2-9.高考总复习 数学高考总复习 数学doc
数学高考一轮总复习

数学高考一轮总复习1、培养优良的学习习惯,牢固掌握基础知识点,多动脑,多动手做原知识题型,尽量不做或少做较难的综合套题。
2、带着问题去听课,边听边动脑筋,随时准备着回答老师的问题,会让自己精力非常集中。
3、建立错题记录本,把自己的错误记录在案,便于各个击破,查补漏洞。
4、制定学习的短期计划和长期计划,最好有周计划和日计划,按计划将知识连成网络。
多做历届高考真题,强化做题意识。
制订计划要结合自己的实际,不能将目标定得过高或过低。
5、重视课本,夯实基础。
切实抓好"三基'基础知识、基本技能、基本方法。
最基础的知识是最有用的知识,最基本的方法是最有用的方法。
2高考数学复习方法适度学习,但不搞题海战术。
基础题、中档题不必须要题海,高档题题海也是不能解决的。
切忌"高起点、高强度、高要求',投入很大,收效甚微,甚至丧失学习数学的兴趣和信心。
重视课本,夯实基础。
切实抓好"三基'基础知识、基本技能、基本方法。
最基础的知识是最有用的知识,最基本的方法是最有用的方法。
构建立体化的知识体系,在复习过程中自觉地将新知识及时纳进已有的知识系统中去,融代数、三角、立几、解几于一体,进而形成一个条理化、有序化、网络化的高效的有机认知结构。
建立优良知识结构和认知结构体系,课本是考试内容的载体,是高考命题的依据,也是同学智能的生长点,是最有参照价值的资料。
只有吃透课本上的例题、习题,才干全面、系统地掌握基础知识、基本技能和基本方法,构建数学的知识网络,以不变应万变。
高考试题无论怎样变化、革新,都是基本数学问题的组合。
提升能力,适度革新,考查能力是高考的重点和永恒主题。
高考遵循"以能力立意命题'。
复习中数学能力的培养是关键,思维能力、运算能力、空间想象能力以及施行能力和革新意识,以及提出问题、分析问题和解决问题的能力,数学探究能力、数学建模能力、数学交流能力、数学施行能力、直觉猜测、归纳抽象、符号表示、运算求解、演绎证实、体系构建等诸多方面,都是高考考查的重点。
高考数学总复习知识点

高考数学总复习知识点一、二次函数1. 一元二次函数的定义和性质2. 二次函数图像的基本形状及其特征3. 二次函数的解析式和标准式的转换与应用4. 一元二次方程的解法与应用5. 二次函数与一元二次方程的应用题分析与解答二、函数与方程组1. 函数的定义和性质2. 方程组的定义和解法(代入法、消元法)3. 函数与方程组的应用题分析与解答三、立体几何1. 空间几何体的定义与性质2. 空间几何体的表面积和体积计算3. 空间几何体的相交关系与判定四、数列与数列的通项公式1. 数列的定义和性质2. 等差数列和等比数列的概念与性质3. 求和公式的推导与应用4. 数列的递推公式与通项公式的推导与应用五、概率统计1. 随机事件的基本概念2. 概率的定义和性质3. 统计的基本概念与计算4. 事件的互斥与独立的判定和计算六、三角函数1. 三角函数的概念和性质2. 常用的三角函数的图像与性质3. 三角函数的相互关系与计算4. 三角函数的应用题分析与解答七、导数与微分应用1. 函数求导的概念和求法2. 导数的几何意义和物理意义3. 函数的最值和极值点的判定和计算4. 函数的图像和曲线的性质分析与完善八、平面解析几何与向量1. 平面坐标系和基本图形的性质2. 平面解析几何基本定理的应用3. 向量的定义和基本运算4. 向量几何的性质与定理的应用九、数与式1. 数的有理化、约分、化简2. 分式的性质及其应用3. 根式的求值与运算4. 多项式的性质与基本运算5. 代数式的展开与因式分解十、函数的应用1. 函数在实际问题中的应用和解析2. 函数的模型建立与解题方法3. 函数方程和不等式的应用4. 函数图像的分析与应用以上是高考数学总复习的主要知识点,希望能对你的备考有所帮助。
祝你取得优异的成绩!。
2022版高考数学总复习文档-第六节-对数与对数函数-含答案

第六节对数与对数函数学习要求:1.理解对数的概念和运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数.2.通过具体实例,了解对数函数的概念.能画出具体对数函数的图象,探索并了解对数函数的单调性与特殊点.3.知道对数函数y=log a x与指数函数y=a x(a>0,且a≠1)互为反函数.1.对数的概念(1)对数的定义一般地,如果①a x=N(a>0,且a≠1) ,那么数x叫做以a为底N的对数,记作②x=log a N ,其中③a叫做对数的底数,④N叫做对数的真数.(2)几种常见的对数对数形式特点记法一般对数底数为a(a>0且a≠1) ⑤ log a N常用对数底数为10 ⑥ lg N自然对数底数为e ⑦ ln N2.对数的性质与运算法则(1)对数的性质(i)负数和0无对数.(ii)1的对数等于0,即log a1=0(a>0且a≠1).(iii)log a a=1(a>0且a≠1).▶提醒a log a N=⑧N ;log a a N=⑨N (a>0且a≠1). (2)换底公式及其推论换底公式:⑩ log b N =log a Nlog a b(a,b均大于0且不等于1).推论:log a b=1log b a ,lo g a m bn=nmlog a b(a>0且a≠1,b>0且b≠1,m,n∈R,且m≠0),log a b·log b c·log c d= log a d (a,b,c均大于0且不等于1,d大于0).(3)对数的运算法则如果a>0且a≠1,M>0,N>0,那么log a(MN)= log a M+log a N ,log a MN= log a M-log a N ,log a M n=n log a M (n∈R).3.对数函数的图象与性质a>1 0<a<1图象性质定义域:(0,+∞)值域:R图象恒过点(1,0),即x =1时,y =0当x >1时,y >0; 当0<x <1时,y <0 当x >1时,y <0; 当0<x <1时,y >0 是(0,+∞)上的增函数是(0,+∞)上的减函数▶提醒 当对数函数的底数a 的大小不确定时,需分a >1和0<a <1两种情况进行讨论. 4.反函数指数函数y =a x (a >0,且a ≠1)与对数函数y =loga x (a >0,且a ≠1)互为反函数,它们的图象关于直线 y =x 对称.知识拓展1.在第一象限内,不同底的对数函数的图象从左到右底数逐渐增大.2.对数函数y =log a x (a >0,且a ≠1)的图象过定点(1,0),且过点(a ,1),(1a ,-1),函数图象只在第一、四象限.1.判断正误(正确的打“√”,错误的打“✕”).(1)log a(MN)=log a M+log a N.()(2)函数y=log a x2与函数y=2log a x相等.()(3)对数函数y=log a x(a>0,且a≠1)在(0,+∞)上是增函数.()(4)函数y=ln1+x1-x与y=ln(1+x)-ln(1-x)的定义域相同.()答案(1)✕(2)✕(3)✕(4)√2.(新教材人教A版必修第一册P127T3改编)log29×log34+2log510+log50.25=()A.0B.2C.4D.6答案 D3.(新教材人教A版必修第一册P133例3改编)已知a=ln 3,b=log3e,c=logπe,则下列关系正确的是()A.c<b<aB.a<b<cC.b<a<cD.b<c<a答案 A4.(新教材人教A版必修第一册P159T1改编)图中曲线是对数函数y=log a x的图象,已知a取√3,43,35,110四个值,则对应于C1,C2,C3,C4的a值依次为()A.√3,43,35,110B.√3,43,110,35C.43,√3,35,110D.43,√3,110,35答案 A5.已知函数f(x)=log a(2x-a)在区间[23,34]上恒有f(x)>0,则实数a的取值范围是.答案(12,1)对数式的化简与求值1.(多选题)设a,b,c都是正数,且4a=6b=9c,则()A.ab+bc=2acB.ab+bc=acC.2c =2a+1bD.1c=2b−1a答案AD∵a,b,c都是正数, 故可设4a=6b=9c=M,∴a=log4M,b=log6M,c=log9M,则1a =log M4,1b=log M6,1c=log M9.∵log M4+log M9=2log M6,∴1a +1c=2b,即1c=2b−1a,去分母整理得,ab+bc=2ac.故选AD.2.计算:2log 23+2log 31-3log 77+3ln 1= . 答案 0解析 原式=3+2×0-3×1+3×0=0. 3.计算:(lg 14-lg25)×10012= . 答案 -20解析 原式=(lg 2-2-lg 52)×10012=lg (122×52)×10=lg 10-2×10=-2×10=-20.4.计算:(1-log 63)2+log 62·log 618log 64= .答案 1 解析 原式 =1-2log 63+(log 63)2+log 663·log 6(6×3)log 64=1-2log 63+(log 63)2+1-(log 63)2log 64=2(1-log 63)2log 62=log 66-log 63log 62=log 62log 62=1.名师点评1.在对数运算中,先利用幂的运算把底数或真数进行变形,化成分数指数幂的形式,使幂的底数最简,然后用对数运算法则化简合并.2.先将对数式化为同底数对数的和、差、倍数,然后逆用对数的运算法则,化为同底对数真数的积、商、幂再运算.3.a b=N⇔b=log a N(a>0,且a≠1)是解决有关指数、对数问题的有效方法,在运算中应注意互化.对数函数的图象及应用典例1(1)(2020安徽亳州二模)在同一个平面直角坐标系中,函数f(x)=1a x 与g(x)=lg ax的图象可能是()(2)(2020宁夏银川模拟)已知函数f(x)=|ln x|,若0<a<b,且f(a)=f(b),则2a+b的取值范围是()A.(2√2,+∞)B.[2√2,+∞)C.(3,+∞)D.[3,+∞)答案(1)A(2)B解析(1)由题意a>0且a≠1,所以函数g(x)=lg ax单调递减,故排除B、D;对于A、C,由函数f(x)=1a x 的图象可知0<a<1,对于函数g(x)=lg ax,g(1)=lg a<0,故A正确,C错误.(2)f(x)=|ln x|的图象如下:因为0<a<b且f(a)=f(b),所以|ln a|=|ln b|且0<a<1,b>1,所以-ln a=ln b,即ab=1,易得2a+b≥2√2ab=2√2,当且仅当2a=b,即a=√22,b=√2时等号成立.故选B.名师点评1.在识别函数图象时,要善于利用已知函数的性质、函数图象上的特殊点(与坐标轴的交点、最高点、最低点等)排除不符合要求的选项.2.常把一些对数型方程、不等式问题转化为相应的函数图象问题,利用数形结合法求解.1.(2020广东惠州模拟)当a >1时,在同一坐标系中,函数g (x )=a -x 与f (x )=-log a x 的图象大致是( )答案 D 因为a >1,所以g (x )=a -x=(1a )x为R 上的减函数,且过(0,1);f (x )=-log a x 为(0,+∞)上的减函数,且过(1,0), 故只有D 选项符合.2.(2020陕西榆林三模)设x 1、x 2、x 3均为实数,且e -x 1=ln x 1,e -x 2=ln(x 2+1),e -x 3=lg x 3,则( ) A.x 1<x 2<x 3 B.x 1<x 3<x 2 C.x 2<x 3<x 1 D.x 2<x 1<x 3 答案 D 因为e -x 1=ln x1⇒(1e )x 1=ln x 1,e-x 2=ln(x 2+1)⇒(1e )x 2=ln(x 2+1),e-x 3=lg x3⇒(1e )x 3=lg x 3,所以作出函数y =(1e )x,y 1=ln x ,y 2=ln(x +1),y 3=lg x 的函数图象,如图所示:由图象可知函数y 2,y 1,y 3与y 的交点A ,B ,C 的横坐标依次为x 2,x 1,x 3,即有x 2<x 1<x 3.故选D .对数函数的性质及应用角度一 比较对数值的大小典例2 (2020课标Ⅲ理,12,5分)已知55<84,134<85.设a =log 53,b =log 85,c =log 138,则( )A.a <b <cB.b <a <cC.b <c <aD.c <a <b 答案 A a =log 53∈(0,1),b =log 85∈(0,1),则ab =log 53log 85=log53·log58<(log 53+log 582)2=(log 5242)2<1,∴a <b.又∵134<85,∴135<13×85,两边同取以13为底的对数得log 13135<log 13(13×85),即log 138>45, ∴c >45. 又∵55<84,∴8×55<85,两边同取以8为底的对数得log 8(8×55)<log 885, 即log 85<45,∴b <45.综上所述,c >b >a ,故选A . 角度二 解简单的对数不等式典例3 若log a (a 2+1)<log a 2a <0,则a 的取值范围是( ) A.(0,1) B.(0,12)C.(12,1)D.(0,1)∪(1,+∞)答案 C 由题意得a >0且a ≠1,故必有a 2+1>2a ,又log a (a 2+1)<log a 2a <0,所以0<a <1,且2a >1,∴a >12.