中点.(1)证明:四边形BCHG 是平行四边形. (2)C ,D ,E ,F 四点是否共面?为什么? (3)证明:直线FE ,AB ,DC 相交于一点.创新应用组15.正方体ABCD-A1B1C1D1的棱长为1,点K在棱A1B1上运动,过A,C,K三点作正方体的截面,若K 为棱A1B1的中点,则截面面积为,若截面把正方体分成体积之比为2∶1的两部分,则A1K=.KB1课时规范练34空间点、直线、平面之间的位置关系1.C解析:由已知得直线c与b可能为异面直线也可能为相交直线,但不可能为平行直线.若b∥c,则a∥b,与已知a,b为异面直线相矛盾.故选C.2.D解析:由题知,AC⊂平面ABCD,BF与平面ABCD交于点B,B∉AC,所以直线AC与BF是异面直线,故A错误;AC⊂平面ACC1A1,EC1与平面ACC1A1交于点C1,C1∉AC,所以直线C1E与AC是异面直线,故B错误;根据正方体性质EF∥AD1∥BC1,所以E,F,B,C1四点共面,所以直线C1E与BF不是异面直线,故C错误;正方体各个表面均为正方形,所以直线DB与AC互相垂直,故D正确.故选D.3.B解析:由条件可知,当m,n,l在同一平面内时,三条直线不一定两两相交,有可能两条直线平行;或三条直线平行;反过来,当空间中不过同一点的三条直线m,n,l两两相交时,如图,三个不同的交点确定一个平面,则m,n,l在同一平面内,所以“m,n,l”共面是“m,n,l两两相交”的必要不充分条件.故选B.4.B解析:对于A,通过常见的正方体,从同一个顶点出发的三条棱两两垂直,故A错误;对于B,因为l1⊥l2,所以l1,l2所成的角是90°,又因为l2∥l3,所以l1,l3所成的角是90°,所以l1⊥l3,故B正确;对于C,如三棱柱中的三条侧棱平行,但不共面,故C错误;对于D,如三棱锥的三条侧棱共点,但不共面,故D错误.故选B.5.D解析:由题意可得,如图所示,因为E,F分别是B1C1,BB1的中点,所以BC1∥EF,在正方体中,AD1∥BC1,所以AD1∥EF,所以A,D1,E,F在同一平面内,所以平面AD1E截该正方体所得的截面为平面AD1EF.因为正方体ABCD-A1B1C1D1的棱长为2,所以EF=√2,AD 1=2√2,等腰梯形的高为√2,所以四边形AD 1EF 的面积S=(√2+2√2)×√22=92,故选D .6.C 解析:对于A ,连接PR ,QS ,得PR ,QS 与正方体的(竖立的)棱平行且相等,因此四边形PQSR 是平行四边形,故PQ ,RS 共面;对于B ,RS 与正方体的面对角线AB 平行,PQ 与CD 平行,又AB ∥CD ,故PQ ∥RS ,则PQ ,RS 共面;对于C ,RS ⊂平面PRS ,P ∈平面PRS ,P ∉RS ,Q ∉平面PRS ,所以QP 与RS 是异面直线,故PQ 与RS 不共面;对于D ,设QP 与BA 延长线交于点C 1,SR 与BA 延长线交于点C 2,P ,Q 是正方体棱的中点,所以EP=EQ.又∠C 1AP=∠QEP=90°,所以∠EPQ=∠EQP=45°,所以∠C 1PA=∠EPQ=45°,从而∠AC 1P=45°,所以AC 1=AP.同理AC 2=AR ,所以AC 1=AP=AR=AC 2,即C 1,C 2重合, 所以PQ ,RS 相交,即PQ ,RS 共面.故选C . 7.平行或异面解析:如图,由于ABCD 是梯形,AB ∥CD ,所以AB 与CD 无公共点,又CD ⊄平面α,所以CD 与平面α无公共点.当m ∥AB 时,则m ∥DC ;当m 与AB 相交时,则m 与DC 异面.8.直线CD 解析:由题意知,D ∈l ,l ⊂β,所以D ∈β.因为D ∈AB ,所以D ∈平面ABC , 所以点D 在平面ABC 与平面β的交线上. 又因为C ∈平面ABC ,C ∈β,所以点C 在平面β与平面ABC 的交线上, 所以平面ABC ∩平面β=CD.9.(1)证明因为E ,F ,G ,H 分别是线段BC ,AB ,AD ,DC 的中点.故FG ∥BD ,且FG=12BD ,同理EH ∥BD ,且EH=12BD ,故FG ∥EH ,且FG=EH.故四边形EFGH 为平行四边形.故E ,F ,G ,H 四点在同一平面上.(2)解由(1)知四边形EFGH 为平行四边形,且FG=12BD=4,FE=12AC=3.又异面直线AC 与BD 所成角为60°,故∠GFE=60°或120°.当∠GFE=60°时,EG 2=FE 2+FG 2-2FE ·FG cos60°=25-12=13. 此时EG=√13;当∠GFE=120°时,EG 2=FE 2+FG 2-2FE ·FG cos120°=25+12=37. 此时EG=√37,所以EG 的长为√13或√37.10.D 解析:平面AA 1C ∩平面AB 1D 1=AO , ∵直线A 1C 交平面AB 1D 1于点M , ∴M ∈AO ,即A ,O ,M 三点共线; 根据A ,O ,M 三点共线,知A 1A ∩AO=A , ∴M ,O ,A 1,A 四点共面; 同理,M ,O ,C 1,C 四点共面;由图知,OM ,B 1D 是异面直线,故O ,M ,B 1,D 四点不共面. 故选D .11.A 解析:由题知,点C ,N ,A 共线,即CN ,PM 交于点A ,所以A ,N ,C ,P ,M 共面,因此CM ,PN 共面,故A 错误;记∠PAC=θ,则PN 2=AP 2+AN 2-2AP ·AN cos θ=AP 2+14AC 2-AP ·AC cos θ,CM 2=AC 2+AM 2-2AC ·AM cos θ=AC 2+14AP 2-AP ·AC cos θ,又AP<AC ,CM 2-PN 2=34(AC 2-AP 2)>0,CM 2>PN 2,即CM>PN ,故B 正确;在正方体中,AN ⊥BD ,BB 1⊥平面ABCD ,则BB 1⊥AN ,BB 1∩BD=B ,可得AN ⊥平面BB 1D 1D ,AN ⊂平面PAN ,从而可得平面PAN ⊥平面BB 1D 1D ,故C 正确;过P ,A ,C 三点的正方体的截面与C 1D 1相交于点Q ,则AC ∥PQ ,且PQ<AC ,因此一定是等腰梯形,故D 正确,故选A .12.无数 解析:(方法1)在EF 上任意取一点M ,直线A 1D 1与M 确定一个平面,这个平面与CD 有且仅有1个交点N ,M 取不同的位置就确定不同的平面,从而与CD 有不同的交点N ,而直线MN 与这3条异面直线都有交点.如图所示.(方法2)在A 1D 1上任取一点P ,过点P 与直线EF 作一个平面α.因为CD 与平面α不平行,所以CD 与平面α相交,设CD 与平面α交于点Q ,连接PQ (图略),则PQ 与EF 必然相交,即PQ 为所求直线.由点P 的任意性,知有无数条直线与三条直线A 1D 1,EF ,CD 都相交. 13.五10+9√56解析:如图,设平面BEF 与棱C 1D 1,A 1D 1分别交于G ,H ,则截面为五边形BEGHF.易知BF ∥EG ,BE ∥FH ,则∠ABF=∠EGC 1,∠CBE=∠A 1HF , ∴C 1EC1G=AFAB =322,A 1F A 1H=CE CB =24,而C 1E=1,A 1F=32, ∴C 1G=43,A 1H=3.则FH=√9+94=3√52,GE=√169+1=53,故交线长度之和为FH+GE=3√52+53=10+9√56.14.(1)证明因为G ,H 分别为FA ,FD 的中点,AD.所以GH∥AD,且GH=12AD,又BC∥AD,且BC=12故GH∥BC,且GH=BC,所以四边形BCHG是平行四边形.(2)解C,D,E,F四点共面.理由如下:AF,G是FA的中点可知,由BE∥AF且BE=12BE∥GF且BE=GF,所以四边形EFGB是平行四边形,所以EF BG.由(1)知BG CH,所以EF∥CH,所以四边形ECHF为平行四边形,所以EC∥FH,故EC,FH共面.又点D在直线FH上,所以C,D,E,F四点共面.(3)证明由(2)可知,EC∥DF.所以四边形ECDF为梯形.所以FE,DC交于一点.设FE∩DC=M.因为M∈FE,FE⊂平面ABEF,所以M∈平面ABEF.同理M∈平面ABCD.又平面ABEF∩平面ABCD=AB,所以点M在AB的延长线上,所以直线FE,AB,DC交于一点.15.98√5-12解析:(1)取B 1C 1的中点M ,连接KM ,MC ,∵KM ∥A 1C 1,而A 1C 1∥AC , ∴KM ∥AC ,∴A ,C ,M ,K 四点共面,且AK=MC. ∴四边形ACMK 是等腰梯形,如图,KM=√22,AC=√2,AK=√12+(12) 2=√52,AH=√2-√222=√24, ∴KH=√AK 2-AH 2=√(√52)2-(√24)2=3√24, ∴S 四边形ACMK =12×√22+√2×3√24=98.(2)设B 1K=x ,取B 1C 1上的点M ,使B 1K=B 1M=x ,连接KM ,MC ,∵KM ∥A 1C 1,A 1C 1∥AC ,∴KM ∥AC ,∴A ,C ,M ,K 四点共面,∵V B 1MK -BCA =13V A 1B 1CD 1-ABCD =13,∴V B 1MK -BCA =13×12+12x 2+√12×12x 2×1=13, 即x 2+x-1=0. ∵x>0, ∴解得x=-1+√52.即B 1K=-1+√52,则A 1K=1--1+√52=3−√52,故A 1KKB 1=3−√52-1+√52=√5-12.。
高三数学一轮复习课时作业13:§8.2 空间点、直线、平面之间的位置关系

§8.2 空间点、直线、平面之间的位置关系A 组 基础达标一、选择题1.l 1,l 2表示空间中的两条直线,若p :l 1,l 2是异面直线,q :l 1,l 2不相交,则( ) A .p 是q 的充分条件,但不是q 的必要条件 B .p 是q 的必要条件,但不是q 的充分条件 C .p 是q 的充分必要条件D .p 既不是q 的充分条件,也不是q 的必要条件2.已知a ,b ,c 为三条不重合的直线,已知下列结论:①若a ⊥b ,a ⊥c ,则b ∥c ;②若a ⊥b ,a ⊥c ,则b ⊥c ;③若a ∥b ,b ⊥c ,则a ⊥c .其中正确的个数为( ) A .0 B .1 C .2D .33.已知直线a 和平面α,β,α∩β=l ,a ⊄α,a ⊄β,且a 在α,β内的射影分别为直线b 和c ,则直线b 和c 的位置关系是( ) A .相交或平行 B .相交或异面 C .平行或异面 D .相交、平行或异面4.若空间中四条两两不同的直线l 1,l 2,l 3,l 4满足l 1⊥l 2,l 2⊥l 3,l 3⊥l 4,则下列结论一定正确的是( ) A .l 1⊥l 4 B .l 1∥l 4C .l 1与l 4既不垂直也不平行D .l 1与l 4的位置关系不确定5.已知正方体ABCD A 1B 1C 1D 1中,E ,F 分别为BB 1,CC 1的中点,那么异面直线AE 与D 1F 所成角的余弦值为( ) A.45 B.35 C.23 D.57二、填空题6.如图所示,正方体ABCD A 1B 1C 1D 1中,M ,N 分别为棱C 1D 1、C 1C 的中点,有以下四个结论:①直线AM与CC1是相交直线;②直线AM与BN是平行直线;③直线BN与MB1是异面直线;④直线MN与AC所成的角为60°.其中正确的结论为________.(注:把你认为正确的结论序号都填上)7.如图所示,在正三棱柱ABCA1B1C1中,D是AC的中点,AA1∶AB=2∶1,则异面直线AB1与BD所成的角为________.8.如图,正方体的底面与正四面体的底面在同一平面α上,且AB∥CD,则直线EF与正方体的六个面所在的平面相交的平面个数为________.三、解答题9.如图所示,正方体ABCDA1B1C1D1中,M,N分别是A1B1,B1C1的中点.问:(1)AM和CN是否是异面直线?说明理由;(2)D1B和CC1是否是异面直线?说明理由.10.如图所示,在三棱锥P ABC 中,P A ⊥底面ABC ,D 是PC 的中点.已知∠BAC =π2,AB=2,AC =23,P A =2.求:(1)三棱锥P ABC 的体积;(2)异面直线BC 与AD 所成角的余弦值.B 组 能力提升1.设α为平面,a ,b 为两条不同的直线,则下列叙述正确的是( ) A .若a ∥α,b ∥α,则a ∥b B .若a ⊥α,a ∥b ,则b ⊥α C .若a ⊥α,a ⊥b ,则b ∥α D .若a ∥α,a ⊥b ,则b ⊥α2.如图,长方体ABCD A 1B 1C 1D 1的底面是边长为1的正方形,点E 在侧棱AA 1上,满足∠C 1EB =90°,则异面直线BE 与C 1B 1所成的角为________,侧棱AA 1的长的最小值为________.3.已知三棱锥A BCD 中,AB =CD ,且直线AB 与CD 成60°角,点M ,N 分别是BC ,AD 的中点,求直线AB 和MN 所成的角.——★ 参 考 答 案 ★——A 组 基础达标一、选择题 1. 『答案』A『解析』若l 1,l 2异面,则l 1,l 2一定不相交;若l 1,l 2不相交,则l 1,l 2是平行直线或异面直线,故p ⇒q ,qD ⇒/p ,故p 是q 的充分不必要条件. 2.『答案』B『解析』法一:在空间中,若a ⊥b ,a ⊥c ,则b ,c 可能平行,也可能相交,还可能异面,所以①②错,③显然成立.法二:构造长方体或正方体模型可快速判断,①②错,③正确. 3.『答案』D『解析』依题意,直线b 和c 的位置关系可能是相交、平行或异面.4.『答案』D『解析』如图,在长方体ABCD A 1B 1C 1D 1中,记l 1=DD 1,l 2=DC ,l 3=DA .若l 4=AA 1,满足l 1⊥l 2,l 2⊥l 3,l 3⊥l 4,此时l 1∥l 4,可以排除选项A 和C.若取C 1D 为l 4,则l 1与l 4相交;若取BA 为l 4,则l 1与l 4异面;取C 1D 1为l 4,则l 1与l 4相交且垂直.因此l 1与l 4的位置关系不能确定. 5.『答案』B『解析』连接DF ,则AE ∥DF ,∴∠D 1FD 为异面直线AE 与D 1F 所成的角. 设正方体棱长为a , 则D 1D =a ,DF =52a ,D 1F =52a , ∴cos ∠D 1FD =⎝⎛⎭⎫52a 2+⎝⎛⎭⎫52a 2-a 22·52a ·52a =35.二、填空题6.『答案』③④『解析』由题图可知AM与CC1是异面直线,AM与BN是异面直线,BN与MB1为异面直线.因为D1C∥MN,所以直线MN与AC所成的角就是D1C与AC所成的角,且角为60°.7.『答案』60°『解析』取A1C1的中点E,连接B1E,ED,AE,在Rt△AB1E中,∠AB1E即为所求,设AB=1,则A1A=2,AB1=3,B1E=32,AE=32,故∠AB1E=60°.8.『答案』4『解析』取CD的中点为G(图略),由题意知平面EFG与正方体的左、右侧面所在平面重合或平行,从而EF与正方体的左、右侧面所在的平面平行或EF在平面内,所以直线EF 与正方体的前、后侧面及上、下底面所在平面相交.故直线EF与正方体的六个面所在的平面相交的平面个数为4.三、解答题9. 解:(1)AM,CN不是异面直线.理由:连接MN,A1C1,AC.因为M,N分别是A1B1,B1C1的中点,所以MN∥A1C1.又因为A1A C1C,所以A1ACC1为平行四边形,所以A1C1∥AC,所以MN∥AC,所以A,M,N,C在同一平面内,故AM和CN不是异面直线.(2)直线D1B和CC1是异面直线.理由:因为ABCDA1B1C1D1是正方体,所以B,C,C1,D1不共面.假设D1B与CC1不是异面直线,则存在平面α,使D 1B ⊂平面α,CC 1⊂平面α, 所以D 1,B ,C ,C 1∈α,这与B ,C ,C 1,D 1不共面矛盾,所以假设不成立, 即D 1B 和CC 1是异面直线.10.解:(1)S △ABC =12×2×23=23,三棱锥P ABC 的体积为 V =13S △ABC ·P A =13×23×2=433.(2)如图,取PB 的中点E ,连接DE ,AE ,则ED ∥BC ,所以∠ADE 是异面直线BC 与AD 所成的角(或其补角).在△ADE 中,DE =2,AE =2,AD =2,cos ∠ADE =22+22-22×2×2=34.故异面直线BC 与AD 所成角的余弦值为34.B 组 能力提升1.『答案』B『解析』若a ∥α,b ∥α,则a 与b 相交、平行或异面,故A 错误;易知B 正确;若a ⊥α,a ⊥b ,则b ∥α或b ⊂α,故C 错误;若a ∥α,a ⊥b ,则b ∥α或b ⊂α或b 与α相交,故D 错误. 2.『答案』90° 2『解析』连结BC 1,在长方体ABCD A 1B 1C 1D 1中,CB ⊥平面ABB 1A 1,∴∠CBE =90°,又C 1B 1∥BC ,∴异面直线BE 与C 1B 1所成的角为90°.设AA 1=x ,AE =m (m ≥0),所以BE 2=1+m 2,EC 21=(x -m )2+2,BC 21=1+x 2,因为∠C 1EB =90°,所以BC 21=EC 21+BE 2,即1+x2=(x -m )2+2+1+m 2,即m 2-mx +1=0,所以x =m +1m ≥2⎝⎛⎭⎫当且仅当m =1m ,即m =1时“=”成立. 3.解:如图,取AC 的中点P .连接PM ,PN ,又点M ,N 分别是BC ,AD 的中点,则PM ∥AB ,且PM =12AB ,PN ∥CD ,且PN =12CD ,所以∠MPN 为AB 与CD 所成的角(或其补角). 则∠MPN =60°或∠MPN =120°,①若∠MPN =60°,因为PM ∥AB ,所以∠PMN 是AB 与MN 所成的角(或其补角). 又因为AB =CD ,所以PM =PN ,则△PMN 是等边三角形,所以∠PMN =60°, 即AB 和MN 所成的角为60°.②若∠MPN =120°,则易知△PMN 是等腰三角形, 所以∠PMN =30°,即AB 和MN 所成的角为30°. 综上,直线AB 和MN 所成的角为60°或30°.。
高三数学一轮复习精品教案2:空间点、直线、平面之间的位置关系教学设计

第三节 空间点、直线、平面之间的位置关系考纲传真1.理解空间直线,平面位置关系的定义,并了解可以作为推理依据的公理和定理. 2.能运用公理,定理和已获得的结论证明一些空间图形的位置关系的简单命题.1.平面的基本性质公理1:如果一条直线上的两点在一个平面内,那么这条直线在这个平面内. 公理2:过不共线的三点,有且只有一个平面.公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.2.空间点、直线、平面之间的位置关系直线与直线直线与平面平面与平面平行 关系图形 语言符号 语言 a ∥ba ∥αα∥β相交 关系图形 语言符号 语言 a ∩b =Aa ∩α=Aα∩β=l 独有关系 图形 语言符号 语言a ,b 是异面直线a ⊂α3.异面直线所成的角(1)定义:设a ,b 是两条异面直线,经过空间中任一点O 作直线a ′∥a ,b ′∥b ,把a ′与b ′所成的锐角或直角叫做异面直线a 与b 所成的角.(2)范围:(0,π2』.4.平行公理平行于同一条直线的两条直线平行. 5.等角定理空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.1.(人教A 版教材习题改编)下列命题正确的个数为( )①梯形可以确定一个平面;②若两条直线和第三条直线所成的角相等,则这两条直线平行;③两两相交的三条直线最多可以确定三个平面;④如果两个平面有三个公共点,则这两个平面重合.A .0B .1C .2D .3『解析』 ②中两直线可以平行、相交或异面,④中若三个点在同一条直线上,则两个平面相交,①③正确.『答案』 C2.已知a 、b 是异面直线,直线c ∥直线a ,那么c 与b ( ) A .一定是异面直线 B .一定是相交直线 C .不可能是平行直线 D .不可能是相交直线『解析』 若c ∥b ,∵c ∥a ,∴a ∥b ,与a ,b 异面矛盾. ∴c ,b 不可能是平行直线. 『答案』 C3.平行六面体ABCD —A 1B 1C 1D 1中,既与AB 共面也与CC 1共面的棱的条数为( ) A .3 B .4 C .5 D .6『解析』 与AB 平行,CC 1相交的直线是CD 、C 1D 1;与CC 1平行、AB 相交的直线是BB 1,AA 1;与AB 、CC 1都相交的直线是BC ,故选C.『答案』 C4.(2013·宁波模拟)若直线l 不平行于平面α,且l ⊄α,则( ) A .α内的所有直线与l 异面 B .α内不存在与l 平行的直线 C .α内存在唯一的直线与l 平行 D .α内的直线与l 都相交『解析』 由题意知,直线l 与平面α相交,则直线l 与平面α内的直线只有相交和异面两种位置关系,因而只有选项B 是正确的.『答案』 B图7-3-15.(2012·四川高考)如图7-3-1,在正方体ABCD -A 1B 1C 1D 1中,M 、N 分别是棱CD 、CC 1的中点,则异面直线A 1M 与DN 所成的角的大小是________.『解析』 如图,取CN 的中点K ,连接MK ,则MK 为△CDN 的中位线,所以MK ∥DN .