故a 的取值范围是(12,1).角度三 与对数函数有关的复合函数问题典例4 已知函数f (x )=log a (ax 2-x ).(1)若a =12,求f (x )的单调区间; (2)若f (x )在区间[2,4]上是增函数,求实数a 的取值范围.解析 (1)当a =12时,f (x )=lo g 12(12x 2-x),由12x 2-x >0,得x 2-2x >0,解得x <0或x >2,所以函数f (x )的定义域为(-∞,0)∪(2,+∞),利用复合函数单调性可得函数f (x )的增区间为(-∞,0),减区间为(2,+∞).(2)令g (x )=ax 2-x ,则函数g (x )的图象开口向上,对称轴为x =12a 的抛物线,①当0<a<1时,要使函数f(x)在区间[2,4]上是增函数, 则g(x)=ax2-x在[2,4]上单调递减,且g(x)min=ax2-x>0,即{12a≥4,g(4)=116a-14>0,此不等式组无解.②当a>1时,要使函数f(x)在区间[2,4]上是增函数, 则g(x)=ax2-x在[2,4]上单调递增,且g(x)min=ax2-x>0,即{12a≤2,g(2)=4a-2>0,解得a>12,又a>1,∴a>1.综上实数a的取值范围为(1,+∞).名师点评(1)确定函数的定义域,研究或利用函数的性质,都要在其定义域上进行.(2)如果需将函数解析式变形,一定要保证其等价性,否则结论错误.(3)在解决与对数函数相关的比较大小或解不等式问题时,要优先考虑利用对数函数的单调性来求解.在利用单调性时,一定要明确底数a的取值对函数增减性的影响,并且真数必须为正.1.(2020课标Ⅲ文,10,5分)设a=log32,b=log53,c=23,则()A.a <c <bB.a <b <cC.b <c <aD.c <a <b答案 A 因为a =log 32=log 3√83<log3√93=23=c , b =log 53=log 5√273>log5√253=23=c ,所以a <c <b.故选A .2.若a >b >0,0<c <1,则 ( ) A.log a c <log b c B.log c a <log c bC.a c <b cD.c a >c b答案 B ∵0<c <1,∴当a >b >1时,log a c >log b c ,故A 项错误;∵0<c <1,∴y =log c x 在(0,+∞)上单调递减,又a >b >0,∴log c a <log c b ,故B 项正确;∵0<c <1,∴y =x c 在(0,+∞)上单调递增,又∵a >b >0,∴a c >b c ,故C 项错误;∵0<c <1,∴y =c x 在(0,+∞)上单调递减,又∵a >b >0,∴c a <c b ,故D 项错误.故选B .3.若函数f (x )=log a (x 2+32x)(a >0,a ≠1)在区间(12,+∞)上恒有f (x )>0,则f (x )的单调递增区间为 .答案 (0,+∞)解析 令M =x 2+32x ,当x ∈12,+∞时,M ∈(1,+∞),因为f (x )>0,所以a >1,所以函数y =log a M 为增函数,又M =(x +34)2−916,因此M 的单调递增区间为(-34,+∞).又x 2+32x >0,所以x >0或x <-32,所以函数f (x )的单调递增区间为(0,+∞).A组基础达标1.(2020课标Ⅰ文,8,5分)设a log34=2,则4-a= ()A.116B.19C.18D.16答案 B2.(多选题)设a=log0.20.3,b=log20.3,则()A.1a <1bB.ab<0C.a+b<0D.ab<a+b 答案BCD3.已知a=log2e,b=ln 2,c=lo g1213,则a,b,c的大小关系为()A.a>b>cB.b>a>cC.c>b>aD.c>a>b答案 D4.(多选题)已知函数f(x)=lg(x2+ax-a-1),则下列论述中正确的是()A.当a=0时, f(x)的定义域为(-∞,-1)∪(1,+∞)B.当a=0时,f(x)一定有最小值C.当a=0时, f(x)的值域为RD.若f(x)在区间[2,+∞)上单调递增,则实数a的取值范围是[-4,+∞)答案AC对于A,当a=0时,解x2-1>0,有x∈(-∞,-1)∪(1,+∞),故A正确;对于B,当a=0时,f(x)=lg(x2-1),x2-1∈(0,+∞),此时f(x)=lg(x2-1)的值域为R,故B错误,C正确;对于D,若f(x)在区间[2,+∞)上单调递增,此时y=x2+ax-a-1的图象的对称轴的方程为直线x=-a 2,则-a2≤2,解得a≥-4.但当a=-4时,f(x)=lg(x2-4x+3)在x=2处无意义,故D错误.故选AC.5.(2020陕西西安高三二模)函数y=log5(x2+2x-3)的单调递增区间是.答案(1,+∞)解析由题意可知x2+2x-3>0,解得x<-3或x>1,即函数y=log5(x2+2x-3)的定义域为(-∞,-3)∪(1,+∞).令g(x)=x2+2x-3,则函数g(x)在(-∞,-3)上单调递减,在(1,+∞)上单调递增,根据复合函数的单调性,可得函数y=log5(x2+2x-3)的单调递增区间为(1,+∞).6.函数f(x)=e x-e-x+ln1+x1-x+1,若f(a)+f(1+a)>2,则a的取值范围是.答案(-12,0)解析由题意得, f(x)的定义域为(-1,1),关于原点对称设g(x)=f(x)-1=e x-e-x+ln1+x1-x,则g(-x)=e-x-e x+ln1-x1+x,则g(-x)+g(x)=0,所以g(x)是(-1,1)上的奇函数,因为f(a)+f(1+a)>2,所以f(1+a)-1>-f(a)+1,所以f(1+a)-1>-[f(a)-1],即g(1+a)>-g(a)=g(-a),因为y=e x-e-x单调递增,y=ln1+x1-x单调递增,所以g(x)单调递增,则{-1<a<1,-1<1+a<1,1+a>-a,即−12<a<0.故a的取值范围是(-12,0).7.已知函数f(x)=ln(2x2+ax+3).(1)若f(x)是定义在R上的偶函数,求a的值及f(x)的值域;(2)若f(x)在区间[-3,1]上是减函数,求a的取值范围.解析(1)因为f(x)是定义在R上的偶函数,所以f(x)=f(-x),所以ln(2x2+ax+3)=ln(2x2-ax+3),故a=0,所以f(x)=ln(2x2+3),定义域为R,符合题意.令t=2x2+3,则t≥3,所以ln t≥ln 3,故f(x)的值域为[ln 3,+∞).(2)设u(x)=2x2+ax+3,f(u)=ln u.因为f(x)在[-3,1]上是减函数,所以u(x)=2x2+ax+3在[-3,1]上是减函数,且u(x)>0在[-3,1]上恒成立,故{-a4≥1,u(x)min=u(1)=5+a>0,解得-5<a≤-4,即a的取值范围是(-5,-4].B组能力拔高8.(2020山西大同三模)在同一平面直角坐标系中,函数f(x)=2-ax,g(x)=log a(x+2)(a>0,且a≠1)的图象大致为()答案A由题意知,函数f(x)=2-ax(a>0,且a≠1)为减函数,当0<a<1时,函数f(x)=2-ax的零点为x=2a>2,且函数g(x)=log a(x+2)在(-2,+∞)上为减函数,故C,D均不正确;当a>1时,函数f(x)=2-ax的零点为x=2a <2,且x=2a>0,且g(x)=log a(x+2)在(-2,+∞)上是增函数,故B不正确,故选A.9.(多选题)(2020山东济南模拟)已知函数f(x)=lg(1|x-2|+1),则下列说法正确的是()A.f(x+2)是偶函数B.f(x+2)是奇函数C.f(x)在区间(-∞,2)上是减函数,在区间(2,+∞)上是增函数D.f(x)没有最小值答案AD因为f(x)=lg(1|x-2|+1),所以f (x +2)=lg (1|x |+1),定义域为{x |x ≠0},关于原点对称,又f (-x +2)=lg (1|-x |+1)=lg (1|x |+1)=f (x +2),所以f (x +2)为偶函数,故A 说法正确,B 说法错误; f (x )=lg (1|x -2|+1)={lg (1x -2+1),x >2,lg (12-x +1),x <2.因为当x ∈(2,+∞)时,y =1x -2为减函数,所以y =1x -2+1为减函数,所以y =lg (1x -2+1)在区间(2,+∞)上为减函数,故C 说法错误;因为当x ∈(2,+∞)时,y =lg (1x -2+1)为减函数,且当x →+∞时,y →0,所以f (x )没有最小值,故D 说法正确.10.(2020辽宁高三三模)设f (x )为定义在R 上的奇函数,当x ≥0时, f (x )=log 3(x +1)+ax 2-a +1(a 为常数),则不等式f (3x +4)>-5的解集为 ( )A.(-∞,-1)B.(-1,+∞)C.(-∞,-2)D.(-2,+∞)答案 D 因为f (x )是定义在R 上的奇函数,所以f (0)=0,解得a =1,所以当x ≥0时,f (x )=log 3(x +1)+x 2.因为函数y =log 3(x +1)和y =x 2在x ∈[0,+∞)上都是增函数,所以f (x )在[0,+∞)上单调递增.由奇函数的性质可知,y =f (x )在R 上单调递增,因为f (2)=5,f (-2)=-5,所以f (3x +4)>-5⇒f (3x +4)>f (-2),即3x+4>-2,解得x>-2.11.(2020课标Ⅰ理,12,5分)若2a+log2a=4b+2log4b,则()A.a>2bB.a<2bC.a>b2D.a<b2答案B2a+log2a=22b+log2b<22b+log2(2b),令f(x)=2x+log2x,则f(a)<f(2b),又易知f(x)在(0,+∞)上单调递增,所以a<2b,故选B.12.(2020河北邢台模拟)若当x∈(1,2]时,不等式(x-1)2≤log a x恒成立,则实数a的取值范围为.答案(1,2]解析因为当x∈(1,2]时,不等式(x-1)2≤log a x恒成立,所以{a>1,log a2≥1,解得1<a≤2,故实数a的取值范围是(1,2].13.已知函数f(x)=3-2log2x,g(x)=log2x.(1)当x∈[1,4]时,求函数h(x)=[f(x)+1]·g(x)的值域;(2)如果对任意的x∈[1,4],不等式f(x2)·f(√x)>k·g(x)恒成立,求实数k的取值范围.解析(1)易知h(x)=(4-2log2x)·log2x=-2(log2x-1)2+2.因为x∈[1,4],所以log2x∈[0,2],故函数h(x)的值域为[0,2].(2)由f (x 2)·f (√x )>k ·g (x )可得(3-4log 2x )(3-log 2x )>k ·log 2x.令t =log 2x ,因为x ∈[1,4],所以t =log 2x ∈[0,2],即(3-4t )(3-t )>k ·t 对任意t ∈[0,2]恒成立.当t =0时,k ∈R;当t ∈(0,2]时,k <(3-4t )(3-t )t 恒成立, 即k <4t +9t -15恒成立.因为4t +9t ≥12,当且仅当4t =9t ,即t =32时取等号,所以4t +9t -15的最小值为-3,即k <-3.综上,k 的取值范围是(-∞,-3).C 组 思维拓展14.(2020吉林长春高三模拟)若函数f (x )={log 12(3-x )m ,x <1,x 2-6x +m ,x ≥1的值域为R,则m 的取值范围为( )A.(0,8]B.(0,92]C.[92,8] D.(-∞,-1]∪(0,92]答案B①若m>0,则当x<1时, f(x)=lo g12(3-x)m单调递增,当x≥1时, f(x)=x2-6x+m=(x-3)2+m-9在(3,+∞)上单调递增,在[1,3)上单调递减,若函数f(x)的值域为R,则需f(3)=m-9≤m lo g12(3-1)=-m,解得0<m≤92;②若m≤0,则当x<1时,f(x)=lo g12(3-x)m单调递减或为常数函数,当x≥1时,f(x)=x2-6x+m=(x-3)2+m-9在(3,+∞)上单调递增,在[1,3)上单调递减,不满足函数f(x)的值域为R,舍去.综上,m的取值范围为(0,92],故选B.15.(2020山西运城高三模拟)已知函数f(x)=ln2+x2-x,g(x)=m(x-√4-x)+2,若∀x1∈[0,4],∃x2∈[0,1],使得f(x2)<g(x1),则实数m的取值范围是()A.[14ln3-12,1-12ln3]B.(14ln3-12,1-12ln3)C.(-12,1)D.[-12,1]答案C∀x1∈[0,4],∃x2∈[0,1],使得f(x2)<g(x1)等价于f(x)min<g(x)min.函数f(x)=ln2+x2-x=ln(2+x)-ln(2-x),-2<x<2.因为y=ln(2+x)与y=-ln(2-x)在[0,1]上为增函数,所以函数f(x)在[0,1]上为增函数,所以f(x)min=f(0)=0.易知函数y=x-√4-x在[0,4]上为增函数,则-2≤x-√4-x≤4.故当m>0时,-2m+2≤g(x)≤4m+2,因为f(x)min<g(x)min,所以0<-2m+2,解得0<m<1;当m=0时,g(x)min=2>0,满足f(x)min<g(x)min;<m<0.当m<0时,4m+2≤g(x)≤-2m+2,因为f(x)min<g(x)min,所以0<4m+2,解得-12 <m<1.综上可知,-12。