所以∠A 1MK 为异面直线A 1M 与DN 所成的角.连接A 1C 1,AM .设正方体棱长为4,则A 1K =(42)2+32=41,MK =12DN =1242+22=5,A 1M =42+42+22=6,∴A 1M 2+MK 2=A 1K 2,∴∠A 1MK =90°. 『答案』 90°平面的基本性质图7-3-2如图7-3-2所示,四边形ABEF 和ABCD 都是梯形,BC 綊12AD ,BE 綊12F A ,G 、H 分别为F A 、FD 的中点.(1)证明:四边形BCHG 是平行四边形; (2)C 、D 、F 、E 四点是否共面?为什么? 『思路点拨』 (1)证明GH 綊BC 即可. (2)法一 证明D 点在EF 、CH 确定的平面内.法二 延长FE 、DC 分别与AB 交于M ,M ′,可证M 与M ′重合,从而FE 与DC 相交证得四点共面.『尝试解答』 (1)由已知FG =GA ,FH =HD , 得GH 綊12AD .又BC 綊12AD ,∴GH 綊BC ,∴四边形BCHG 是平行四边形. (2)法一 由BE 綊12AF ,G 为F A 中点知BE 綊GF , ∴四边形BEFG 为平行四边形, ∴EF ∥BG . 由(1)知BG ∥CH , ∴EF ∥CH , ∴EF 与CH 共面.又D ∈FH ,∴C 、D 、F 、E 四点共面.法二 如图所示,延长FE ,DC 分别与AB 交于点M ,M ′, ∵BE 綊12AF ,∴B 为MA 中点, ∵BC 綊12AD ,∴B 为M ′A 中点,∴M 与M ′重合,即FE 与DC 交于点M (M ′), ∴C 、D 、F 、E 四点共面.,1.解答本题的关键是平行四边形、中位线性质的应用.2.证明共面问题的依据是公理2及其推论,包括线共面,点共面两种情况,常用方法有:(1)直接法:证明直线平行或相交,从而证明线共面.(2)纳入平面法:先确定一个平面,再证明有关点、线在此平面内.(3)辅助平面法:先证明有关的点、线确定平面α,再证明其余元素确定平面β,最后证明平面α、β重合.图7-3-3已知:空间四边形ABCD (如图7-3-3所示),E 、F 分别是AB 、AD 的中点,G 、H 分别是BC 、CD 上的点,且CG =13BC ,CH =13DC .求证:(1)E 、F 、G 、H 四点共面;(2)三直线FH 、EG 、AC 共点.『证明』 (1)连接EF 、GH , ∵E 、F 分别是AB 、AD 的中点, ∴EF ∥BD .又∵CG =13BC ,CH =13DC ,∴GH ∥BD , ∴EF ∥GH ,∴E 、F 、G 、H 四点共面.(2)易知FH 与直线AC 不平行,但共面, ∴设FH ∩AC =M ,∴M ∈平面EFHG ,M ∈平面ABC . 又∵平面EFHG ∩平面ABC =EG , ∴M ∈EG ,∴FH 、EG 、AC 共点.空间两条直线的位置关系图7-3-4(1)如图7-3-4,在正方体ABCD —A 1B 1C 1D 1中,M ,N 分别是BC 1,CD 1的中点,则下列判断错误的是( )A .MN 与CC 1垂直B .MN 与AC 垂直 C .MN 与BD 平行 D .MN 与A 1B 1平行(2)在图中,G 、N 、M 、H 分别是正三棱柱的顶点或所在棱的中点,则表示直线GH 、MN 是异面直线的图形有________.(填上所有正确答案的序号)图7-3-5『思路点拨』(1)连接B1C,则点M是B1C的中点,根据三角形的中位线,证明MN ∥B1D1.(2)先判断直线GH、MN是否共面,若不共面再利用异面直线的判定定理判定.『尝试解答』(1)连接B1C,B1D1,则点M是B1C的中点,MN是△B1CD1的中位线,∴MN∥B1D1,∵CC1⊥B1D1,AC⊥B1D1,BD∥B1D1,∴MN⊥CC1,MN⊥AC,MN∥BD.又∵A1B1与B1D1相交,∴MN与A1B1不平行,故选D.(2)图①中,直线GH∥MN;图②中,G、H、N三点共面,但M∉面GHN,因此直线GH与MN异面;图③中,连接MG,GM∥HN,因此GH与MN共面;图④中,G、M、N共面,但H∉面GMN,因此GH与MN异面.所以图②、④中GH与MN异面.『答案』(1)D(2)②④,1.判定空间两条直线是异面直线的方法(1)判定定理:平面外一点A与平面内一点B的连线和平面内不经过该点B的直线是异面直线.(2)反证法:证明两线不可能平行、相交或证明两线不可能共面,从而可得两线异面.2.对于线线垂直,往往利用线面垂直的定义,由线面垂直得到线线垂直.3.画出图形进行判断,可化抽象为直观.图7-3-6如图7-3-6所示,正方体ABCD —A 1B 1C 1D 1中,M 、N 分别为棱C 1D 1、C 1C 的中点,有以下四个结论:①直线AM 与CC 1是相交直线; ②直线AM 与BN 是平行直线; ③直线BN 与MB 1是异面直线; ④直线MN 与AC 所成的角为60°.其中正确的结论为________(注:把你认为正确的结论序号都填上).『解析』 由图可知AM 与CC 1是异面直线,AM 与BN 是异面直线,BN 与MB 1为异面直线.因为D 1C ∥MN ,所以直线MN 与AC 所成的角就是D 1C 与AC 所成的角,且角为60°.『答案』 ③④异面直线所成的角图7-3-7(2012·上海高考改编题)如图7-3-7,在三棱锥P —ABC 中,P A ⊥底面ABC ,D 是PC 的中点.已知∠BAC =π2,AB =2,AC =23,P A =2.求:(1)三棱锥P —ABC 的体积;(2)异面直线BC 与AD 所成角的余弦值.『思路点拨』 (1)直接根据锥体的体积公式求解.(2)取PB 的中点,利用三角形的中位线平移BC 得到异面直线所成的角.(或其补角) 『尝试解答』 (1)S △ABC =12×2×23=23,三棱锥P ABC 的体积为 V =13S △ABC ·P A =13×23×2=433.(2)如图,取PB 的中点E ,连接DE ,AE ,则ED ∥BC ,所以∠ADE (或其补角)是异面直线BC 与AD 所成的角.在△ADE 中,DE =2,AE =2,AD =2,cos ∠ADE =22+22-22×2×2=34.,1.求异面直线所成的角常用方法是平移法,平移的方法一般有三种类型:利用图中已有的平行线平移;利用特殊点(线段的端点或中点)作平行线平移;补形平移. 2.求异面直线所成的角的三步曲为:即“一作、二证、三求”.其中空间选点任意,但要灵活,经常选择“端点、中点、等分点”,通过作三角形的中位线,平行四边形等进行平移,作出异面直线所成角,转化为解三角形问题,进而求解.3.异面直线所成的角范围是(0,π2』.直三棱柱ABC —A 1B 1C 1中,若∠BAC =90°,AB =AC =AA 1,则异面直线BA 1与AC 1所成的角等于( )A .30°B .45°C .60°D .90°『解析』 分别取AB 、AA 1、A 1C 1的中点D 、E 、F ,则BA 1∥DE ,AC 1∥EF . 所以异面直线BA 1与AC 1所成的角为∠DEF (或其补角), 设AB =AC =AA 1=2,则DE =EF =2,DF =6,由余弦定理得,∠DEF =120°. 『答案』 C两种方法异面直线的判定方法:(1)判定定理:平面外一点A与平面内一点B的连线和平面内不经过该点的直线是异面直线.(2)反证法:证明两直线不可能平行、相交或证明两直线不可能共面,从而可得两直线异面.三个作用1.公理1的作用:(1)检验平面;(2)判断直线在平面内;(3)由直线在平面内判断直线上的点在平面内;(4)由直线的直刻画平面的平.2.公理2的作用:公理2及其推论给出了确定一个平面或判断“直线共面”的方法.3.公理3的作用:(1)判定两平面相交;(2)作两平面相交的交线;(3)证明多点共线.空间点、直线、平面的位置关系是立体几何的理论基础,高考常设置选择题或填空题,考查直线、平面位置关系的判断和异面直线所成的角的求法.在判断线、面位置关系时,有时可以借助常见的几何体做出判断.思想方法之十三借助正方体判定线面位置关系(2012·四川高考)下列命题正确的是()A.若两条直线和同一个平面所成的角相等,则这两条直线平行B.若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C.若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D.若两个平面都垂直于第三个平面,则这两个平面平行『解析』如图,正方体ABCD—A1B1C1D1中,A1D与D1A和平面ABCD所成的角都是45°,但A1D与D1A不平行,故A错;在平面ABB1A1内,直线A1B1上有无数个点到平面ABCD的距离相等,但平面ABB1A1与平面ABCD不平行,故B错;平面ADD1A1与平面DCC1D1和平面ABCD都垂直,但两个平面相交,故D错,从而C正确.『答案』C易错提示:(1)盲目和平面内平行线的判定定理类比,从而误选A.(2)不会利用正方体作出判断,考虑问题不全面,从而误选B或D.防范措施:(1)对公理、定理的条件与结论要真正搞清楚,以便做到准确应用,类比得到的结论不一定正确,要想应用,必须证明.(2)点、线、面之间的位置关系可借助长方体为模型,以长方体为主线直观感知并认识空间点、线、面的位置关系,准确判定线线平行、线线垂直、线面平行、线面垂直、面面平行、面面垂直.1.(2013·济南模拟)l1,l2,l3是空间三条不同的直线,则下列命题正确的是()A.l1⊥l2,l2⊥l3⇒l1⊥l3B.l1⊥l2,l2∥l3⇒l1⊥l3C.l1∥l2∥l3⇒l1,l2,l3共面D.l1,l2,l3共点⇒l1,l2,l3共面『解析』如图长方体ABCD—A1B1C1D1中,AB⊥AD,CD⊥AD但有AB∥CD,因此A不正确;又AB∥DC∥A1B1,但三线不共面,因此C不正确;又从A出发的三条棱不共面,所以D不正确;因此B正确,且由线线平行和垂直的定义易知B正确.『答案』B2.(2012·大纲全国卷)已知正方体ABCD-A1B1C1D1中,E、F分别为BB1、CC1的中点,那么异面直线AE与D1F所成角的余弦值为________.『解析』连接DF,则AE∥DF,∴∠D1FD即为异面直线AE与D1F所成的角.设正方体棱长为a , 则D 1D =a ,DF =52a ,D 1F =52a , ∴cos ∠D 1FD =(52a )2+(52a )2-a 22·52a ·52a =35. 『答案』 35。
高考数学一轮复习统考 第8章 立体几何 第3讲 空间点、直线、平面之间的位置关系学案(含解析)北师大