2023年高考数学总复习第二章 函数概念与基本初等函数第9节:函数模型及其应用(学生版)

2023年高考数学总复习第二章函数概念与基本初等函数第9节函数模型及其应用考试要求1.了解指数函数、对数函数、幂函数的增长特征,结合具体实例体会直线上升、指数增长、对数增长等不同函数类型增长的含义;2.了解函数模型(如指数函数、对数函数、幂函数、分段函数等在社会生活中普遍使用的函数模型)的广泛应用.1.指数、对数、幂函数模型性质比较函数性质y =a x (a >1)y =log a x (a >1)y =x n (n >0)在(0,+∞)上的增减性单调递增单调递增单调递增增长速度越来越快越来越慢相对平稳图像的变化随x 的增大逐渐表现为与y 轴平行随x 的增大逐渐表现为与x 轴平行随n 值变化而各有不同2.几种常见的函数模型函数模型函数解析式一次函数模型f (x )=ax +b (a ,b 为常数,a ≠0)二次函数模型f (x )=ax 2+bx +c (a ,b ,c 为常数,a ≠0)与指数函数相关的模型f (x )=ba x +c (a ,b ,c 为常数,a >0且a ≠1,b ≠0)与对数函数相关的模型f (x )=b log a x +c (a ,b ,c 为常数,a >0且a ≠1,b ≠0)与幂函数相关的模型f (x )=ax n +b (a ,b ,n 为常数,a ≠0)1.“直线上升”是匀速增长,其增长量固定不变;“指数增长”先慢后快,其增长量成倍增加,常用“指数爆炸”来形容;“对数增长”先快后慢,其增长量越来越小.2.充分理解题意,并熟练掌握几种常见函数的图像和性质是解题的关键.3.易忽视实际问题中自变量的取值范围,需合理确定函数的定义域,必须验证数学结果对实际问题的合理性.1.思考辨析(在括号内打“√”或“×”)(1)某种商品进价为每件100元,按进价增加10%出售,后因库存积压降价,若按九折出售,则每件还能获利.()(2)函数y=2x的函数值比y=x2的函数值大.()(3)不存在x0,使a x0<x n0<log a x0.()(4)在(0,+∞)上,随着x的增大,y=a x(a>1)的增长速度会超过并远远大于y=x a(a>0)的增长速度.()2.(易错题)已知f(x)=x2,g(x)=2x,h(x)=log2x,当x∈(4,+∞)时,对三个函数的增长速度进行比较,下列选项中正确的是()A.f(x)>g(x)>h(x)B.g(x)>f(x)>h(x)C.g(x)>h(x)>f(x)D.f(x)>h(x)>g(x)3.(易错题)当生物死亡后,其体内原有的碳14的含量大约每经过5730年衰减为原来的一半,这个时间称为“半衰期”.当死亡生物体内的碳14含量不足死亡前的千分之一时,用一般的放射性探测器就测不到了.若某死亡生物体内的碳14用该放射性探测器探测不到,则它经过的“半衰期”个数至少是()A.8B.9C.10D.114.(2022·江苏新高考基地大联考)香农定理是所有通信制式最基本的原理,它可以用香农公式C=B log21+SN来表示,其中C是信道支持的最大速度或者叫信道容量,B是信道带宽(Hz),S是平均信号功率(W),N是平均噪声功率(W).已知平均信号功率为1000W,平均噪声功率为10W,在不改变平均信号功率和信道带宽的前提下,要使信道容量增大到原来的2倍,则平均噪声功率约降为()A.0.1WB.1.0WC.3.2WD.5.0W5.用长度为24的材料围一矩形场地,中间加两道隔墙,要使矩形的面积最大,则隔墙的长度为________.6.(2020·北京卷)为满足人民对美好生活的向往,环保部门要求相关企业加强污水治理,排放未达标的企业要限期整改.设企业的污水排放量W与时间t的关系为W=f(t),用-f(b)-f(a)b-a的大小评价在[a,b]这段时间内企业污水治理能力的强弱.已知整改期内,甲、乙两企业的污水排放量与时间的关系如图所示.给出下列四个结论:①在[t1,t2]这段时间内,甲企业的污水治理能力比乙企业强;②在t2时刻,甲企业的污水治理能力比乙企业强;③在t3时刻,甲、乙两企业的污水排放都已达标;④甲企业在[0,t1],[t1,t2],[t2,t3]这三段时间中,在[0,t1]的污水治理能力最强.其中所有正确结论的序号是__________.考点一利用函数图像刻画变化过程1.已知高为H,满缸水量为V的鱼缸的轴截面如图所示,其底部破了一个小洞,满缸水从洞中流出,若鱼缸水深为h时水的体积为v,则函数v=f(h)的大致图像是()2.小菲在学校选修课中了解到艾宾浩斯遗忘曲线,为了解自己记忆一组单词的情况,她记录了随后一个月的有关数据,绘制图像,拟合了记忆保持量f (x )与时间x (天)之间的函数关系f (x )-720x +1,0<x ≤1,15+920x -12,1<x ≤30.则下列说法错误的是()A.随着时间的增加,小菲的单词记忆保持量降低B.第一天小菲的单词记忆保持量下降最多C.9天后,小菲的单词记忆保持量低于40%D.26天后,小菲的单词记忆保持量不足20%3.(2022·郑州质检)水池有两个相同的进水口和一个出水口,每个口进出水的速度如图甲、乙所示,某天0时到6时该水池的蓄水量如图丙所示,给出以下3个论断:①0时到3时只进水不出水;②3时到4时不进水只出水;③4时到5时不进水也不出水.则一定正确的论断是________(填序号).4.(2021·西安调研)为研究西南高寒山区一种常见树的生长周期中前10年的生长规律,统计显示,生长4年的树高为73米,如图所示的散点图,记录了样本树的生长时间t(年)与树高y(米)之间的关系.请你据此判断,在下列函数模型:①y=2t-a;②y=a+log2t;③y=12t+a;④y=t+a中(其中a为正的常实数),拟合生长年数与树高的关系最好的是________(填写序号),估计该树生长8年后的树高为________米.考点二二次函数模型例1(1)某汽车销售公司在A,B两地销售同一种品牌的汽车,在A地的销售利润(单位:万元)为y1=4.1x-0.1x2,在B地的销售利润(单位:万元)为y2=2x,其中x 为销售量(单位:辆),若该公司在两地共销售16辆该种品牌的汽车,则能获得的最大利润是()A.10.5万元B.11万元C.43万元D.43.025万元(2)某地西红柿上市后,通过市场调查,得到西红柿种植成本Q(单位:元/100kg)与上市时间t(单位:天)的数据如下表:时间t60100180种植成本Q11684116根据上表数据,从下列函数中选取一个函数描述西红柿种植成本Q与上市时间t 的变化关系:Q=at+b,Q=at2+bt+c,Q=a·b t,Q=a·log b t.利用你选取的函数,求:①西红柿种植成本最低时的上市天数是________;②最低种植成本是________元/100kg.训练1(1)(2021·广州模拟)某工厂生产某种产品固定成本为2000万元,并且每生产一单位产品,成本增加10万元.又知总收入K是单位产品数Q的函数,K(Q)=40Q-120Q2,则总利润L(Q)的最大值是________万元.(2)某城市对一种售价为每件160元的商品征收附加税,税率为R%(即每销售100元征税R元),若每年销售量为30-52R万件,要使附加税不少于128万元,则R的取值范围是()A.[4,8]B.[6,10]C.[4%,8%]D.[6%,10%]考点三指数、对数函数模型例2(1)一个放射性物质不断衰变为其他物质,每经过一年就有34的质量发生衰变.若该物质余下质量不超过原有的1%,则至少需要的年数是()A.6B.5C.4D.3(2)(2021·唐山联考)尽管目前人类还无法准确地预报地震,但科学家通过研究,已经对地震有所了解,例如,地震释放出的能量E(单位:焦耳)与地震里氏震级M 之间的关系为lg E=4.8+1.5M.①已知地震等级划分为里氏12级,根据等级范围又分为三种类型,其中小于2.5级的为“小地震”,介于2.5级到4.7级之间的为“有感地震”,大于4.7级的为“破坏性地震”,若某次地震释放能量约1012焦耳,试确定该次地震的类型;②2008年汶川地震为里氏8级,2011年日本地震为里氏9级,问:2011年日本地震所释放的能量是2008年汶川地震所释放的能量的多少倍?(取10=3.2)训练2(2021·贵阳调研)一片森林原来面积为a,计划每年砍伐一些树,且每年砍伐面积的百分比相等,当砍伐到面积的一半时,所用时间是10年,为保护生态环境,森林面积至少要保留原面积的14,已知到今年为止,森林剩余面积为原来的22.(1)求每年砍伐面积的百分比;(2)到今年为止,该森林已砍伐了多少年?考点四分段函数模型例3小王大学毕业后,决定利用所学专业进行自主创业.经过市场调查,生产某小型电子产品需投入年固定成本3万元,每生产x万件,需另投入流动成本W(x)万元,在年产量不足8万件时,W(x)=13x2+x(万元).在年产量不小于8万件时,W(x)=6x+100x-38(万元).每件产品售价5元.通过市场分析,小王生产的商品当年能全部售完.(1)写出年利润L(x)(万元)关于年产量x(万件)的函数解析式;(注:年利润=年销售收入-固定成本-流动成本)(2)年产量为多少万件时,小王在这一商品的生产中所获利润最大?最大利润是多少?训练3某校高三(1)班学生为了筹措经费给班上购买课外读物,班委会成立了一个社会实践小组,决定利用暑假八月份(按30天计算)轮流换班去销售一种时令水果.在这30天内每斤水果的收入p(元)与时间t(天)满足如图所示的函数关系,已知日销售量Q(斤)与时间t(天)满足一次函数关系(具体数据如下表所示).t(天)281624Q(斤)38322416(1)根据提供的图像和表格,写出每斤水果的收入p(元)与时间t(天)所满足的函数关系式及日销售量Q(斤)与时间t(天)的一次函数关系式;(2)写出销售水果的日收入y(元)与t的函数关系式,并求这30天中第几天的日收入最大?最大为多少元?1.某工厂6年来生产某种产品的情况是:前3年年产量的增长速度越来越快,后3年年产量保持不变,则该厂6年来这种产品的总产量C 与时间t (年)的函数关系图像正确的是()2.(2022·绵阳诊断)某数学小组进行社会实践调查,了解到某公司为了实现1000万元利润目标,准备制订激励销售人员的奖励方案:在销售利润超过10万元时,按销售利润进行奖励,且奖金y (单位:万元)随销售利润x (单位:万元)的增加而增加,但奖金总数不超过5万元,同时奖金不超过利润的25%.同学们利用函数知识,设计了如下函数模型,其中符合公司要求的是(参考数据:1.0021000≈7.37,lg 7≈0.845)()A.y =0.25xB.y =1.002xC.y =log 7x +1D.y =x10-13.(2021·全国大联考)如图,矩形花园ABCD 的边AB 靠在墙PQ 上,另外三边是由篱笆围成的.若该矩形花园的面积为4平方米,墙PQ 足够长,则围成该花园所需要篱笆的()A.最大长度为8米B.最大长度为42米C.最小长度为8米D.最小长度为42米4.(2022·兰州质检)设光线通过一块玻璃,光线强度损失10%,如果光线原来的强度为k(k>0),通过x块这样的玻璃以后光线的强度为y,则y=k·0.9x(x∈N+),那么光线强度减弱到原来的13以下时,至少通过这样的玻璃的块数为(参考数据:lg3≈0.477)()A.9B.10C.11D.125.(2021·济南检测)人们用分贝(dB)来划分声音的等级,声音的等级d(x)(单位:dB)与声音强度x(单位:W/m2)满足d(x)=9lgx1×10-13.一般两人小声交谈时,声音的等级约为54dB,在有50人的课堂上讲课时,老师声音的等级约为63dB,那么老师上课时声音强度约为一般两人小声交谈时声音强度的()A.1倍B.10倍C.100倍D.1000倍6.某工厂一年中各月份的收入、支出情况的统计图如图所示,则下列说法中错误的是()A.收入最高值与收入最低值的比是3∶1B.结余最高的月份是7月C.1至2月份的收入的变化量与4至5月份的收入的变化量相同D.前6个月的平均收入为40万元7.我国的烟花名目繁多,其中“菊花”烟花是最壮观的烟花之一.制造时一般是期望在它达到最高点时爆裂.如果烟花距地面的高度h(单位:米)与时间t(单位:s)之间的关系为h(t)=-4.9t2+14.7t+17,那么烟花冲出后在爆裂的最佳时刻距地面高度约为________米.8.李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x元.每笔订单顾客网上支付成功后,李明会得到支付款的80%.(1)当x=10时,顾客一次购买草莓和西瓜各1盒,需要支付________元;(2)在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x的最大值为________.9.(2021·武汉模拟)复利是一种计算利息的方法,即把前一期的利息和本金加在一起算作本金,再计算下一期的利息.某同学有压岁钱1000元,存入银行,年利率为2.25%,若放入微信零钱通或者支付宝的余额宝,年利率可达4.01%.如果将这1000元选择合适方式存满5年,可以多获利息________元.(参考数据:1.02255≈1.118,1.04015≈1.217)10.候鸟每年都要随季节的变化而进行大规模的迁徙,研究某种鸟类的专家发现,该种鸟类的飞行速度v(单位:m/s)与其耗氧量Q之间的关系为v=a+b log3Q 10 (其中a,b是实数).据统计,该种鸟类在静止时其耗氧量为30个单位,而其耗氧量为90个单位时,其飞行速度为1m/s.(1)求出a,b的值;(2)若这种鸟类为赶路程,飞行的速度不能低于2m/s,则其耗氧量至少要多少个单位?11.近年来,“共享单车”的出现为市民“绿色出行”提供了极大的方便,某共享单车公司计划在甲、乙两座城市共投资240万元.根据行业规定,每个城市至少要投资80万元,由前期市场调研可知:甲城市收益P与投入a(单位:万元)满足P=42a-6,乙城市收益Q与投入a(单位:万元)满足Q+2,80≤a≤120,,120<a≤160,设甲城市的投入为x(单位:万元),两个城市的总收益为f(x)(单位:万元).(1)当投资甲城市128万元时,求此时公司的总收益;(2)试问:如何安排甲、乙两个城市的投资,才能使公司总收益最大?12.(2022·保定质检)分子间作用力是只存在于分子与分子之间或惰性气体原子间的作用力,在一定条件下,两个原子接近,则彼此因静电作用产生极化,从而导致有相互作用力,称范德瓦尔斯相互作用.今有两个惰性气体原子,原子核正电荷的电荷量为q,这两个相距R的惰性气体原子组成体系的能量中有静电相互作用能U,其计算式子为U=kcq2·(1R+1R+x1-x2-1R+x1-1R-x2),其中,kc为静电常量,x1,x2分别表示两个原子的负电中心相对各自原子核的位移.已知R+x1-x2=1+x1-x2R R+x1=R1+x1R R-x2=R1-x2R(1+x)-1≈1-x+x2,则U的近似值为()A.kcq2x1x2R3B.-kcq2x1x2R3C.2kcq2x1x2R3D.-2kcq2x1x2R313.天文学中为了衡量天体的明暗程度,古希腊天文学家喜帕恰斯(Hipparchus,又名依巴谷)在公元前二世纪首先提出了星等这个概念.星等的数值越小,天体就越亮;星等的数值越大,它就越暗.到了1850年,由于光度计在天体光度测量中的应用,英国天文学家普森(M.R.Pogson)又提出了衡量天体明暗程度的概念.天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足m1-m2=2.5(lg E2-lg E1).其中星等为m i的天体的亮度为E i(i=1,2).已知“心宿二”的星等是1.00,“天津四”的星等是1.25,“心宿二”的亮度是“天津四”的r倍,则与r最接近的是(当|x|较小时,10x≈1+2.3x+2.7x2)()A.1.24B.1.25C.1.26D.1.2714.已知一容器中有A,B两种菌,且在任何时刻A,B两种菌的个数乘积均为定值1010,为了简单起见,科学家用P A=lg n A来记录A菌个数的资料,其中n A为A 菌的个数.现有以下几种说法:①P A≥1;②若今天的P A值比昨天的P A值增加1,则今天的A菌个数比昨天的A菌个数多10;③假设科学家将B菌的个数控制为5万,则此时5<P A<5.5(注:lg2≈0.3).则正确的说法为________(写出所有正确说法的序号).。
数学总复习高考教案七篇

数学总复习高考教案七篇数学总复习高考教案篇1一教材分析本节知识是必修五第一章《解三角形》的第一节内容,与初中学习的三角形的边和角的基本关系有密切的联系与判定三角形的全等也有密切联系,在日常生活和工业生产中也时常有解三角形的问题,而且解三角形和三角函数联系在高考当中也时常考一些解答题。
因此,正弦定理和余弦定理的知识非常重要。
根据上述教材内容分析,考虑到学生已有的认知结构心理特征及原有知识水平,制定如下教学目标:认知目标:在创设的问题情境中,引导学生发现正弦定理的内容,推证正弦定理及简单运用正弦定理与三角形的内角和定理解斜三角形的两类问题。
能力目标:引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,培养学生的创新意识和观察与逻辑思维能力,能体会用向量作为数形结合的工具,将几何问题转化为代数问题。
情感目标:面向全体学生,创造平等的教学氛围,通过学生之间、师生之间的交流、合作和评价,调动学生的主动性和积极性,给学生成功的体验,激发学生学习的兴趣。
教学重点:正弦定理的内容,正弦定理的证明及基本应用。
教学难点:正弦定理的探索及证明,已知两边和其中一边的对角解三角形时判断解的个数。
二教法根据教材的内容和编排的特点,为是更有效地突出重点,空破难点,以学业生的发展为本,遵照学生的认识规律,本讲遵照以教师为主导,以学生为主体,训练为主线的指导思想,采用探究式课堂教学模式,即在教学过程中,在教师的启发引导下,以学生独立自主和合作交流为前提,以“正弦定理的发现”为基本探究内容,以生活实际为参照对象,让学生的思维由问题开始,到猜想的得出,猜想的探究,定理的推导,并逐步得到深化。
突破重点的手段:抓住学生情感的兴奋点,激发他们的兴趣,鼓励学生大胆猜想,积极探索,以及及时地鼓励,使他们知难而进。
另外,抓知识选择的切入点,从学生原有的认知水平和所需的知识特点入手,教师在学生主体下给以适当的提示和指导。
突破难点的方法:抓住学生的能力线联系方法与技能使学生较易证明正弦定理,另外通过例题和练习来突破难点三学法:指导学生掌握“观察——猜想——证明——应用”这一思维方法,采取个人、小组、集体等多种解难释疑的尝试活动,将自己所学知识应用于对任意三角形性质的探究。
新人教版高三数学专题总复习Word完整版.doc

新人教版高三数学专题总复习Word完整版2018年高考数学复习专题专题一集合、逻辑与不等式集合概念及其基本理论,是近代数学最基本的内容之一,集合的语言、思想、观点渗透于中学数学内容的各个分支.有关简易逻辑的常识与原理始终贯穿于数学的分析、推理与计算之中,学习关于逻辑的有关知识,可以使我们对数学的有关概念理解更透彻,表达更准确.不等式是高中数学的重点内容之一,是工具性很强的一部分内容,解不等式、不等式的性质等都有很重要的应用.关注本专题内容在其他各专题中的应用是学习这一专题内容时要注意的.§1-1 集合【知识要点】1.集合中的元素具有确定性、互异性、无序性.2.集合常用的两种表示方法:列举法和描述法,另外还有大写字母表示法,图示法(韦恩图),一些数集也可以用区间的形式表示.3.两类不同的关系:(1)从属关系——元素与集合间的关系;(2)包含关系——两个集合间的关系(相等是包含关系的特殊情况).4.集合的三种运算:交集、并集、补集.【复习要求】1.对于给定的集合能认识它表示什么集合.在中学常见的集合有两类:数集和点集.2.能正确区分和表示元素与集合,集合与集合两类不同的关系.3.掌握集合的交、并、补运算.能使用韦恩图表达集合的关系及运算.4.把集合作为工具正确地表示函数的定义域、值域、方程与不等式的解集等.【例题分析】例1 给出下列六个关系:(1)0∈N* (2)0{-1,1} (3)∈{0}∉∅(4){0} (5){0}∈{0,1} (6){0}{0}∅∉⊆其中正确的关系是______.解答:(2)(4)(6)【评析】1.熟悉集合的常用符号:不含任何元素的集合叫做空集,记作;N 表示自然数集;N+或N*表示正整数集;Z表示整数集;Q表示有理数集;R表示实数集.∅2.明确元素与集合的关系及符号表示:如果a是集合A的元素,记作:a∈A;如果a不是集合A的元素,记作:aA.∉3.明确集合与集合的关系及符号表示:如果集合A 中任意一个元素都是集合B 的元素,那么集合A 叫做集合B 的子集.记作:AB 或BA .⊆⊇如果集合A 是集合B 的子集,且B 中至少有一个元素不属于A ,那么,集合A 叫做集合B 的真子集.AB 或BA .4.子集的性质:①任何集合都是它本身的子集:AA ;⊆②空集是任何集合的子集:A ;∅⊆提示:空集是任何非空集合的真子集.③传递性:如果AB ,BC ,则AC ;如果AB ,BC ,则AC .⊆⊆⊆例2 已知全集U ={小于10的正整数},其子集A ,B 满足条件(UA)∩(UB)={1,9},A ∩B ={2},B ∩(UA)={4,6,8}.求集合A ,B .解:根据已知条件,得到如图1-1所示的韦恩图,图1-1于是,韦恩图中的阴影部分应填数字3,5,7.故A ={2,3,5,7},B ={2,4,6,8}.【评析】1、明确集合之间的运算对于两个给定的集合A 、B ,由既属于A 又属于B 的所有元素构成的集合叫做A 、B 的交集.记作:A ∩B .对于两个给定的集合A 、B ,把它们所有的元素并在一起构成的集合叫做A 、B 的并集.记作:A ∪B .如果集合A 是全集U 的一个子集,由U 中不属于A 的所有元素构成的集合叫做A 在U 中的补集.记作UA .2、集合的交、并、补运算事实上是较为复杂的“且”、“或”、“非”的逻辑关系运算,而韦恩图可以将这种复杂的逻辑关系直观化,是解决集合运算问题的一个很好的工具,要习惯使用它解决问题,要有意识的利用它解决问题.例3 设集合M ={x |-1≤x <2},N ={x |x <a}.若M ∩N =,则实数a 的取值范围是______.∅答:(-∞,-1].【评析】本题可以通过数轴进行分析,要特别注意当a 变化时是否能够取到区间端点的值.象韦恩图一样,数轴同样是解决集合运算问题的一个非常好的工具.例4 设a ,b ∈R ,集合,则b -a =______.},,0{},,1{b ab a b a =+【分析】因为,所以a +b =0或a =0(舍去,否则没有意义),},,0{},,1{b a ba b a =+a b 所以,a +b =0,=-1,所以-1∈{1,a +b ,a},a =-1,ab 结合a +b =0,b =1,所以b -a =2.练习1-1一、选择题1.给出下列关系:①;②Q ;③|-3|N*;④.其中正确命题的个数是( )R ∈212∉∉Q ∈-|3|(A)1 (B)2 (C)3 (D)42.下列各式中,A 与B 表示同一集合的是( )(A)A ={(1,2)},B ={(2,1)} (B)A ={1,2},B ={2,1}(C)A ={0},B = (D)A ={y |y =x2+1},B ={x |y =x2+1}∅3.已知M ={(x ,y)|x >0且y >0},N ={(x ,y)|xy >0},则M ,N 的关系是( )(A)MN (B)NM (C)M =N (D)M ∩N =∅4.已知全集U =N ,集合A ={x |x =2n ,n ∈N},B ={x |x =4n ,n ∈N},则下式中正确的关系是( )(A)U =A ∪B (B)U =(UA)∪B (C)U =A ∪(UB) (D)U =(UA)∪(UB)二、填空题5.已知集合A ={x |x <-1或2≤x <3},B ={x |-2≤x <4},则A ∪B =______.6.设M ={1,2},N ={1,2,3},P ={c |c =a +b ,a ∈M ,b ∈N},则集合P 中元素的个数为______.7.设全集U =R ,A ={x |x ≤-3或x ≥2},B ={x |-1<x <5},则(UA)∩B =______.8.设集合S ={a0,a1,a2,a3},在S 上定义运算为:aiaj =ak ,其中k 为i +j 被4除的余数,i ,j =0,1,2,3.则a2a3=______;满足关系式(xx)a2=a0的x(x ∈S)的个数为______.⊕⊕⊕⊕⊕三、解答题9.设集合A ={1,2},B ={1,2,3},C ={2,3,4},求(A ∩B)∪C .10.设全集U ={小于10的自然数},集合A ,B 满足A ∩B ={2},(UA)∩B ={4,6,8},(UA)∩(UB)={1,9},求集合A 和B .11.已知集合A ={x |-2≤x ≤4},B ={x |x >a},①A ∩B ≠,求实数a 的取值范围;∅②A ∩B ≠A ,求实数a 的取值范围;③A ∩B ≠,且A ∩B ≠A ,求实数a 的取值范围.∅§1-2 常用逻辑用语【知识要点】1.命题是可以判断真假的语句.2.逻辑联结词有“或”“且”“非”.不含逻辑联结词的命题叫简单命题,由简单命题和逻辑联结词构成的命题叫做复合命题.可以利用真值表判断复合命题的真假.3.命题的四种形式原命题:若p 则q .逆命题:若q 则p .否命题:若p ,则q .逆否命题:若q ,则p .注意区别“命题的否定”与“否命题”这两个不同的概念.原命题与逆否命题、逆命题与否命题是等价关系.⌝⌝⌝⌝4.充要条件如果pq ,则p 叫做q 的充分条件,q 叫做p 的必要条件.⇒如果pq 且qp ,即qp 则p 叫做q 的充要条件,同时,q 也叫做p 的充要条件.⇒⇒⇔5.全称量词与存在量词【复习要求】1.理解命题的概念.了解“若p,则q”形式的命题的逆命题、否命题与逆否命题,会分析四种命题的相互关系.理解必要条件、充分条件与充要条件的意义.2.了解逻辑联结词“或”、“且”、“非”的含义.3.理解全称量词与存在量词的意义.能正确地对含有一个量词的命题进行否定.【例题分析】例1 分别写出由下列命题构成的“p∨q”“p∧q”“p”形式的复合命题,并判断它们的真假.⌝(1)p:0∈N,q:1N;∉(2)p:平行四边形的对角线相等,q:平行四边形的对角线相互平分.解:(1)p∨q:0∈N,或1N;∉p∧q:0∈N,且1N;p:0N.∉⌝∉因为p真,q假,所以p∨q为真,p∧q为假,p为假.⌝(2)p∨q:平行四边形的对角线相等或相互平分.p∧q:平行四边形的对角线相等且相互平分.