第3讲 空间点、直线、平面之间的位置关系基础知识整合1.平面的基本性质公理101两点在一个平面内,那么这条直线就在此平面内. 公理2:经过02不在同一直线上的三点,有且只有一个平面.公理3:如果两个不重合的平面有一个公共点,那么它们有03且只有一条过04该点的公共直线.2.用集合语言描述点、线、面间的关系 (1)点与平面的位置关系:点A 在平面α内记作05A ∈α,点A 不在平面α06A ∉α. (2)点与直线的位置关系点A 在直线l 07A ∈l ,点A 不在直线l 08A ∉l .(3)线面的位置关系:直线l 在平面α内记作09l ⊂α,直线l 不在平面α内记作10l ⊄α.(4)平面α与平面β相交于直线a 11α∩β=a . (5)直线l 与平面α相交于点A 12l ∩α=A . (6)直线a 与直线b 相交于点A 13a ∩b =A . 3.直线与直线的位置关系 (1)位置关系的分类⎩⎪⎨⎪⎧共面直线14平行,15相交.16任何一个平面内的两条直线.(2)空间平行线的传递性公理417互相平行.(3)定理:空间中如果两个角的两边分别对应平行,那么这两个角18相等或互补.(4)异面直线所成的角①定义:设a,b是两条异面直线,经过空间任一点O作直线a′∥a,b′∥b,把a′与b′所成的19锐角(或直角)叫做异面直线a与b所成的角(或夹角).②范围:20(0°,90°].4.空间直线与平面、平面与平面之间的位置关系位置关系图形语言符号语言公共点直线与平面相交a∩α=A 1个平行a∥α0个在平面内a⊂α无数个平面与平面,平行个α∥β0个相交α∩β=l,无数个1.公理2的三个推论推论1:经过一条直线和这条直线外一点有且只有一个平面;推论2:经过两条相交直线有且只有一个平面;推论3:经过两条平行直线有且只有一个平面.2.异面直线判定的一个方法过平面外一点和平面内一点的直线,与平面内不过该点的直线是异面直线.1.若直线a⊥b,且直线a∥平面α,则直线b与平面α的位置关系是( )A.b⊂αB.b∥αC.b⊂α或b∥αD.b与α相交或b⊂α或b∥α答案 D解析b与α相交或b⊂α或b∥α都可以.2.(2019·福州质检)已知命题p:a,b为异面直线,命题q:直线a,b不相交,则p 是q的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件答案 A解析若直线a,b不相交,则a,b平行或异面,所以p是q的充分不必要条件,故选A.3.设A,B,C,D是空间四个不同的点,在下列命题中,不正确的是( )A.若AC与BD共面,则AD与BC共面B.若AC与BD是异面直线,则AD与BC是异面直线C.若AB=AC,DB=DC,则AD⊥BCD.若AB=AC,DB=DC,则AD=BC答案 D解析A,B,C,D构成的四边形可能为平面四边形,也可能为空间四边形,D不成立.4.已知异面直线a,b分别在平面α,β内,且α∩β=c,那么直线c一定( ) A.与a,b都相交B.只能与a,b中的一条相交C.至少与a,b中的一条相交D.与a,b都平行答案 C解析由题意易知,c与a,b都可相交,也可只与其中一条相交,故A,B均错误;若c 与a,b都不相交,则c与a,b都平行,根据公理4,知a∥b,与a,b为异面直线矛盾,D 错误.故选C.5.设a,b,c是空间中的三条直线,下面给出四个命题:①若a∥b,b∥c,则a∥c;②若a⊥b,b⊥c,则a∥c;③若a与b相交,b与c相交,则a与c相交;④若a⊂平面α,b⊂平面β,则a,b一定是异面直线.上述命题中错误的是________(写出所有错误命题的序号).答案②③④解析由公理4知①正确;当a⊥b,b⊥c时,a与c可以相交、平行或异面,故②错误;当a与b相交,b与c相交时,a与c可以相交、平行,也可以异面,故③错误;a⊂α,b⊂β,并不能说明a与b“不同在任何一个平面内”,故④错误.故填②③④.6.(2019·河南南阳模拟)如图,在四棱锥P-ABCD中,O为CD上的动点,V P-OAB恒为定值,且△PDC是正三角形,则直线PD与直线AB所成角的大小是________.答案60°解析因为V P-OAB为定值,所以S△ABO为定值,即O到线AB的距离为定值.因为O为CD上的动点,所以CD∥AB.所以∠PDC即为异面直线PD与AB所成的角.因为△PDC为等边三角形,所以∠PDC=60°.所以直线PD与直线AB所成的角为60°.核心考向突破考向一平面基本性质的应用例1 如图所示,在正方体ABCD-A1B1C1D1中,E,F分别是AB和AA1的中点.求证:(1)E,C,D1,F四点共面;(2)CE,D1F,DA三线共点.证明(1)如图所示,连接EF ,CD 1,A 1B .∵E ,F 分别是AB ,AA 1的中点,∴EF ∥A 1B . 又A 1B ∥CD 1,∴EF ∥CD 1. ∴E ,C ,D 1,F 四点共面. (2)∵EF ∥CD 1,EF <CD 1,∴直线CE 与直线D 1F 必相交,设交点为P . 则由P ∈CE ,CE ⊂平面ABCD ,得P ∈平面ABCD . 同理P ∈平面ADD 1A 1.又平面ABCD ∩平面ADD 1A 1=DA ,∴P ∈直线DA ,∴CE ,D 1F ,DA 三线共点.1.证明点或线共面问题的两种方法(1)首先由所给条件中的部分线(或点)确定一个平面,然后再证其余的线(或点)在这个平面内;(2)将所有条件分为两部分,然后分别确定平面,再证两平面重合. 2.证明点共线问题的两种方法(1)先由两点确定一条直线,再证其他各点都在这条直线上; 3.证明线共点问题的常用方法先证其中两条直线交于一点,再证其他直线经过该点.提醒:点共线、线共点等都是应用公理3,证明点为两平面的公共点,即证明点在交线上.[即时训练] 1.如图,空间四边形ABCD 中,E ,F 分别是AB ,AD 的中点,G ,H 分别在BC ,CD 上,且BG ∶GC =DH ∶HC =1∶2.(1)求证:E ,F ,G ,H 四点共面;(2)设直线EG 与直线FH 交于点P .求证:P ,A ,C 三点共线. 证明 (1)∵E ,F 分别为AB ,AD 的中点,∴EF ∥BD . 在△BCD 中,BG GC =DH HC =12,∴GH ∥BD ,∴EF ∥GH ,∴E ,F ,G ,H 四点共面.(2)由(1)知EF 綊12BD ,GH 綊23BD .∴四边形FEGH 为梯形, ∴直线GE 与直线HF 交于一点, 设EG ∩FH =P ,P ∈EG ,EG ⊂平面ABC , ∴P ∈平面ABC .同理P ∈平面ADC . ∴P 为平面ABC 与平面ADC 的公共点, 又平面ABC ∩平面ADC =AC , ∴P ∈AC ,∴P ,A ,C 三点共线. 精准设计考向,多角度探究突破 考向二 空间两条直线的位置关系 角度1 两条直线位置关系的判定例2 (1)(2019·全国卷Ⅲ)如图,点N 为正方形ABCD 的中心,△ECD 为正三角形,平面ECD ⊥平面ABCD ,M 是线段ED 的中点,则( )A .BM =EN ,且直线BM ,EN 是相交直线B .BM ≠EN ,且直线BM ,EN 是相交直线C .BM =EN ,且直线BM ,EN 是异面直线D .BM ≠EN ,且直线BM ,EN 是异面直线 答案 B解析 如图,取CD 的中点F ,DF 的中点G ,连接EF ,FN ,MG ,GB ,BD ,BE .∵点N 为正方形ABCD 的中心, ∴点N 在BD 上,且为BD 的中点. ∵△ECD 是正三角形,∴EF ⊥CD .∵平面ECD ⊥平面ABCD ,∴EF ⊥平面ABCD . ∴EF ⊥FN .不妨设AB =2,则FN =1,EF =3, ∴EN =FN 2+EF 2=2.∵EM =MD ,DG =GF ,∴MG ∥EF , ∴MG ⊥平面ABCD ,∴MG ⊥BG .∵MG =12EF =32,BG =CG 2+BC 2=⎝ ⎛⎭⎪⎫322+22=52,∴BM =MG 2+BG 2=7.∴BM ≠EN . ∵BM ,EN 都是△DBE 的中线, ∴BM ,EN 必相交.故选B.(2)(2019·贵州六盘水模拟)α是一个平面,m ,n 是两条直线,A 是一个点,若m ⊄α,n ⊂α,且A ∈m ,A ∈α,则m ,n 的位置关系不可能是( )A .垂直B .相交C .异面D .平行答案 D解析 ∵α是一个平面,m ,n 是两条直线,A 是一个点,m ⊄α,n ⊂α,A ∈m ,A ∈α,∴n 在平面α内,m 与平面α相交,A 是m 和平面α的交点,∴m 和n 异面或相交,也可能异面垂直或相交垂直,但一定不平行.故选D.角度2 异面直线的判定例3 (2019·许昌模拟)如下图,G ,H ,M ,N 分别是正三棱柱的顶点或所在棱的中点,则表示直线GH ,MN 是异面直线的图形有________.答案 ②④解析 ①中GH ∥MN ;③中GM ∥HN 且GM ≠HN ,所以直线GH 与MN 必相交;②④中直线GH 与MN 是异面直线.[即时训练] 2.(2019·太原期末)已知平面α和直线l,则α内至少有一条直线与l( )A.平行B.相交C.垂直D.异面答案 C解析直线l与平面α斜交时,在平面α内不存在与l平行的直线,∴A错误;当l ⊂α时,在平面α内不存在与l异面的直线,∴D错误;当l∥α时,在平面α内不存在与l相交的直线,∴B错误.无论哪种情形在平面α内都有无数条直线与l垂直.故选C.3.如图所示,正方体ABCD-A1B1C1D1中,M,N分别为棱C1D1,CC1的中点,有以下四个结论:①直线AM与CC1是相交直线;②直线AM与BN是平行直线;③直线BN与MB1是异面直线;④直线AM与DD1是异面直线.其中正确的结论为________(写出所有正确结论的序号).答案③④解析因为点A在平面CDD1C1外,点M在平面CDD1C1内,直线CC1在平面CDD1C1内,CC1不过点M,所以AM与CC1是异面直线,故①错;取DD1的中点E,连接AE,则BN∥AE,但AE与AM相交,故②错;因为B1与BN都在平面BCC1B1内,M在平面BCC1B1外,BN不过点B1,所以BN与MB1是异面直线,故③正确;同理④正确,故填③④.考向三异面直线所成的角例4 (1)如图所示,在正三棱柱ABC-A1B1C1中,D是AC的中点,AA1∶AB=2∶1,则异面直线AB1与BD所成的角为________.答案60°解析取A1C1的中点E,连接B1E,ED,AE.在Rt△AB1E中,∠AB1E为异面直线AB1与BD所成的角.设AB=1,则A1A=2,AB1=3,B1E=32,因为B1E⊥A1C1,平面A1B1C1⊥平面AA1C1C,平面A1B1C1∩平面AA1C1C=A1C1,所以B1E⊥平面AA1C1C,又AE⊂平面AA1C1C,所以B1E⊥AE,所以cos∠AB1E=12,故∠AB1E=60°.(2)正六棱柱ABCDEF-A1B1C1D1E1F1的底面边长为1,侧棱长为2,则这个棱柱的侧面对角线E1D与BC1所成的角是________.答案60°解析如图所示,连接A1B,可知A1B∥E1D,∴∠A1BC1是异面直线E1D与BC1所成的角.连接A1C1,可求得A1C1=C1B=BA1=3,∴∠A1BC1=60°,即侧面对角线E1D与BC1所成的角是60°.求异面直线所成角的方法(1)求异面直线所成角的常用方法是平移法.平移的方法一般有三种类型:利用图中已有的平行线平移;利用特殊点(线段的端点或中点)作平行线平移;补形平移.(2)求异面直线所成角的三步曲:“一作、二证、三求”.①一作:根据定义作平行线,作出异面直线所成的角. ②二证:证明作出的角是异面直线所成的角.③三求:解三角形,求出作出的角.如果求出的角是锐角或直角,则它就是要求的角;如果求出的角是钝角,则它的补角才是要求的角.④其中空间选点任意,但要灵活,经常选择“端点、中点、等分点”,通过作三角形的中位线,平行四边形等进行平移,作出异面直线所成的角,转化为解三角形问题,进而求解.[即时训练] 4.如图,在三棱锥D -ABC 中,AC =BD ,且AC ⊥BD ,E ,F 分别是棱DC ,AB 的中点,则EF 与AC 所成的角等于( )A .30°B .45°C .60°D .90°答案 B解析 如图所示,取BC 的中点G ,连接FG ,EG . ∵E ,F 分别为CD ,AB 的中点, ∴FG ∥AC ,EG ∥BD , 且FG =12AC ,EG =12BD .∴∠EFG 为EF 与AC 所成的角. ∵AC =BD ,∴FG =EG .∵AC ⊥BD ,∴FG ⊥EG ,∴∠FGE =90°, ∴△EFG 为等腰直角三角形,∴∠EFG =45°,即EF 与AC 所成的角为45°.故选B.5.(2019·湖南常德模拟)如图,在正方体ABCD -A 1B 1C 1D 1中,点E ,F 分别在A 1D ,AC 上,且A 1E =2ED ,CF =2FA ,则EF 与BD 1的位置关系是( )A .相交但不垂直B .相交且垂直C .异面D .平行答案 D解析 连接D 1E 并延长,与AD 交于点M ,则△MDE ∽△D 1A 1E ,因为A 1E =2ED ,所以M 为AD 的中点.连接BF 并延长,交AD 于点N ,同理可得,N 为AD 的中点.所以M ,N 重合,又ME ED 1=12,MF BF =12,所以ME ED 1=MF BF ,所以EF ∥BD 1.(2018·全国卷Ⅱ)在长方体ABCD -A 1B 1C 1D 1中,AB =BC =1,AA 1=3,则异面直线AD 1与DB 1所成角的余弦值为( )A.15B.56C.55D.22答案 C解析 解法一:如图,补上一相同的长方体CDEF -C 1D 1E 1F 1,连接DE 1,B 1E 1.易知AD 1∥DE 1,则∠B 1DE 1为异面直线AD 1与DB 1所成角.因为在长方体ABCD -A 1B 1C 1D 1中,AB =BC =1,AA 1=3,所以DE 1=DE 2+EE 21=12+32=2,DB 1= 12+12+32=5,B 1E 1= A 1B 21+A 1E 21=12+22=5,在△B 1DE 1中,由余弦定理,得cos ∠B 1DE 1=22+52-522×2×5=55,即异面直线AD 1与DB 1所成角的余弦值为55,故选C.解法二:如图,连接BD 1,交DB 1于O ,取AB 的中点M ,连接DM ,OM ,易知O 为BD 1的中点,所以AD 1∥OM ,则∠MOD 为异面直线AD 1与DB 1所成角.因为在长方体ABCD -A 1B 1C 1D 1中,AB =BC =1,AA 1=3,AD 1=AD 2+DD 21=2,DM =AD 2+⎝ ⎛⎭⎪⎫12AB 2=52,DB 1=AB 2+AD 2+DD 21=5,所以OM =12AD 1=1,OD =12DB 1=52,于是在△DMO 中,由余弦定理,得cos ∠MOD =12+⎝ ⎛⎭⎪⎫522-⎝ ⎛⎭⎪⎫5222×1×52=55,即异面直线AD 1与DB 1所成角的余弦值为55,故选C. 解法三:以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,如图所示.由条件可知D (0,0,0),A (1,0,0),D 1(0,0,3),B 1(1,1,3),所以AD 1→=(-1,0,3),DB 1→=(1,1,3),则由向量夹角公式,得cos 〈AD 1→,DB 1→〉=AD 1→·DB 1→|AD 1→|·|DB 1→|=225=55,即异面直线AD 1与DB 1所成角的余弦值为55,故选C. 答题启示 (1)当异面直线所成的角不易作出或难于计算时,可考虑使用补形法.(2)补形法的目的是平移某一条直线,使之与另一条相交,常见的补形方法是对称补形.对点训练(2017·全国卷Ⅱ)已知直三棱柱ABC -A 1B 1C 1中,∠ABC =120°,AB =2,BC =CC 1=1,则异面直线AB 1与BC 1所成角的余弦值为( )A.32B.155C.105D.33答案 C解析 解法一:如图所示,将直三棱柱ABC -A 1B 1C 1补成直四棱柱ABCD -A 1B 1C 1D 1,连接AD 1,B 1D 1,则AD 1∥BC 1,所以∠B 1AD 1或其补角为异面直线AB 1与BC 1所成的角.因为∠ABC =120°,AB =2,BC =CC 1=1,所以AB 1=5,AD 1= 2.在△B 1D 1C 1中,∠B 1C 1D 1=60°,B 1C 1=1,D 1C 1=2,所以B 1D 1=12+22-2×1×2×cos60°=3,5+2-3 2×5×2=105,故选C.所以cos∠B1AD1=解法二:如图,设M ,N ,P 分别为AB ,BB 1,B 1C 1的中点,连接MN ,NP ,MP ,则MN ∥AB 1,NP ∥BC 1,所以∠PNM 或其补角为异面直线AB 1与BC 1所成的角.易知MN =12AB 1=52,NP =12BC 1=22.取BC 的中点Q ,连接PQ ,MQ ,可知△PQM 为直角三角形,PQ =1,MQ =12AC .在△ABC 中,AC 2=AB 2+BC 2-2AB ·BC ·cos ∠ABC =4+1-2×2×1×⎝ ⎛⎭⎪⎫-12=7,所以AC =7,MQ =72. 在Rt △MQP 中,MP =MQ 2+PQ 2=112,则在△PMN 中,cos ∠PNM =MN 2+NP 2-PM 22·MN ·NP =⎝ ⎛⎭⎪⎫522+⎝ ⎛⎭⎪⎫222-⎝ ⎛⎭⎪⎫11222×52×22=-105,所以异面直线AB 1与BC 1所成角的余弦值为105.故选C.解法三:作BH ⊥AC ,H 为垂足.以H 为坐标原点,HB →方向为x 轴正方向,建立空间直角坐标系.由已知可得|BH |=217,|AH |=577,|CH |=277, 则A ⎝ ⎛⎭⎪⎫0,-577,0,B ⎝ ⎛⎭⎪⎫217,0,0, B 1⎝ ⎛⎭⎪⎫217,0,1,C 1⎝ ⎛⎭⎪⎫0,277,1, 从而AB 1→=⎝ ⎛⎭⎪⎫217,577,1,BC 1→=⎝ ⎛⎭⎪⎫-217,277,1, cos 〈AB 1→,BC 1→〉=105.故选C.。
2013届高考数学一轮复习同步训练 第42讲《空间两直线》文 北师大版必修2

课时作业(四十二) [第42讲空间两直线][时间:45分钟分值:100分]基础热身1.已知a、b是异面直线,直线c∥直线a,则c与b( )A.一定是异面直线B.一定是相交直线C.不可能是平行直线D.不可能是相交直线2.已知E,F,G,H是空间四点,命题甲:E,F,G,H四点不共面,命题乙:直线EF和GH不相交,则甲是乙的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.在空间四边形ABCD中,M、N分别是AB、CD的中点,设BC+AD=2a,则MN与a的大小关系是( )A.MN>a B.MN=aC.MN<a D.不能确定4.[2011·临沂模拟] 如图K42-1,正方体ABCD-A1B1C1D1中,M、N分别为棱C1D1、C1C 的中点,有以下四个结论:①直线AM与CC1是相交直线;②直线AM与BN是平行直线;③直线BN与MB1是异面直线;④直线AM与DD1是异面直线.其中正确的结论为________(注:把你认为正确的结论的序号都填上).能力提升5.[2011·福州二检] 给出下列四个命题:①没有公共点的两条直线平行;②互相垂直的两条直线是相交直线;③既不平行也不相交的直线是异面直线;④不同在任一平面内的两条直线是异面直线.其中正确命题的个数是( )A.1 B.2 C.3 D.46.[2011·济宁一模] 已知空间中有三条线段AB、BC和CD,且∠ABC=∠BCD,那么直线AB与CD的位置关系是( )A.AB∥CDB.AB与CD异面C.AB与CD相交D.AB∥CD或AB与CD异面或AB与CD相交7.正四面体P-ABC中,M为棱AB的中点,则PA与CM所成角的余弦值为( )图K42-2A.32B.34C.36D.338.已知异面直线a,b互相垂直,定点P不在直线a,b上,若过P点的直线l与a成25°角,则l与b所成角θ的取值范围为( )A.[0°,45°) B.[65°,90°]C.[45°,90°) D.(0°,25°]9.如图K42-3是正方体的平面展开图,在这个正方体中,①BM与ED平行;②CN与BE 是异面直线;③CN与BM成60°角;④DM与BN垂直,以上命题中,正确的序号是( )A.①②③ B.②④ C.③④ D.②③④10.在空间中,①若四点不共面,则这四点中任何三点都不共线;②若两条直线没有公共点,则这两条直线是异面直线.以上两个命题中,逆命题为真命题的是________.(把符合要求的命题序号都填上) 11.ABCD与CDEF是两个全等的正方形,且两个正方形所在平面互相垂直,则DF与AC所成角的大小为________.12.若两条异面直线所成的角为60°,则称这对异面直线为“黄金异面直线对”,在连接正方体各顶点的所有直线中,“黄金异面直线对”共有________对.13.在图K42-4中,G、H、M、N分别是正三棱柱的顶点或所在棱的中点,则表示直线GH、MN是异面直线的图形有________.(填上所有正确答案的序号)K42-14.(10分)如图K42-5所示,已知E、F分别是正方体ABCD-A1B1C1D1的棱AA1和棱CC1的中点.试判断四边形EBFD1的形状.15.