⌝p:存在平行四边形对角线不相等.因为p假,q真,所以p∨q为真,p∧q为假,p为真.⌝【评析】判断复合命题的真假可以借助真值表.例2 分别写出下列命题的逆命题、否命题和逆否命题,并判断其真假.(1)若a2+b2=0,则ab=0;(2)若A∩B=A,则AB.解:(1)逆命题:若ab=0,则a2+b2=0;是假命题.否命题:若a2+b2≠0,则ab≠0;是假命题.逆否命题:若ab≠0,则a2+b2≠0;是真命题.(2)逆命题:若AB,则A∩B=A;是真命题.否命题:若A∩B≠A,则A不是B的真子集;是真命题.逆否命题:若A不是B的真子集,则A∩B≠A.是假命题.评述:原命题与逆否命题互为逆否命题,同真同假;逆命题与逆否命题也是互为逆否命题.例3 指出下列语句中,p是q的什么条件,q是p的什么条件.(1)p:(x-2)(x-3)=0;q:x=2;(2)p:a≥2;q:a≠0.【分析】由定义知,若pq且qp,则p是q的充分不必要条件;⇒若pq且qp,则p是q的必要不充分条件;⇒若pq且qp,p与q互为充要条件.⇒⇒于是可得(1)中p是q的必要不充分条件;q是p的充分不必要条件.(2)中p是q的充分不必要条件;q是p的必要不充分条件.【评析】判断充分条件和必要条件,首先要搞清楚哪个是条件哪个是结论,剩下的问题就是判断p与q之间谁能推出谁了.例4 设集合M={x|x>2},N={x|x<3},那么“x∈M或x∈N”是“x∈M ∩N”的( )(A)充分非必要条件(B)必要非充分条件(C)充要条件(D)非充分条件也非必要条件解:条件p:x∈M或x∈N,即为x∈R;条件q:x∈M∩N,即为{x∈R|2<x <3}.又R{x∈R|2<x<3},且{x∈R|2<x<3}R,所以p是q的必要非充分条件,选B.⊆【评析】当条件p和q以集合的形式表现时,可用下面的方法判断充分性与必要性:设满足条件p的元素构成集合A,满足条件q的元素构成集合B,若AB 且BA,则p是q的充分非必要条件;若AB且BA,则p是q的必要非充分条件;若A=B,则p与q互为充要条件.⊆⊆例5 命题“对任意的x∈R,x3-x2+1≤0”的否定是( )(A)不存在x∈R,x3-x2+1≤0,(B)存在x∈R,x3-x2+1≤0(C)存在x∈R,x3-x2+1>0 (D)对任意的x∈R,x3-x2+1>0【分析】这是一个全称命题,它的否定是一个特称命题.其否定为“存在x ∈R,x3-x2+1>0.”答:选C.【评析】注意全(特)称命题的否定是将全称量词改为存在量词(或将存在量词改为全称量词),并把结论否定.练习1-2一、选择题1.下列四个命题中的真命题为( )(A)x∈Z,1<4x<3 (B)x∈Z,3x-1=0∃∃(C)x∈R,x2-1=0 (D)x∈R,x2+2x+2>0∀∀2.如果“p或q”与“非p”都是真命题,那么( )(A)q一定是真命题(B)q不一定是真命题(C)p不一定是假命题(D)p与q的真假相同3.已知a为正数,则“a>b”是“b为负数”的( )(A)充分不必要条件(B)必要不充分条件(C)充要条件(D)既不充分也不必要条件4.“A是B的子集”可以用下列数学语言表达:“若对任意的x∈Ax∈B,则称AB”.那么“A不是B的子集”可用数学语言表达为( )⇒⊆(A)若x∈A但xB,则称A不是B的子集∀∉(B)若x∈A但xB,则称A不是B的子集∃∉(C)若xA但x∈B,则称A不是B的子集∃∉(D)若xA但x∈B,则称A不是B的子集∀∉二、填空题5.“p 是真命题”是“p ∨q 是假命题的”__________________条件.⌝6.命题“若x <-1,则|x |>1”的逆否命题为_________.7.已知集合A ,B 是全集U 的子集,则“AB ”是“UBUA ”的______条件.⊆⊆8.设A 、B 为两个集合,下列四个命题:①AB 对任意x ∈A ,有xB ②ABA ∩B =⇔∉⇔∅③ABAB ④AB 存在x ∈A ,使得xB ⇔⇔∉ 其中真命题的序号是______.(把符合要求的命题序号都填上)三、解答题9.判断下列命题是全称命题还是特称命题并判断其真假:(1)指数函数都是单调函数;(2)至少有一个整数,它既能被2整除又能被5整除;(3)x ∈{x |x ∈Z},log2x >0;∃ (4).041,2≥+-∈∀x x x R 10.已知实数a ,b ∈R .试写出命题:“a2+b2=0,则ab =0”的逆命题,否命题,逆否命题,并判断四个命题的真假,说明判断的理由.§1-3 不等式(含推理与证明)【知识要点】1.不等式的性质.(1)如果a >b ,那么b <a ;(2)如果a >b ,且b >c ,那么a >c ;(3)如果a >b ,那么a +c >b +c(如果a +c >b ,那么a >b -c);(4)如果a >b ,c >d ,那么a +c >b +d ;(5)如果a >b ,c >0,那么ac >bc ;如果a >b ,c <0,那么ac <bc ;(6)如果a >b >0,c >d >0,那么ac >bd ;(7)如果a >b >0,那么an >bn(n ∈N +,n >1);(8)如果a >b >0,那么;)1,N (>∈>+n x b a n n2.进行不等式关系判断时常用到的实数的性质:若a ∈R ,则.)R (0.0||;02+∈≥≥≥a a a a3.会解一元一次不等式,一元二次不等式,简单的分式不等式、绝对值不等式.简单的含参数的不等式.4.均值定理:如果a 、b ∈R +,那么当且仅当a =b 时,式中等号成立..2ab b a ≥+ 其他常用的基本不等式:如果a 、b ∈R ,那么a2+b2≥2ab ,(a -b)2≥0. 如果a 、b 同号,那么.2≥+b a a b5.合情推理之归纳推理与类比推理;演绎推理;综合法、分析法与反证法.【复习要求】1.运用不等式的性质解决以下几类问题:(1)根据给定的条件,判断给出的不等式能否成立;(2)利用不等式的性质,实数的性质以及函数的有关性质判断实数值的大小关系;(3)利用不等式的性质等判断不等式变换中条件与结论间的充分必要关系.2.熟练掌握一元一次不等式,一元二次不等式、简单的分式不等式、绝对值不等式的解法.并会解简单的含参数的不等式.3.了解合情推理和演绎推理的含义,能利用归纳和类比等进行简单的推理.了解演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理.能较为灵活的运用综合法、分析法与反证法证明数学问题.熟练运用比较法比较数与式之间的大小关系.比较法:常有“作差比较法”和“作商比较法”;综合法:从已知推导致结果的思维方法;分析法:从结果追溯到产生这一结果的原因的思维方法;反证法:由证明pq 转向证明qr …t ,而t 与假设矛盾,或与某个真命题矛盾,从而判定q 为假,进而推出q 为真的方法,叫做反证法.⇒⌝⇒⇒⇒⌝一般来讲,由分析法得到的证明思路往往用综合法的方式来书写.【例题分析】例1 若a >b >c ,则一定成立的不等式是( )A .a |c |>b |c |B .ab >acC .a -|c |>b -|c |D .cb a 111<< 【分析】关于选项A .当c =0时,a |c |>b |c |不成立.关于选项B .当a <0时,ab >ac 不成立.关于选项C .因为a >b ,根据不等式的性质a -|c |>b -|c |,正确. 关于选项D .当a >b >0>c 时,不成立.所以,选C .c b a 111<< 例2 a ,b ∈R ,下列命题中的真命题是( )A .若a >b ,则|a |>|b |B .若a >b ,则b a 11<C .若a >b ,则a3>b3D .若a >b ,则1>b a 【分析】关于选项A .当a =-1,b =-2时,|a |>|b |不成立. 关于选项B .当a >0,b <0时,不成立.ba 11< 关于选项C .因为a >b ,根据不等式的性质a3>b3,正确. 关于选项D .当b <0时,不成立.所以,选C .1>b a【评析】判断不等关系的正误,其一要掌握判断的依据,依据相关的理论判断,切忌仅凭感觉进行判断;其二要掌握判断的方法.判断不等式的理论依据参看本节的知识要点,另外,后面专题讲到的函数的相关知识尤其是函数的单调性也是解决不等式问题的非常重要的方法.判断一个不等式是正确的,就应该给出一个合理的证明(或说明),就像例1、例2对正确的选项判断那样.判断一个不等式是不正确的,应举出反例.例3 解下列不等式:(1)x2-x -1>0;(2)x2-3x +2>0;(3)2x2-3x +1≤0;(4)(5)|2x -1|<3;(6);021>--x x .1212≤--x x 解:(1)方程x2-x -1=0的两个根是结合函数y =x2-x -1的图象,可得不等式x2-x -1>0的解集为251,21±=x x }.251251|{+>-<x x x 或 (2)不等式x2-3x +2>0等价于(x -1)(x -2)>0,易知方程(x -1)(x -2)=0的两个根为x1=1,x2=2,结合函数y =x2-3x +2的图象,可得不等式x2-3x +2>0的解集为{x |x <1或x >2}.(3)不等式2x2-3x +1≤0等价于(2x -1)(x -1)≤0,以下同(2)的解法, 可得不等式的解集为}.121|{≤≤x x(4)等价于(x -1)(x -2)>0,以下同(2)的解法,可得不等式的解集为{x |x <1或x >2}.021>--x x (5)不等式|2x -1|<3等价于-3<2x -1<3,所以-2<2x <4,即-1<x <2,所以不等式|2x -1|<3的解集为{x |-1≤x <2}.(6)不等式可以整理为1212≤--x x ,021≤-+x x ,021≤-+x x 等价于以下同(4)的解法,可得不等式的解集为{x |-1≤x <2}..021021=-+<-+x x x x 或 【评析】一元一次不等式、一元二次不等式的解法要熟练掌握.其他不等式的解法适当掌握.1.利用不等式的性质可以解一元一次不等式.2.解一元二次不等式要注意函数、方程、不等式三者之间的联系,通过研究与一元二次不等式相对应的一元二次方程的根的情况、进而结合相应的二次函数的图象就可以解决一元二次不等式解集的问题了.所以,解一元二次不等式的步骤为:计算二次不等式相应的方程的判别式;求出相应的一元二次方程的根(或根据判别式说明无根);画出相应的二次函数的简图;根据简图写出二次不等式的解集.3、不等式与(x -a)(x -b)>0同解;不等式与(x -a)(x -b)<0同解;0>--bx a x 0<--b x a x 4*、不等式|f(x)|<c 与-c <f(x)<c 同解;不等式|f(x)|>c 与“f(x)>c 或f(x)<-c ”同解.在解简单的分式不等式时要注意细节,例如(5)题关于“≤”号的处理.例4 解下列关于x 的不等式;(1)ax +3<2;(2)x2-6ax +5a2≤0.解:(1)由ax +3<2得ax <-1,当a =0时,不等式解集为;∅当a >0时,不等式解集为;}1|{ax x -<当a <0时,不等式解集为.}1|{a x x -> (2)x2-6ax +5a2≤0等价于不等式(x -a)(x -5a)≤0,当a =0时,不等式解集为{x |x =0};当a >0时,不等式解集为{x |a ≤x ≤5a};当a <0时,不等式解集为{x |5a ≤x ≤a}.【评析】含参数的不等式的解法与不含参数的不等式的解法、步骤是完全一致的.要注意的是,当进行到某一步骤具有不确定性时,需要进行分类讨论.如(2)的解决过程中,当解出方程(x -a)(x -5a)=0的两根为x1=a ,x2=5a 之后,需要画出二次函数y =x2-6ax +5a2的草图,这时两根a 与5a 的大小不定,需要讨论,当分a =0,a >0,a <0三种情况之后,就可以在各自情况下确定a 与5a 的大小,画出二次函数y =x2-6ax +5a2的草图写出解集了.例5 已知a >b >0,c <d <0,m <0.求证:⋅->-db mc a m 证明:方法一(作差比较)由已知b -a <0,c -d <0,又m <0,所以m[(b -a)+(c -d)]>0,因为a >b >0,c <d <0,所以a -c >0,b -d >0, 所以,所以0))(()]()[(>---+-d b c a d c a b m ⋅->->---db mc a md b m c a m 即,0 方法二因为c <d <0,所以c -d <0,又a >b >0,所以a -b >0,所以a -b >c -d ,所以a -c >b -d >0,所以,又因为m <0,所以d b c a -<-11⋅->-db mc a m 例6 已知a +b +c =0,a >b >c ,求证:(1)a >0;(2).2->a c证明:(1)假设a ≤0,因为a >b >c ,所以b <0,c <0.所以a +b +c <0,与a +b +c =0矛盾.(2)因为b =-a -c ,a >b ,所以,所以2a >-c ,又a >0,所以,所以a c ->2.2->a c 例7 已知a ,b ,c ∈(0,1),求证:(1-a)b ,(1-b)c ,(1-c)a 中至少有一个不大于.41 证明:假设(1-a)b ,(1-b)c ,(1-c)a 均大于,41 即,41)1(,41)1(,41)1(>->->-a c c b b a 因为a ,b ,c ∈(0,1),所以1-a ,1-b ,1-c ∈(0,1),所以,同理(1-b)+c >1,(1-c)+a >1,1)1(2)1(>-≥+-b a b a所以(1-a)+b +(1-b)+c +(1-c)+a >3,即0>0,矛盾.