(13分)[2011·长宁期末] 若四棱锥P -ABCD 的底面是边长为2的正方形,PA ⊥底面ABCD (如图K42-6),且PA =2 3.(1)求异面直线PD 与BC 所成角的大小; (2)求四棱锥P -ABCD 的体积.难点突破16.(12分)已知:如图K42-7,空间四边形ABCD 中,E 、H 分别是边AB 、AD 上的点,F 、G 分别是边BC 、CD 上的点,且AE AB =AH AD =λ,CF CB =CGCD=μ(0<λ、μ<1),试判断FE 、GH 与AC的位置关系.课时作业(四十二)【基础热身】1.C [解析] c 与b 不可能是平行直线,否则与条件矛盾.2.A [解析] 直线EF 和GH 不相交,则EF 与GH 平行或异面,故E 、F 、G 、H 四点可能共面.3.C [解析] 取AC 中点E ,则ME ∥BC ,且ME =12BC ,NE ∥AD ,且NE =12AD .∴BC +AD =2(ME +NE )=2a ,在△MNE 中,MN <ME +NE )=a .故选C.4.③④ [解析] 由已知:①错.因为AM 与CC 1为异面直线;②错,因为若AM ∥BN ,则取DD 1中点G ,连接AG ,由AG ∥BN 可得AM ∥AG ,这与AM 和AG 相交矛盾.③④正确.【能力提升】5.B [解析] 没有公共点的两条直线平行或异面,故命题①错;互相垂直的两条直线相交或异面,故命题②错;③④显然正确.6.D [解析] 若三条线段共面,如果AB ,BC ,CD 构成等腰三角形,则直线AB 与CD 相交,否则直线AB ∥CD ;若不共面,则直线AB 与CD 是异面直线,故选D.7.C [解析] 如图,取PB 中点N ,连接CN 、MN ,则MN ∥PA ,故∠CMN 为PA 与CM 所成的角(或所成角的补角), 设PA =2,则CM =3,MN =1,CN =3,∴cos ∠CMN =CM 2+MN 2-CN 22CM ·MN =36,故选C.8.B [解析] 将异面直线a ,b 平移至相交于P 点,当平移后的直线a ,b 与l 这三条直线在同一平面内时,θ取得最小值65°,当b 垂直于a ,l 所在的平面时,θ取得最大值90°.9.C [解析] 首先将展开图还原(如图),然后可利用排除法,容易观察出命题①②都是错误的,通过观察选择支,即可知选择C.10.② [解析] 对于①可举反例,如AB ∥CD ,A 、B 、C 、D 没有三点共线,但A 、B 、C 、D 共面.对于②由异面直线定义知正确,故填②.11.π3[解析] 如图,将该图补成一个正方体,则AG ∥DF ,则∠CAG 即为DF 与AC 所成的角,由AG =AC =CG 知,∠CAG =π3.12.24 [解析] 正方体如图,若要出现所成角为60°的异面直线,则直线必须是面对角线,以AC 为例,与之构成黄金异面直线对的直线有4条,分别是A ′B ,BC ′,A ′D ,C ′D ,正方体的面对角线有12条,所以所求的黄金异面直线对共有12×42=24对(每一对被计算两次,所以记好要除以2).13.②④ [解析] 图①中,直线GH ∥MN ; 图②中,G 、H 、N 三点共面,但M ⊄面GHN , 因此直线GH 与MN 异面;图③中,连接MG ,GM ∥HN ,因此GH 与MN 共面; 图④中,G 、M 、N 共面,但H ⊄面GMN , ∴GH 与MN 异面.所以图②④中GH 与MN 异面.14.[解答] 如图,取BB 1的中点M ,连接A 1M 、MF .∵M 、F 分别是BB 1、CC 1的中点, ∴MF 綊B 1C 1.在正方体ABCD -A 1B 1C 1D 1中,有A 1D 1綊B 1C 1, ∴MF 綊A 1D 1,∴四边形A 1MFD 1是平行四边形, ∴A 1M ∥D 1F .又E 、M 分别是AA 1、BB 1的中点, ∴A 1E 綊BM ,∴四边形A 1EBM 为平行四边形, ∴EB ∥A 1M ,故EB ∥D 1F . 同理BF ∥ED 1,∴四边形EBFD 1是平行四边形. 又Rt △EAB ≌Rt △FCB ,∴BE =BF ,故四边形EBFD 1为菱形.15.[解答] (1)∵AD ∥BC ,∴∠PDA 的大小即为异面直线PD 与BC 所成角的大小. ∵PA ⊥平面ABCD ,∴PA ⊥AD ,由PA =23,AD =2,得tan ∠PDA =3,∴∠PDA =60°, 故异面直线PD 与BC 所成角的大小为60°. (2)∵PA ⊥平面ABCD ,∴V P -ABCD =13S 正方形ABCD ·PA =13×22×23=833.【难点突破】16.[解答] ∵AE AB =AH AD =λ,CF CB =CG CD=μ, ∴EH ∥BD ,FG ∥BD .∴EH ∥FG ,EH =λ·BD ,FG =μ·BD . ①当λ=μ时,EH ∥FG ,且EH =FG , ∴四边形EFGH 是平行四边形,∴EF ∥GH . AH AD =CGCD,∴HG ∥AC . 由公理4知,EF ∥GH ∥AC .②当λ≠μ时,EH ∥FG ,但EH ≠FG .∴四边形EFGH 是梯形,且EH 、FG 为上下两底边,∴EF 、GH 为梯形的两腰,它们必交于点P ,P ∈直线EF ,P ∈直线HG .又EF ⊂平面ABC ,HG ⊂平面ADC ,∴P ∈平面ABC ,P ∈平面ADC ,∴P 是平面ABC 和平面ADC 的公共点.又∵平面ABC ∩平面ADC =AC ,∴P ∈直线AC , ∴三条直线EF 、GH 、AC 交于一点.综上所述,当λ=μ时,三条直线EF 、GH 、AC 互相平行; 当λ≠μ时,三条直线EF 、GH 、AC 交于一点.。
高考数学总复习课时作业(四十一)第41讲空间点、直线、平面之间的位置关系理(2021年整理)

2019年高考数学总复习课时作业(四十一)第41讲空间点、直线、平面之间的位置关系理编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019年高考数学总复习课时作业(四十一)第41讲空间点、直线、平面之间的位置关系理)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019年高考数学总复习课时作业(四十一)第41讲空间点、直线、平面之间的位置关系理的全部内容。
课时作业(四十一)第41讲空间点、直线、平面之间的位置关系基础热身1。
[2017·闽南八校二联]已知直线a,b分别在两个不同的平面α,β内,则“直线a和直线b相交”是“平面α和平面β相交"的()A。
充分不必要条件B。
必要不充分条件C.充要条件D。
既不充分也不必要条件2.[2017·郑州一模]已知直线a和平面α,β,α∩β=l,a⊄α,a⊄β,且a在α,β内的射影分别为直线b,c,则直线b和c的位置关系是()A.相交或平行B.相交或异面C。
平行或异面D.相交、平行或异面3.下面四个说法中正确的个数为()(1)如果两个平面有四个公共点,那么这两个平面重合;(2)两条直线可以确定一个平面;(3)若M∈α,M∈β,α∩β=l,则M∈l;(4)在空间中,相交于同一点的三条直线在同一平面内.A。
1 B.2C。
3 D.44。
[2017·佛山模拟]如图K41-1所示,在正三棱柱ABC-A1B1C1中,D是AC 的中点,AA1∶AB=∶1,则异面直线AB1与BD所成的角为。
图K41—15。
如图K41—2是某个正方体的展开图,l1,l2是两条侧面对角线,则在正方体中,下面关于l1与l2的四个结论中正确的是.(填序号)①互相平行;②异面垂直;③异面且夹角为;④相交且夹角为.图K41—2能力提升6.l1,l2表示空间中的两条直线,若p:l1,l2是异面直线;q:l1,l2不相交,则()A.p是q的充分条件,但不是q的必要条件B。
高三数学(理)一轮复习课时作业(四十四)空间点、直线、平面之间的位置关系 Word版含解析

课时作业(四十四)空间点、直线、平面之间的位置关系[授课提示:对应学生用书第251页]一、选择题1.如图,α∩β=l,A,B∈α,C∈β,且C∉l,直线AB∩l=M,过A,B,C三点的平面记作γ,则γ与β的交线必通过()A.点A B.点BC.点C但不过点M D.点C和点M解析:∵AB⊂γ,M∈AB,∴M∈γ.又α∩β=l,M∈l,∴M∈β.根据公理3可知,M在γ与β的交线上.同理可知,点C也在γ与β的交线上.答案:D2.已知a,b是异面直线,直线c平行于直线a,那么c与b()A.一定是异面直线B.一定是相交直线C. 不可能是平行直线D.不可能是相交直线解析:由已知得直线c与b可能为异面直线也可能为相交直线,但不可能为平行直线,若b∥c,则a∥b,与已知a、b为异面直线相矛盾.答案:C3.如图所示,ABCD-A1B1C1D1是正方体,O是B1D1的中点,直线A1C交平面AB1D1于点M,则下列结论正确的是()A.A,M,O三点共线B.A,M,O,A1不共面C.A,M,C,O不共面D.B,B1,O,M共面解析:连接A1C1,AC(图略),则A1C1∥AC,∵A1,C1,A,C四点共面,∴A1C⊂平面ACC1A1.∵M∈A1C,∴M∈平面ACC1A1.又M∈平面AB1D1,∴M在平面ACC1A1与平面AB1D1的交线上,同理A,O在平面ACC1A1与平面AB1D1的交线上,错误;如图(3),α∩β=c,a∥c,则a与b不相交,故D错误.B1C1中,AA1⊥底面1的中点,则直线EF和BCC,B1C与BC1交于点连接HB,在三角形GHBHGB=60°.下列命题中正确的个数是解析:对于①,当点P与两条异面直线中的一条直线确定的平面与另一条直线平行时,就无法找到过点P且与两条异面直线都平行的平面,故①错误;对于②,在如图1所示的三棱锥P-ABC中,PB⊥面ABC,BA⊥BC,满足P A,PC两边在底面的射影相互垂直,但P A与PC不垂直,故②错误;对于③,在如图2所示的三棱锥P-ABC中,AB=BC=AC =P A=2,PB=PC=3,满足底面ABC是等边三角形,侧面都是等腰三角形,但三棱锥P-ABC不是正三棱锥,故③错误;对于④,直线a,b分别在平面α,β内,且a⊥b,则α,β可以平行,故④错误.所以正确命题的个数为0.选A.答案:A二、填空题7.设P表示一个点,a,b表示两条直线,α,β表示两个平面,给出下列四个命题,其中正确命题的序号是________.①P∈a,P∈α⇒a⊂α;②a∩b=P,b⊂β⇒a⊂β;③a∥b,a⊂α,P∈b,P∈α⇒b⊂α;④α∩β=b,P∈α,P∈β⇒P∈b.解析:当a∩α=P时,P∈a,P∈α,但a⊄α,∴①错;a∩β=P时,②错;如图∵a∥b,P∈b,∴P∉a,∴由直线a与点P确定唯一平面α,又a∥b,由a与b确定唯一平面γ,但γ经过直线a与点P,∴γ与α重合,∴b⊂α,故③正确;两个平面的公共点必在其交线上,故④正确.答案:③④8.在正方体ABCD-A1B1C1D1中,与AD1异面且与AD1所成角为90°的面对角线(面对角线是指正方体各个面上的对角线)共有________条.解析:B1C与AD1异面,连接B1C,BC1(图略),则BC1∥AD1,且BC1⊥B1C,所以AD1与B1C所成的角为90°.答案:19.中,M,N分别为棱C不必说明画法和理由);把该长方体分成的两部分体积的比值.EHGF如图所示.M,则AM=A1E=4,EB1=为正方形,所以EH=EF=BC=10.AH=10,HB=6.11.如图,已知不共面的三条直线a,b,c相交于点P,A∈a,B∈a,C∈b,D∈c,求证:AD与BC是异面直线.证明:假设AD和BC共面,所确定的平面为α,那么点P,A,B,C,D都在平面α内,∴直线a,b,c都在平面α内,与已知条件a,b,c不共面矛盾,假设不成立.∴AD和BC是异面直线.12.在正方体ABCD-A1B1C1D1中,(1)求AC与A1D所成角的大小;(2)若E,F分别为AB,AD的中点,求A1C1与EF所成角的大小.解析:(1)如图所示,连接B1C,AB1,由ABCD-A1B1C1D1是正方体,易知A1D∥B1C,从而B1C与AC所成的角就是AC与A1D所成的角.∵AB1=AC=B1C,∴∠B1CA=60°.即A1D与AC所成的角为60°.(2)如图所示,连接BD,在正方体ABCD-A1B1C1D1中,AC⊥BD,AC∥A1C1,∵E,F分别为AB,AD的中点,∴EF∥BD,∴EF⊥AC.∴EF⊥A1C1.即A1C1与EF所成的角为90°.。
高考一轮复习教案立体几何文科用十一(1)平面、空间直线(教师)

模块: 十一、立体几何课题: 1、平面、空间直线教学目标: 知道平面的含义,理解平面的基本性质,会用文字语言、图形语言、集合语方表述平面的基本性质;掌握确定平面的方法,并能运用于确定长方体的简单截面.掌握空间直线与直线、直线与平面、平面与平面的各种位置关系,并能用图形、符号和集合语言予以表示.重难点: 平面的基本性质,平行线的传递性,空间直线与直线、直线与平面、平面与平面的各种位置关系及其表示方法.一、 知识要点1、平面的基本性质公理1、如果一条直线的两点在一个平面内,那么这条直线上的所有点都在这个平面内. 公理2、如果两个平面有一个公共点,那么它们还有其他公共点,且所有这些公共点的集合是一条过这个公共点的直线.公理3、经过不在同一条直线上的三点,有且只有一个平面.推论1、经过一条直线和直线外的一点有且只有一个平面.推论2、经过两条相交直线有且只有一个平面.推论3、经过两条平行直线有且只有一个平面.公理4、平行于同一条直线的两条直线互相平行.2、空间两直线的位置关系(1)相交——有且只有一个公共点;(2)平行——在同一平面内,没有公共点;(3)异面——不在任何..一个平面内,没有公共点. 3、等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等.二、 例题精讲例1、四面体ABCD 中,E 、G 分别为BC 、AB 的中点,F 在CD 上,H 在AD 上,且有DF ∶FC=2∶3,DH ∶HA=2∶3求证:EF 、GH 、BD 交于一点.答案:证明略.例2、已知n 条互相平行的直线123,,,,n l l l l 分别与直线l 相交于点12,,,n A A A , 求证:123,,,,n l l l l 与l 共面.例3、已知四边形ABCD 中,AB ∥CD ,四条边AB ,BC ,DC ,AD (或其延长线)分别与平面α相交于E ,F ,G ,H 四点,求证:四点E ,F ,G ,H 共线.例4、平面α平面βC =,a α⊂,且//a c ,b β⊂,b c M =,求证:直线a b 、是异面直线.例5、A 是△BCD 平面外的一点,E 、F 分别是BC 、AD 的中点,(1)求证:直线EF 与BD 是异面直线;(2)若AC ⊥BD ,AC =BD ,求EF 与BD 所成的角.答案:(1)略;(2)45︒例6、长方体ABCD —A 1B 1C 1D 1中,已知AB =a ,BC =b ,AA 1=c ,且a >b ,求:(1)下列异面直线之间的距离:AB 与CC 1;AB 与A 1C 1;AB 与B 1C .(2)异面直线D 1B 与AC 所成角的余弦值.答案:(1);;b c 22c b bc +;(2)))((2222222c b a b a b a +++-.例7、在四棱锥P ABCD -中,底面ABCD 是一直角梯形,90BAD ︒∠=,//AD BC ,AB BC a ==,2AD a =,且PA ⊥底面ABCD ,PD 与底面成30︒角.(1) 若AE PD ⊥,E 为垂足,求证:BE PD ⊥;(2) 求异面直线AE 与CD 所成角的余弦值.答案:(1)略;(2)4.三、 课堂练习1、在棱长为2的正方体1111ABCD A B C D -中,O 是底面ABCD 的中心,E 、F 分别是1CC 、AD 的中点,那么异面直线OE 和1FD 所成的角的余弦值等于 .2、在空间四边形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点,若EFGH 是正方形,则AC 与BD 满足的条件是 .答案:垂直且相等.3、已知,a b 为不垂直的异面直线,α是一个平面,则,a b 在α上的射影可能是:(1)两条平行直线;(2)两条互相垂直的直线;(3)同一条直线;(4)一条直线及其外一点,则在上面的结论中,正确结论的编号是 .答案:(1)(2)(4)4、已知m n 、为异面直线,m ⊂平面α,n ⊂平面β,l αβ=,则l ( )A 、与m n 、都相交B 、与m n 、中至少一条相交C 、与m n 、都不相交D 、至多与m n 、中的一条相交答案:B5、一个正方体纸盒展开后如图所示,在原正方体纸盒中有下列结论:(1)AB EF ⊥;(2)AB 与CM 成60︒;(3)EF 与MN 是异面直线;(4)//MN CD ,其中正确的是( )A 、(1)(2)B 、(3)(4)C 、(2)(3)D 、(1)(3)答案:D6、与正方体1111ABCD A B C D -的三条棱111AB CC A D 、、所在直线的距离相等的点( )A 、有且只有1个B 、有且只有 2个C 、有且只有3个D 、有无数个 答案:D四、 课后作业一、填空题1、空间中有8个点,其中有3个点在一条直线上,此外再无任何三点共线,由这8个点可以确定 条直线,最多可确定 个平面.答案:26,452、已知PA ⊥平面ABC ,90ACB ︒∠=,且PA AC BC a ===,则异面直线PB 与AC 所成角的正切值等于 .答案:2.3、(1)若//,//a b b c ,则//a c ;(2)若,,a b b c ⊥⊥则a c ⊥;(3)若a 与b 相交,b 与c 相交,则a 与c 也相交;(4)若a 与b 异面,b 与c 异面,则a 与c 也异面.上面的四个命题中,正确命题的题号是 .答案:(1)4、已知平面//αβ,A C α∈、,B D β∈、,直线AB 与CD 交于S ,且AS=8,BS=9,CD=34,则CS= .答案:16或2725、以下命题:(1)过直线外一点有且只有一条直线与已知直线平行;(2)某平面内的一条直线和这个平面外的一条直线是异面直线;(3)过直线外一点作该直线的垂线是唯一的;(4)如果一个角的两边和另一个角的两边分别平行,则这两个角相等或互补.则其中正确的命题的题号是 .答案:(1)(4)6、对于四面体ABCD ,下列命题正确的是 .(1)相对棱、AB 与CD 所在的直线异面;(2)由顶点A 作四面体的高,其垂足是BDC ∆的三条高线上的交点;(3)若分别作ABC ∆和ABD ∆的边AB 上的高,则这两条高所在的直线异面;(4)分别作三组相对棱中点的连线,所得的三条线段相交于一点;(5)最长棱必有某个端点,由它引出的另两条棱的长度之和大于最长棱.答案:(1)(4)(5)二、选择题7、正六棱柱111111ABCDEF A B C D E F -的底面边长为1,则这个棱柱的侧面对角线1E D 与1BC 所成的角是( )A 、90︒B 、60︒C 、45︒D 、30︒ 答案:B8、已知直线a 和平面αβ、,l αβ=,a α⊄,a β⊄,a 在αβ、内的射影分别为直线b 和c ,则b c 、的位置关系是( )A 、相交与平行B 、相交或异面C 、平行或异面D 、相交、平行或异面答案:D9、空间中有五个点,其中有四个点在同一个平面内,但没有任何三点共线,这样的五个点确定平面的个数最多可以是( )A 、4个B 、5个C 、6个D 、7个 答案:D三、解答题10、正方体1111ABCD A B C D -中,对角线1A C 与平面1BDC 交于点O ,AC BD 、交于点M ,求证:点1C O M 、、共线.11、如图,在四面体ABCD 中作截面PQR ,如PQ 、CB 的延长线交于点M ,RQ 、DB 的延长线交于点N ,RP 、DC 的延长线相交于点K .求证:M 、N 、K 三点共线.11、长方体1111ABCD A B C D -中,12,,AB BC a A A a E H ===、分别是11A B 和1BB的中点,求:(1)EH 与1AD 所成的角;(2)11A D 与1B C 之间的距离;(3)1AC 与1B C 所成的角.答案:(1)1arccos5;(2)2a ;(3)arccos 5.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课时作业(四十一)[第41讲空间点、直线、平面之间的位置关系]
[时间:45分钟分值:100分]
基础热身
1.下面列举的图形一定是平面图形的是()
A.有一个角是直角的四边形B.有两个角是直角的四边形
C.有三个角是直角的四边形D.有四个角是直角的四边形
2.已知直线l∥平面α,a、b是夹在直线l与平面α之间的两条线段,则a∥b是a=b 的()
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件
3.下列说法正确的是()
A.如果两个不重合的平面α、β有一条公共直线a,就说平面α、β相交,并记作α∩β=a
B.两个平面α、β有一个公共点A,就说α、β相交于过A点的任意一条直线
C.两个平面α、β有一个公共点A,就说α、β相交于A点,并记作α∩β=A
D.两个平面ABC与DBC相交于线段BC
4.以下四个命题中,正确的命题是________(填序号).