所以(1-a)b ,(1-b)c ,(1-c)a 中至少有一个不大于.41 【评析】证明常用的方法有比较法、综合法、分析法与反证法等.证明不等式也是如此.1、例5中的方法一所用到的比较法从思维、书写的角度都较为容易,也相对易于把握,要熟练掌握.2、例5中的方法二所用到的综合法是一般证明题常用的方法,其书写方法简明、易读,但要注意的是,这样的题的思路常常是分析法.比如,例5中的方法二的思路我们可以认为是这样得到的:欲证只需证明m(b -d)>m(a -c)(因为b -d >0,a -c >0),即只需证明b -d <a -c ,即只需证明a -b >c -d ,,db mc a m ->- 而由已知a -b >0,c -d <0,所以可以循着这个思路按照相反的顺序书写.所以,在很多情况下,分析法更是思考问题的方法,而综合法更是一种书写方法.3、适合用反证法证明的常见的命题一般是非常显而易见的问题(如例6(1))、否定式的命题、存在性的命题、含至多至少等字样的命题(如例7)等等.证明的步骤一般是:(1)假设结论的反面是正确的;(2)推出矛盾的结论;(3)得出原来命题正确的结论.例8 根据图中图形及相应点的个数找规律,第8个图形相应的点数为______.【分析】第一个图有1行,每行有1+2个点;第二个图有2行,每行有2+2个点;第三个图有3行,每行有3+2个点;……第八个图有8行,每行有8+2个点,所以共有8×10=80个点.答:80.练习1-3一、选择题1.若则下列各式正确的是( )011>>b a (A)a >b(B)a <b (C)a2>b2 (D)2211b a < 2.已知a ,b 为非零实数,且a <b ,则下列命题成立的是( ) (A)a2<b2 (B)a2b <ab2 (C) (D)b a ab 2211<b a a b < 3.已知A ={x ||x |<a},B ={x |x >1},且A ∩B =,则a 的取值范围是( )∅(A){a |a ≤1} (B){a |0≤a ≤1} (C){a |a <1} (D){a |0<a <1}4.设集合M ={1,2,3,4,5,6},S1,S2,…,Sk 都是M 的含有两个元素的子集,且满足:对任意的Si ={ai ,bi}、Sj ={aj ,bj}(i ≠j ,i ,j ∈{1,2,3,…,k})都有,(min{x ,y}表示两个数x ,y 中的较小者),则k 的最大值是( )},min{},min{j j j j i i i i a b b a a bb a =/ (A)10 (B)11 (C)12 (D)13二、填空题5.已知数列{an}的第一项a1=1,且,请计算出这个数列的前几项,并据此归纳出这个数列的通项公式an =______.),3,2,1(11 =+=+n a aa n n n6.不等式x2-5x +6<0的解集为____________.7.设集合A ={x ∈R ||x |<4},B ={x ∈R |x2-4x +3>0},则集合{x ∈R |x ∈A ,且xA ∩B}=____________.∉8.设a ∈R 且a ≠0,给出下面4个式子:①a3+1;②a2-2a +2;③;④a a 1+⋅+221aa 其中恒大于1的是______.(写出所有满足条件式子的序号)三、解答题9.解下列不等式:(1)2x2+x >0;(2)x2+3x +1<0;(3);(4)|2-x |<3;(5).032<-x x 21>-x x 10.已知a +b +c =0,求证:ab +bc +ca ≤0.11.解下列关于x 的不等式:(1)x2-2ax -3a2<0;(2)ax2-x >0;习题1一、选择题1.命题“若x 是正数,则x =|x |”的否命题是( )(A)若x 是正数,则x ≠|x | (B)若x 不是正数,则x =|x |(C)若x 是负数,则x ≠|x | (D)若x 不是正数,则x ≠|x |2.若集合M 、N 、P 是全集U 的子集,则图中阴影部分表示的集合是( )(A)(M ∩N)∪P (B)(M ∩N)∩P(C)(M ∩N)∪(UP) (D)(M ∩N)∩(UP)3.“”是“对任意的正数”的( )81=a 12,≥+xa x x(A)充分不必要条件 (B)必要不充分条件(C)充要条件 (D)既不充分也不必要条件4.已知集合P ={1,4,9,16,25,…},若定义运算“&”满足:“若a ∈P ,b ∈P ,则a&b ∈P ”,则运算“&”可以是( )(A)加法 (B)减法 (C)乘法 (D)除法5.已知a ,b ,c 满足c <b <a ,且ac <0,那么下列选项中不一定成立的是( )(A)ab >ac (B)c(b -a)<0 (C)cb2<ab2 (D)ac(a -c)<0二、填空题6.若全集U ={0,1,2,3}且UA ={2},则集合A =______.7.命题“x ∈A ,但xA ∪B ”的否定是____________.∃∉8.已知A ={-2,-1,0,1},B ={y |y =|x |,x ∈A},则B =____________.9.已知集合A ={x |x2-3x +2<0},B ={x |x <a},若AB ,则实数a 的取值范围是____________.10.设a ,b 是两个实数,给出下列条件:①a +b >1;②a +b =2;③a +b >2;④a2+b2>2;⑤ab >1,其中能推出“a ,b 中至少有一个大于1”的条件是______.(写出所有正确条件的序号)三、解答题11.解不等式.21<x12.若0<a <b 且a +b =1.(1)求b 的取值范围;(2)试判断b 与a2+b2的大小.13.设a ≠b ,解关于x 的不等式:a2x +b2(1-x)≥[ax +b(1-x)]2.14.设数集A 满足条件:①AR ;②0A 且1A ;③若a ∈A ,则⊆∉∉.11A a ∈- (1)若2∈A ,则A 中至少有多少个元素;(2)证明:A 中不可能只有一个元素.专题一 集合、逻辑与不等式参考答案练习1-1一、选择题1.B 2.B 3.A 4.C提示:4.集合A 表示非负偶数集,集合B 表示能被4整除的自然数集,所以{正奇数}(UB),从而U =A ∪(UB).二、填空题5.{x |x <4} 6.4个 7.{x |-1<x <2} 8.a1;2个(x 为a1或a3).三、解答题9.(A ∩B)∪C ={1,2,3,4}10.分析:画如图所示的韦恩图:得A ={0,2,3,5,7},B ={2,4,6,8}.11.答:①a <4;②a ≥-2;③-2≤a <4提示:画数轴分析,注意a 可否取到“临界值”.练习1-2一、选择题1.D 2.A 3.B 4.B二、填空题5.必要不充分条件 6.若|x |≤1,则x ≥-1 7.充要条件 8.④ 提示:8.因为AB ,即对任意x ∈A ,有x ∈B .根据逻辑知识知,AB ,即为④.⊆ 另外,也可以通过文氏图来判断.三、解答题9.答:(1)全称命题,真命题.(2)特称命题,真命题.(3)特称命题,真命题;(4)全称命题,真命题.10.略解:答:逆命题:若ab =0,则a2+b2=0;是假命题;例如a =0,b =1否命题:若a2+b2≠0,则ab ≠0;是假命题;例如a =0,b =1逆否命题:若ab ≠0,则a2+b2≠0;是真命题;因为若a2+b2=0,则a =b =0,所以ab =0,即原命题是真命题,所以其逆否命题为真命题.练习1-3一、选择题1.B 2.C 3.A 4.B二、填空题5. 6.{x |2<x <3} 7.{x ∈R |1≤x ≤3| 8.④n1 三、解答题9.答:(1);(2);}210|{-<>x x x 或}253253|{+-<<--x x (3);(4){x |-1<x <5};(5).}230|{<<x x }310|{<<x x 10.证明:ab +bc +ca =b(a +c)+ac =-(a +c)(a +c)+ac =-a2-ac -c2所以ab +bc +ca ≤0.11.解:(1)原不等式(x +a)(x -3a)<0.⇔分三种情况讨论:①当a <0时,解集为{x |3a <x <-a};②当a =0时,原不等式x2<0,解集为;⇔∅③当a >0时,解集为{x |-a <x <3a}.(2)不等式ax2-x >0x(ax -1)>0.⇔分三种情况讨论:①当a =0时,原不等式-x >0,解集为{x |x <0};⇔②当a >0时,x(ax -1)>0x(x -)>0,解集为;⇔a 1}10|{ax x x ><或 ③当a <0时,x(ax -1)>0x(x -)<0,解集为.⇔a 1}01|{<<x a x 习题1一、选择题1.D 2.D 3.A 4.C 5.C提示:5.A 正确.B 不正确.D .正确.当b ≠0时,C 正确;当b =0时,C 不正确,∴C 不一定成立.二、填空题6.{0,1,3} 7.x ∈A ,x ∈A ∪B 8.{0,1,2} 9.{a |a ≥2} 10.③.∀ 提示:10、均可用举反例的方式说明①②④⑤不正确.对于③:若a 、b 均小于等于1.即,a ≤1,b ≤1,则a +b ≤2,与a +b >2矛盾,所以③正确.三、解答题11.解:不等式即21<x ,021,021<-<-xx x 所以,此不等式等价于x(2x -1)>0,解得x <0或,012>-x x 21>x 所以,原不等式的解集为{x |x <0或}.21>x 12.解:(1)由a +b =1得a =1-b ,因为0<a <b , 所以1-b >0且1-b <b ,所以.121<<b(2)a2+b2-b =(1-b)2+b2-b =2b2-3b +1=⋅--81)43(22b 因为,所以121<<b ,081)43(22<--b即a2+b2<b .13.解:原不等式化为(a2-b2)x +b2≥(a -b)2x2+2b(a -b)x +b2,移项整理,得(a -b)2(x2-x)≤0.因为a ≠b ,故(a -b)2>0,所以x2-x ≤0.故不等式的解集为{x |0≤x ≤1}.14.解:(1)若2∈A ,则.22111,21)1(11,1211A A A ∈=-∴∈=--∴∈-=- ∴A 中至少有-1,,2三个元素.21 (2)假设A 中只有一个元素,设这个元素为a ,由已知,则.即a2-a +1=0,此方程无解,这与A 中有一个元素a 矛盾,所以A 中不可能只有一个元素.A a∈-11a a -=11专题二函数函数是中学数学中的重点内容,是描述变量之间依赖关系的重要数学模型.本章内容有两条主线:一是对函数性质作一般性的研究,二是研究几种具体的基本初等函数——一次函数、二次函数、指数函数、对数函数、幂函数.研究函数的问题主要围绕以下几个方面:函数的概念,函数的图象与性质,函数的有关应用等.§2-1 函数【知识要点】要了解映射的概念,映射是学习、研究函数的基础,对函数概念、函数性质的深刻理解在很多情况下要借助映射这一概念.1、设A,B是两个非空集合,如果按照某种对应法则f,对A中的任意一个元素x,在B中有一个且仅有一个元素y与x对应,则称f是集合A到集合B的映射.记作f:A→B,其中x叫原象,y叫象.2、设集合A是一个非空的数集,对A中的任意数x,按照确定的法则f,都有唯一确定的数y与它对应,则这种映射叫做集合A上的一个函数.记作y=f(x),x∈A.其中x叫做自变量,自变量取值的范围(数集A)叫做这个函数的定义域.所有函数值构成的集合{y|y=f(x),x∈A}叫做这个函数的值域.函数的值域由定义域与对应法则完全确定.3、函数是一种特殊的映射.其定义域和值域都是非空的数集,值域中的每一个元素都有原象.构成函数的三要素:定义域,值域和对应法则.其中定义域和对应法则是核心.【复习要求】1.了解映射的意义,对于给出对应关系的映射会求映射中指定元素的象与原象.2.能根据函数三要素判断两个函数是否为同一函数.3.掌握函数的三种表示法(列表法、图象法和解析法),理解函数符号f(x)(对应法则),能依据一定的条件求出函数的对应法则.4.理解定义域在三要素的地位,并会求定义域.【例题分析】例1 设集合A和B都是自然数集合N.映射f:A→B把集合A中的元素x映射到集合B中的元素2x+x,则在映射f作用下,2的象是______;20的原象是______.【分析】由已知,在映射f作用下x的象为2x+x.所以,2的象是22+2=6;设象20的原象为x,则x的象为20,即2x+x=20.由于x∈N,2x+x随着x的增大而增大,又可以发现24+4=20,所以20的原象是4.例2 设函数则f(1)=______;若f(0)+f(a)=-2,则a的所有可能值为______.⎩⎨⎧>++-≤-=,0,22,0,1)(2x x x x x x f 【分析】从映射的角度看,函数就是映射,函数解析式就是映射的法则. 所以f(1)=3.又f(0)=-1,所以f(a)=-1,当a ≤0时,由a -1=-1得a =0;当a >0时,由-a2+2a +2=-1,即a2-2a -3=0得a =3或a =-1(舍). 综上,a =0或a =3.例3 下列四组函数中,表示同一函数的是( )(A) (B)22)(,t y x y ==2|,|t y x y ==(C) (D)1,112+=--=x y x x y x x y x y 2,== 【分析】(A)(C)(D)中两个函数的定义域均不同,所以不是同一函数.(B)中两个函数的定义域相同,化简后为y =|x |及y =|t |,法则也相同,所以选(B).【评析】判断两个函数是否为同一函数,就是要看两个函数的定义域与法则是否完全相同.一般有两个步骤:(1)在不对解析式进行变形的情况下求定义域,看定义域是否一致.(2)对解析式进行合理变形的情况下,看法则是否一致.例4 求下列函数的定义域(1)(2);11--=x y ;3212-+=x x y (3) (4);)1()3lg(0-+-=x xx y ;2|2|12---=x x y 解:(1)由|x -1|-1≥0,得|x -1|≥1,所以x -1≥1或x -1≤-1,所以x ≥2或x ≤0.所以,所求函数的定义域为{x |x ≥2或x ≤0}.。
高考数学总复习考点知识专题讲解9 二项式定理

高考数学总复习考点知识专题讲解专题9 二项式定理知识点一 二项式定理(a +b )n =C 0n a n +C 1n a n -1b +C 2n a n -2b 2+…+C k n a n -k b k +…+C n n b n (n ∈N *).(1)这个公式叫做二项式定理.(2)展开式:等号右边的多项式叫做(a +b )n 的二项展开式,展开式中一共有n +1项. (3)二项式系数:各项的系数C kn (k ∈{0,1,2,…,n })叫做二项式系数. 知识点二 二项展开式的通项(a +b )n 展开式的第k +1项叫做二项展开式的通项,记作T k +1=C k n an -k b k . 【例1】(2023•上海)设423401234(12)x a a x a x a x a x -=++++,则04a a +=.【例2】(2022•上海)二项式(3)n x +的展开式中,2x 项的系数是常数项的5倍,则n =.【例3】(2021•浙江)已知多项式344321234(1)(1)x x x a x a x a x a -++=++++,则1a =;234a a a ++=.知识点三二项展开式的通项 求二项展开式的特定项的常用方法(1)对于常数项,隐含条件是字母的指数为0(即0次项).(2)对于有理项,一般是先写出通项公式,求其所有的字母的指数恰好都是整数的项.解这类问题必须合并通项公式中同一字母的指数,根据具体要求,令其属于整数集,再根据数的整除性来求解.(3)对于二项展开式中的整式项,其通项公式中同一字母的指数应是非负整数,求解方式与求有理项一致.【例4】(2022•新高考Ⅰ)8(1)()y x y x-+的展开式中26x y 的系数为(用数字作答).【例5】(2022•天津)523)x 的展开式中的常数项为.【例6】(2023•驻马店期末)若7102910012910(2)(1)(1)(1)(1)x x a a x a x a x a x +-=+-+-+⋯⋯+-+-,则5a =.【例7】(2023•海淀区模拟)已知5()x a +的展开式为5432543210p x p x p x p x p x p +++++,若3415p p -=,则a =.知识点四余数和整除的问题利用二项式定理可以解决求余数和整除的问题,通常需将底数化成两数的和与差的形式,且这种转化形式与除数有密切的关系.【例8】(2022秋•杨浦区校级期末)504除以17的余数为.【例9】(2023•沈阳模拟)若20232023012023(1)x a a x a x +=++⋯+,则0242022a a a a +++⋯+被5除的余数是.【例10】(2022•多选•庆阳期末)下列命题为真命题的是() A .61()x x -展开式的常数项为20B .1008被7除余1 C .61()x x-展开式的第二项为46x -D .1008被63除余1知识点五 二项式系数的性质1.对称性:在(a +b )n 的展开式中,与首末两端“等距离”的两个二项式系数相等,即C m n =C n -mn2.增减性与最大值 增减性:当k <n +12时,二项式系数是逐渐增大的;当k >n +12时,二项式系数是逐渐减小的. 最大值:(1)当n 为偶数时,中间一项的二项式系数2C n n最大;当n 为奇数时,中间两项的二项式系数12C n n-,12C n n+相等,且同时取得最大值(2)求二项式系数最大的项,根据二项式系数的性质对(a +b )n 中的n 进行讨论. ①当n 为奇数时,中间两项的二项式系数最大; ②当n 为偶数时,中间一项的二项式系数最大. (3)展开式中系数的最大项的求法求展开式中系数的最大项与求二项式系数最大项是不同的,需要根据各项系数的正、负变化情况进行分析.如求(a +bx )n (a ,b ∈R )的展开式中系数的最大项,一般采用待定系数法.设展开式中各项系数分别为A 0,A 1,A 2,…,A n ,且第k +1项最大,应用⎩⎨⎧A k ≥A k -1,A k ≥A k +1,解出k ,即得出系数的最大项. 3.各二项式系数的和(1)C 0n +C 1n +C 2n +…+C n n =2n ;(2)C 0n +C 2n +C 4n +…=C 1n +C 3n +C 5n +…=2n -14.二项展开式中系数和的求法(1)对形如(ax +b )n ,(ax 2+bx +c )m (a ,b ,c ∈R ,m ,n ∈N *)的式子求其展开式的各项系数之和,常用赋值法,只需令x =1即可,对(ax +by )n (a ,b ∈R ,n ∈N *)的式子求其展开式的各项系数之和,只需令x =y =1即可.(2)一般地,若f (x )=a 0+a 1x +a 2x 2+…+a n x n ,则f (x )展开式中各项系数之和为f (1), 奇数项系数之和为a 0+a 2+a 4+…=f (1)+f (-1)2,偶数项系数之和为a 1+a 3+a 5+…=f (1)-f (-1)2.【例11】(2022•北京)若443243210(21)x a x a x a x a x a -=++++,则024(a a a ++=) A .40B .41C .40-D .41-【例12】(2023•新乡开学)若二项式*(2()n x n N∈的展开式中只有第5项的二项式系数最大,则展开式中2x 项的系数为() A .1120-B .1792-C .1792D .1120【例13】(2023•慈溪市期末)若二项式*(12)()n x n N +∈的展开式中第6项与第7项的系数相等,则此展开式中二项式系数最大的项是() A .3448x B .41120x C .51792x D .61792x【例14】(2022秋•葫芦岛期末)设n ∈N +,化简=+++-12321666n n n n n n C C C C ( )A .7nB .C .7n ﹣1D .6n ﹣1【例15】已知(2x -1)5=a 0x 5+a 1x 4+a 2x 3+a 3x 2+a 4x +a 5.求下列各式的值:(1)a 0+a 1+a 2+…+a 5;(2)|a 0|+|a 1|+|a 2|+…+|a 5|;(3)a 1+a 3+a 5.(4)a 0+a 2+a 4;(5)a 1+a 2+a 3+a 4+a 5; (6)5a 0+4a 1+3a 2+2a 3+a 4.【例16】(2023•泰州期末)若6652360136()x y a y a xy a x y a x +=++⋯++⋯+,则220246135()()a a a a a a a +++-++的值为()A .0B .32C .64D .128【例17】(2023•静安区期末)在23(3)nx x -+的二项展开式中,533r n r n rnC x--称为二项展开式的第1r +项,其中0r =,1,2,3,⋯,n .下列关于23(3)nx x -+的命题中,不正确的一项是()A .若8n =,则二项展开式中系数最大的项是1426383C xB .已知0x >,若9n =,则二项展开式中第2项不大于第3项的实数x 的取值范围是3540()3x <…C .若10n =,则二项展开式中的常数项是44103C D .若27n =,则二项展开式中x 的幂指数是负数的项一共有12项 【例18】(2023秋•泰兴市月考)设*n N ∈,0101(1)(1)(2)(2)n n n n n x a a x a x b b x b x =+-++-=+-++-,则()A .001132n n n n b a b a b a -+-++-=-B .0101012()nn nb b b a a a a a a +++=+++ C .0101111()211n n a a a a a a n n +++=+++++D .21201(1)4()4n n n n b b n b a a a ++++=+++【例19】(2023•江宁区期末)二项式定理是产生组合恒等式的一个重要源泉,由二项式定理可得:0122*1111(1)(,),1n nn m mn n n n n n C C x C x C x x n N x R C C m n -+++++=+∈∈=+等,则012111231nn n n n C C C C n ++++=+.【例20】(2022•玄武区期末)在231(1)(1)(1)n x x x +++++⋯++的展开式中,含2x 的系数是n a ,8a =;若对任意的*n N ∈,*n N ∈,20n n a λ⋅-…恒成立,则实数λ的最小值是.【例21】(2019•江苏)设2012(1)n n n x a a x a x a x +=+++⋯+,4n …,*n N ∈.已知23242a a a =.(1)求n 的值;(2)设(1n a =+a ,*b N ∈,求223a b -的值.同步训练1.(2021•上海)已知二项式5()x a +展开式中,2x 的系数为80,则a =.2.(2021•上海)已知(1)n x +的展开式中,唯有3x 的系数最大,则(1)n x +的系数和为.3.(2020•浙江)二项展开式52345012345(12)x a a x a x a x a x a x +=+++++,则4a =,135a a a ++=.4.(2020•新课标Ⅲ)262()x x+的展开式中常数项是(用数字作答).5.(2020•天津)在522()x x+的展开式中,2x 的系数是.6.(2023•郫都区模拟)已知921001210(1)(1)x x a a x a x a x --=+++⋯+,则8a =45-.7.(2020•新课标Ⅰ)25()()y x x y x++的展开式中33x y 的系数为()A .5B .10C .15D .208.(2023•湖北模拟)51(1)(12)x x+-的展开式中,常数项是() A .9-B .10-C .9D .109.(2023•曲靖模拟)已知4520222023(1)(12)(12023)(12022)x x x x -++++-展开式中x 的系数为q ,空间有q 个点,其中任何四点不共面,这q 个点可以确定的直线条数为m ,以这q 个点中的某些点为顶点可以确定的三角形个数为n ,以这q 个点中的某些点为顶点可以确定的四面体个数为p ,则(m n p ++=) A .2022B .2023C .40D .5010.(2023•徐汇区期末)1002被9除所得的余数为() A .1B .3C .5D .711.已知f (x )=(3x 2+3x 2)n 的展开式中各项的系数和比各项的二项式系数和大992. (1)求展开式中二项式系数最大的项; (2)求展开式中系数最大的项.12(2023•河源期末)5(21)x y --的展开式中含22x y 的项的系数为() A .120-B .60C .60-D .3013.(2023•怀化期末)已知10111012n n C C =,设2012(23)(1)(1)(1)n n n x a a x a x a x -=+-+-+⋯+-,下列说法:①2023n =,②20233n a =-,③0121n a a a a +++⋯+=,④展开式中所有项的二项式系数和为1.其中正确的个数有() A .0B .1C .2D .314(2023•青原区期末)若28(1)(1)ax x x -+-的展开式中含2x 的项的系数为21,则(a =) A .3-B .2-C .1-D .115.(2023•常熟市月考)今天是星期五,经过7天后还是星期五,那么经过1008天后是()A .星期三B .星期四C .星期五D .星期六16.(2023•南海区月考)已知012233222281n n n nn n n C C C C C +++++=,则123nn n n n C C C C ++++等于()A .15B .16C .7D .817.(2022•浙江)已知多项式42345012345(2)(1)x x a a x a x a x a x a x +-=+++++,则2a =,12345a a a a a ++++=.。
新高考高三数学总复习试卷