①不共面的四点中,其中任意三点不共线;
②若点A、B、C、D共面,点A、B、C、E共面,则A、B、C、D、E共面;
③若直线a、b共面,直线a、c共面,则直线b、c共面;
④依次首尾相接的四条线段必共面.
能力提升
5.若A、B、C表示不同的点,a、l表示不同的直线,α、β表示不同的平面,下列推理不正确的是()
A.A∈l,A∈α,B∈l,B∈α⇒l⊂α
B.A∈α,A∈β,B∈α,B∈β⇒α∩β=AB
C.l⊄α,A∈l⇒A∉α
D.A、B、C∈α,A、B、C∈β且A、B、C不共线⇒α与β重合
6.若空间中有四个点,则“这四个点中有三点在同一条直线上”是“这四个点在同一个平面上”的()
A.充分非必要条件B.必要非充分条件
C.充分必要条件D.既非充分又非必要条件
7.平行六面体ABCD-A1B1C1D1中,既与AB共面也与CC1共面的棱的条数为() A.3 B.4 C.5 D.6
8.[2011·宿州褚兰中学三模] 正方体ABCD-A′B′C′D′中,P、Q、R分别是AB、AD、B′C′的中点,那么,正方体的过P、Q、R的截面图形是()
A.三角形B.四边形C.五边形D.六边形
9.如图K41-2所示,平面α∩平面β=l,A∈α,B∈α,AB∩l=D,C∈β,C∉l,则平面ABC与平面β的交线是()
图K41-2
A .直线AC
B .直线AB
C .直线C
D D .直线BC
10.共点的四条直线最多能确定平面的个数是________.
11.给出下列条件:①空间的任意三点;②空间的任意两条直线;③梯形的两条腰所在的直线;④空间的任意一条直线和任意一个点;⑤空间两两相交的三条直线.其中一定能独立确定一个平面的条件的序号是________.
12.已知直线m 、n 及平面α,其中m ∥n ,那么平面α内到两条直线m 、n 距离相等的点的集合可能是:①一条直线;②一个平面;③一个点;④空集.其中正确的是________(填序号).
13.下列命题中正确的是________(填序号).
①若△ABC 在平面α外,它的三条边所在的直线分别交α于P 、Q 、R ,则P 、Q 、R 三点共线;②若三条直线a 、b 、c 互相平行且分别交直线l 于A 、B 、C 三点,则这四条直线共面;③空间中不共面的五个点一定能确定10个平面.
14.(10分)如图K41-3,设E ,F ,G ,H 分别是三棱锥A -BCD 的棱AB 、BC 、CD 、AD =1,求EG 2+FH 2的值.
图K41-3
15.(13分)如图K41-4所示,在棱长为a 的正方体ABCD -A 1B 1C 1D 1中,M 、N 分别为AA 1、C 1D 1的中点,过D 、M 、N 三点的平面与正方体的下底面相交于直线l . (1)画出直线l ,并说明画法的依据;
(2)设A 1B 1∩l =P ,求线段PB 1的长.
难点突破
16.(12分)如图K41-5,平面ABEF ⊥平面ABCD ,四边形ABEF 与ABCD 都是直角梯
形,∠BAD =∠F AB =90°,BC 綊12AD ,BE 綊12
F A ,
G 、
H 分别为F A 、FD 的中点. (1)证明:四边形BCHG 是平行四边形;
(2)C 、D 、F 、E 四点是否共面?为什么?
(3)证明:FE 、AB 、CD 三线共点.
图K41-5
课时作业(四十一)
【基础热身】
1.D[解析] 对于前三个,可以想象出仅有一个直角的平面四边形沿着非直角所在的对角线翻折;对角为直角的平面四边形沿着非直角所在的对角线翻折;在翻折的过程中,某个瞬间出现了有三个直角的空间四边形.
2.A[解析] 当a∥b时,设a、b、l确定的平面与平面α的交线为l′,则a、b、l、l′构成平行四边形,可得a=b;反之,若a=b,则不一定有a∥b.故选A.
3.A[解析] 根据平面的性质公理3可知,A对;对于B,其错误在于“任意”二字上;对于C,错误在于α∩β=A上;对于D,应为平面ABC和平面DBC相交于直线BC.
4.①[解析] ①正确,可以用反证法证明,假设有三点共线,则由直线和直线外一点确定一个平面,得这四点共面;②从条件看出两平面有三个公共点A、B、C,但是若A、B、C共线,则结论不正确;③不正确,共面不具有传递性;④不正确,因为此时所得的四边形四条边可以不在一个平面上.
【能力提升】
5.C[解析] 由公理1知,A正确;由公理3知,B正确;由公理2知,D正确;l⊄α⇒l可能与α相交,C不正确,故选C.
6.A[解析] 若有三点共线于l,当第四点在l上时共面,当第四点不在l上时,l与该点确定一个平面α,这四点共面于α;若四点共面,则未必有三点共线.故选A.
7.C[解析] 如图所示,用列举法知符合要求的棱为:BC、CD、C1D1、BB1、AA1.
8.D[解析] 如图,
作RG∥BD交C′D′于G,连接QP,并延长与CB的延长线交于M,
连接MR交BB′于E,连接PE、RE,
同理延长PQ交CD的延长线于N,连接NG交DD′于F,连接QF、FG.
故截面为六边形PQFGRE.
9.C[解析] 由题意知,D∈l,l⊂β,∴D∈β.
又D∈AB,∴D∈平面ABC,
即D在平面ABC与平面β的交线上.
又C∈平面ABC,C∈β,
∴点C在平面β与平面ABC的交线上.
从而有平面ABC∩平面β=CD,故选C.
10.6[解析] 观察四棱锥模型,它的四个侧面,以及两个对角面,可以看成共点的四条直线最多能确定平面的个数的情形.
11.③[解析] ①中三点共线时,②中两直线不平行也不相交时,④中点在直线上时,⑤中三直线交于一点时(此时可能不共面),都不能独立确定一个平面.
12.①②④[解析] 如图(1),当直线m或直线n在平面α内且m、n所在平面与α垂直时不可能有符合题意的点;如图(2),直线m、n到已知平面α的距离相等且两直线所在平面与已知平面α垂直,则已知平面α为符合题意的点集;如图(3),直线m、n所在平面与已知平面α平行,则符合题意的点为一条直线.
13.①②[解析] 在①中,因为P、Q、R三点既在平面ABC上,又在平面α上,所以
这三点必在平面ABC 与α的交线上,即P 、Q 、R 三点共线,故①正确;在②中,因为a ∥b ,所以a 与b 确定一个平面α,而l 上有A 、B 两点在该平面上,所以l ⊂α,即a 、b 、l 三线共面于α;同理a 、c 、l 三线也共面,不妨设为β,而α、β有两条公共的直线a 、l ,∴α与β重合,即这些直线共面,故②正确;在③中,不妨设其中有四点共面,则它们最多只能确定7个平面,故③错.
14.[解答] 易知四边形EFGH 为平行四边形,由平行四边形性质知:
EG 2+FH 2=2(EF 2+FG 2)=2×14(AC 2+BD 2)=12
×(12+12)=1. 15.[解答] (1)延长DM 交D 1A 1的延长线于E ,连接NE ,则NE 即为所求的直线l .依据如下:
∵E ∈直线DM ,直线DM ⊂平面DMN ,
∴E ∈平面DMN .
又E ∈直线A 1D 1,直线A 1D 1⊂平面A 1B 1C 1D 1,
∴E ∈平面A 1B 1C 1D 1.
∴E 为平面A 1B 1C 1D 1与平面DMN 的公共点.
∵平面A 1B 1C 1D 1∩平面DMN =l ,∴E ∈l .
同理可证N ∈l .
∴直线EN 就是所求的直线.
(2)∵M 为AA 1的中点,且AD ∥ED 1,
∴AD =A 1E =A 1D 1=a .
又∵A 1P ∥D 1N ,且D 1N =12
a , ∴A 1P =12D 1N =14
a , ∴PB 1=A 1B 1-A 1P =34
a . 即线段PB 1的长为34
a . 【难点突破】
16.[解答] (1)证明:由题设知,FG =GA ,FH =HD ,
所以GH 綊12
AD . 又BC 綊12
AD ,故GH 綊BC , 所以四边形BCHG 是平行四边形.
(2)C 、D 、F 、E 四点共面.理由如下:
由BE 綊12
AF ,G 是F A 的中点知,BE 綊GF , 所以EF ∥BG .
由(1)知BG ∥CH ,所以EF ∥CH ,故EC 、FH 共面.
又点D 在直线FH 上,所以C 、D 、F 、E 四点共面.
(3)证明:连接EC ,
∵BE 綊12AF ,BC 綊12
AD , ∴BE AF =BC AD =12
,故EC ∥FD 且EC ≠FD , ∴FE 与DC 交于一点P .
又AB ⊂平面ABEF ,AB ⊂平面ABCD ,
∴P 点在AB 上,故FE 、DC 、AB 三线共点.。