一、选择题(本大题共12小题,每小题5分,共60分)1. 函数f(x) = ax^2 + bx + c的图像开口向上,对称轴为x = -1,且f(0) = 1,则下列说法正确的是()A. a > 0,b < 0,c = 1B. a > 0,b > 0,c = 1C. a < 0,b < 0,c = 1D. a < 0,b > 0,c = 12. 已知复数z满足|z - 1| = |z + 1|,则z的实部为()A. 0B. 1C. -1D. 23. 在三角形ABC中,角A、B、C的对边分别为a、b、c,且a = 3,b = 4,c = 5,则角A的度数为()A. 30°B. 45°C. 60°D. 90°4. 已知等差数列{an}的首项为a1,公差为d,若a1 + a3 + a5 = 9,则a1的值为()A. 1B. 2C. 3D. 45. 函数f(x) = |x - 2| + |x + 3|的图像与x轴的交点个数为()A. 1B. 2C. 3D. 46. 若等比数列{an}的公比q > 1,且首项a1 > 0,则下列说法正确的是()A. 数列{an}递增B. 数列{an}递减C. 数列{an}有界D. 数列{an}无界7. 已知函数f(x) = x^3 - 3x,则f'(x) = ()A. 3x^2 - 3B. 3x^2 + 3C. 3x^2 - 6D. 3x^2 + 68. 在平面直角坐标系中,点A(1, 2),点B(-3, 4),则直线AB的斜率为()A. 1B. -1C. 2D. -29. 已知函数f(x) = log2(x - 1),则f(x)的定义域为()A. (1, +∞)B. (0, +∞)C. (-∞, 1)D. (-∞, 0)10. 在等差数列{an}中,若a1 = 2,d = 3,则a10 = ()A. 29B. 30C. 31D. 3211. 已知函数f(x) = x^2 - 4x + 4,则f(x)的图像的对称轴为()A. x = 1B. x = 2C. x = 3D. x = 412. 若函数f(x) = x^3 - 6x^2 + 9x的图像与x轴的交点个数为3,则f'(x) = 0的解的个数为()A. 1B. 2C. 3D. 4二、填空题(本大题共6小题,每小题5分,共30分)13. 已知复数z满足|z - 1| = |z + 1|,则z的实部为______。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2模块 第9节[知能演练]一、选择题1.某种商品进价为每件100元,按进价增加25%出售,后因库存积压降价,按九折出售,每件还获利( )A .25元B .20.5元C .15元D .12.5元解析:每件获利100(1+25%)×0.9-100=100(1.25×0.9-1)=12.5元. 答案:D2.某债券市场常年发行三种债券,A 种面值为1000元,一年到期本息和为1040元;B 种债券面值为1000元,买入价为960元,一年到期本息之和为1000元;C 种面值为1000元,半年到期本息和为1020元.设三种债券的年收益分别为a ,b ,c ,则a ,b ,c 的大小关系是( )A .a =c <bB .a <b <cC .a <c <bD .c <a <b解析:设年初为1000元,则A 种债券收益40元,B 种债券收益1000960×40≈41.67元.C 种债券收益为20+10201000×20=40.4元.∴b >c >a . 答案:C3.在一次数学试验中,运用图形计算器采集到如下一组数据:则x ,y ( )A .y =a +bxB .y =a +b xC .y =ax 2+bD .y =a +bx解析:由表格数据逐个验证,知模拟函数为y =a +b x . 答案:B4.国家规定个人稿费纳税办法是:不超过800元的不纳税;超过800元而不超过4000元的按超过800元部分的14%纳税;超过4000元的按全部稿酬的11%纳税.已知某人出版一本书,共纳税420元,这个人应得稿费(扣税前)为( )A .2800元B .3000元C .3800元D .3818元解析:设扣税前应得稿费为x 元,则应纳税额为分段函数,由题意,得 y =⎩⎪⎨⎪⎧0 (x ≤800)(x -800)×14% (800<x ≤4000)11%·x (x >4000).如果稿费为4000元应纳税为448元,现知某人共纳税420元,所以稿费应在800~4000元之间,∴(x -800)×14%=420,∴x =3800.答案:C 二、填空题5.计算机的价格大约每3年下降238100元买的一台计算机,9年后的价格大约是________元.解析:设计算机价格平均每年下降p %,由题意可得13=(1-p %)3,∴p %=1-(13)13,∴9年后的价格y =8100[1+(13)13-1]9=8100×(13)3=300(元).答案:3006.如图是一份统计图表,根据此图表得到的以下说法中,正确的是________.①这几年人民生活水平逐年得到提高;②人民生活费收入增长最快的一年是2000年; ③生活价格指数上涨速度最快的一年是2001年;④虽然2002年生活费收入增长缓慢,但由于生活价格指数也略有降低,因而人民生活有较大的改善.解析:由题意,“生活费收入指数”减去“生活价格指数”的差是逐年增大的,故①正确;“生活费收入指数”在2000年~2001年最陡,故②正确;“生活价格指数”在2001年~2002年上涨速度不是最快的,故③不正确;由于“生活价格指数”略呈下降,而“生活费收入指数”曲线呈上升趋势,故④正确.答案:①②④ 三、解答题7.某家庭进行理财投资,根据长期收益率市场预测,投资债券等稳健型产品的收益与投资额成正比,投资股票等风险型产品的收益与投资额的算术平方根成正比.已知投资1万元时两类产品的收益分别为0.125万元和0.5万元(如下图).(1)分别写出两种产品的收益与投资的函数关系;(2)该家庭现有20万元资金,全部用于理财投资,问:怎样分配资金能使投资获得最大收益,其最大收益为多少万元?解:(1)设投资债券收益与投资额的函数关系为f (x )=k 1x ,投资股票的收益与投资额的函数关系为g (x )=k 2x ,由图象得f (1)=18=k 1,g (1)=k 2=12,f (x )=18x (x ≥0),g (x )=12x (x ≥0).(2)设投资债券类产品x 万元, 则股票类投资为20-x 万元.y =f (x )+g (20-x )=x 8+1220-x (0≤x ≤20).令t =20-x ,则y =20-t 28+12t =-18(t 2-4t -20)=-18(t -2)2+3.所以当t =2,即x =16时,投资债券16万元,股票4万元时,收益最大,y max =3万元. 8.某旅游点有50辆自行车供游客租赁使用,管理这些自行车的费用是每日115元.根据经验,若每辆自行车的日租金不超过6元,则自行车可以全部租出;若超过6元,则每超过1元,租不出的自行车就增加3辆.为了便于结算,每辆自行车的日租金x (元)只取整数,并且要求出租自行车一日的总收入必须高于这一日的管理费用,用y (元)表示出租自行车的日净收入(即一日中出租自行车的总收入减去管理费用后的所得).(1)求函数y =f (x )的解析式及其定义域;(2)试问当每辆自行车的日租金为多少元时,才能使一日的净收入最多? 解:(1)当x ≤6时,y =50x -115,令50x -115>0, 解得x >2.3.∵x ∈N *,∴x ≥3,∴3≤x ≤6,x ∈N *, 当x >6时,y =[50-3(x -6)]x -115.令[50-3(x -6)]x -115>0,有3x 2-68x +115<0, 上述不等式的整数解为2≤x ≤20(x ∈N *), ∴6<x ≤20(x ∈N *). 故y =⎩⎪⎨⎪⎧50x -115 (3≤x ≤6,x ∈N *)-3x 2+68x -115 (6<x ≤20,x ∈N *), 定义域为{x |3≤x ≤20,x ∈N *}.(2)对于y =50x -115(3≤x ≤6,x ∈N *). 显然当x =6时,y max =185(元), 对于y =-3x 2+68x -115=-3(x -343)2+8113x ≤20,x ∈N *).当x =11时,y max =270(元).∵270>185,∴当每辆自行车的日租金定在11元时,才能使一日的净收入最多.[高考·模拟·预测]1.某种细胞在培养过程中正常情况下,时刻t (单位:分)与细胞数n (单位:个)的部分数据如下:( )A .200B .220C .240D .260解析:由表格中所给数据可以得出n 与t 的函数关系为n =2t 20,令n =1000,得2t20=1000,又210=1024,所以时刻t 最接近200分,故选A.答案:A2.某化工厂打算投入一条新的生产线,但需要经环保部门审批同意方可投入生产.已知该生产线连续生产n 年的累计产量为f (n )=12n (n +1)(2n +1)吨,但如果年产量超过150吨,将会给环境造成危害.为保证环境,环保部门应给该厂这条生产线拟定最长的生产期限是( )A .5年B .6年C .7年D .8年解析:由题知第一年产量为a 1=12×1×2×3=3;以后各年产量分别为a n =f (n )-f (n -1)=12n (n +1)(2n +1)-12n (n -1)(2n -1)=3n 2(n ∈N *),令3n 2≤150,得1≤n ≤52⇒1≤n ≤7,故生产期限最长为7年.答案:C3.某市出租车收费标准如下: 起步价为8元,起步里程为3 km(不超过3 km 按起步价付费);超过3 km 但不超过8 km 时,超过部分按每千米2.15元收费;超过8 km 时,超过部分按每千米2.85元收费,另每次乘坐需付燃油附加费1元.现某人乘坐一次出租车付费22.6元,则此次出租车行驶了________ km.解析:设乘客每次乘坐出租车需付费用为f (x )元,由题意可得: f (x )=4.一位设计师在边长为3的正方形ABCD 中设计图案,他分别以A ,B ,C ,D 为圆心,以b (0<b ≤32)为半径画圆,由正方形内的圆弧与正方形边上线段(圆弧端点在正方形边上的连线)构成了丰富多彩的图形,则这些图形中实线部分总长度的最小值为________.解析:由题意实线部分的总长度为l =4(3-2b )+2πb =(2π-8)b +12,l 关于b 的一次函数的一次项系数2π-8<0,故l 关于b 为单调减函数,因此,当b 取最大值时,l 取得最小值,结合图形知,b 的最大值为32,代入上式得l 最小=(2π-8)×32+12=3π.答案:3π5.如右图,一个铝合金窗分为上、下两栏,圆周框架和中间隔档的材料为铝合金,宽均为6 cm ,上栏与下栏的框内高度(不含铝合金部分)的比为1∶2,此铝合金窗占用的墙面面积为28800 cm 2,设该铝合金窗的宽和高分别为a (cm),b (cm),铝合金窗的透光部分的面积为S (cm 2).(1)试用a ,b 表示S ;(2)若要使S 最大,则铝合金窗的宽和高分别为多少? 解:(1)∵铝合金窗宽为a (cm),高为b (cm),a >0,b >0, ∴ab =28800. ①又设上栏框内高度为h (cm),下栏框内高度为2h (cm),则3h +18=b ,∴h =b -183,∴透光部分的面积S =(a -18)×2(b -18)3+(a -12)×b -183=(a -16)(b -18)=ab -2(9a +8b )+288 =28800-2(9a +8b )+288 =29088-2(9a +8b ). (2)∵9a +8b ≥29a ·8b =29×8×28800=2880,当且仅当9a =8b 时等号成立,此时b =98a ,代入①得a =160,从而b =180,即当a =160,b =180时,S 取得最大值.答:铝合金窗的宽为160 cm ,高为180 cm 时,可使透光部分的面积最大.[备选精题] 6.两县城A 和B 相距20 km ,现计划在两县城外以AB 为直径的半圆弧上选择一点C 建造垃圾处理厂,其对城市的影响度与所选地点到城市的距离有关,对城A 和城B 的总影响度为对城A 与对城B 的影响度之和,记C 点到城A 的距离为x km ,建在C 处的垃圾处理厂对城A 和城B 的总影响度为y .统计调查表明:垃圾处理厂对城A 的影响度与所选地点到城A 的距离的平方成反比,比例系数为4;对城B 的影响度与所选地点到城B 的距离的平方成反比,比例系数为k ,当垃圾处理厂建在弧的中点时,对城A 和城B 的总影响度为0.065.(Ⅰ)将y 表示成x 的函数;(Ⅱ)讨论(Ⅰ)中函数的单调性,并判断弧上是否存在一点,使建在此处的垃圾处理厂对城A 和城B 的总影响度最小?若存在,求出该点到城A 的距离;若不存在,说明理由.解:(Ⅰ)根据题意∠ACB =90°,AC =x km ,BC =400-x 2 km ,且建在C 处的垃圾处理厂对城A 的影响度为4x 2,对城B 的影响度为k400-x 2,因此,总影响度y =4x 2+k400-x 2x <20).又因为垃圾处理厂建在弧的中点时,对城A 和城B 的总影响度为0.065,所以4(102+102)2+k400-(102+102)2=0.065, 解得k =9,所以y =4x 2+9400-x 2(0<x <20).(Ⅱ)因为y ′=-8x 3+18x(400-x 2)2=18x 4-8×(400-x 2)2x 3(400-x 2)2=(x 2+800)(10x 2-1600)x 3(400-x 2)2.由y ′=0解得x =410或x =-410(舍去), 易知410∈(0,20).y ,y ′随xy最小值=y|x=410=1 16,此时x=410,故在弧AB上存在一点,使得建在此处的垃圾处理厂对城A和城B的总影响度最小,该点与城A的距离x=410 km.。