反比例函数的应用教学设计.doc
反比例函数的应用教学设计.doc

反比例函数的应用教学设计一、学生知识状况分析这节内容是在学生已经接受了反比例函数解析式、图象及性质之后的“反比例函数的应用”。
用函数观点处理实际问题,体现了数形结合的思想方法,同时对函数的三种表示方法进行整合,初步形成对函数概念的整体性认识。
二、教学任务分析教学目标:(一)知识技能1、经历分析实际问题中变量之间的关系、建立反比例函数模型,进而解决问题的过程。
2、体会数学与现实生活的紧密联系,增强应用意识,提高运用代数方法解决问题的能力。
(二)过程与方法1、激发学生在已有知识的基础上,进一步探索新知识的欲望。
2、在探索过程中培养和发展学生学习数学的主动性,提高应用数学的能力。
(三)情感与态度1、调动学生参与数学活动的积极性,体验数学活动充满着探索性和创造性。
2、培养学生在学习过程中良好的情感态度,主动参与、合作、交流的意识,并有独立克服困难和运用知识解决问题的成功体验,有学好数学的自信心。
教学重点建立反比例函数的模型,进而解决实际问题。
教学难点经历探索的过程,培养学生学习数学的主动性和解决问题的能力。
三、教学过程分析本节课设计了六个教学环节:第一环节:复习回顾;第二环节:情境导入;第三环节:应用与拓展;第四环节:随堂练习;第五环节:知识小结;第六环节:作业布置。
第一环节复习回顾活动过程:反比例函数:当k>0时,两支曲线分别在,在每一象限内,y的值随x的增大而。
当k<0时,两支曲线分别在,在每一象限内,y的值随x的增大而。
第二环节情境导入活动过程:某校科技小组进行野外考察,途中遇到一片十几米宽的烂泥湿地,为了安全、迅速通过这片湿地,他们沿着前进路线铺垫了若干块木板,构筑成一条临时通道,从而顺利完成了任务的情境。
你能解释他们这样做的道理吗?(见书P143)(1)用含S 的代数式表示P ,P 是S 的反比例函数吗?为什么?(2)当木板面积为0.2 2m 时,压强是多少(3)如果要求压强不超过6000Pa ,木板面积至少要多大(4)在直角坐标系中,作出相应的函数图象。
湘教版数学九年级上册1.3《反比例函数的应用》教学设计

湘教版数学九年级上册1.3《反比例函数的应用》教学设计一. 教材分析湘教版数学九年级上册1.3《反比例函数的应用》是本册教材中的一个重要内容,它是在学生已经掌握了反比例函数的定义、性质的基础上进行的学习。
本节课主要让学生了解反比例函数在实际生活中的应用,培养学生的数学应用意识,提高学生解决实际问题的能力。
二. 学情分析九年级的学生已经具备了一定的函数知识,对反比例函数的定义和性质有一定的了解。
但是,对于反比例函数在实际生活中的应用,学生可能还存在一定的困难。
因此,在教学过程中,教师需要通过具体的例子,引导学生理解反比例函数在实际生活中的意义,提高学生解决实际问题的能力。
三. 教学目标1.知识与技能目标:使学生掌握反比例函数的应用,能够运用反比例函数解决实际问题。
2.过程与方法目标:通过实例分析,培养学生的数学建模能力,提高学生解决实际问题的能力。
3.情感态度与价值观目标:培养学生对数学的兴趣,增强学生对数学的应用意识。
四. 教学重难点1.教学重点:反比例函数的应用。
2.教学难点:如何将实际问题转化为反比例函数模型,以及如何运用反比例函数解决实际问题。
五. 教学方法本节课采用实例教学法、问题驱动法、合作学习法等教学方法。
通过具体的实例,引导学生理解反比例函数在实际生活中的应用;通过问题驱动,激发学生的思考,培养学生的数学建模能力;通过合作学习,提高学生的交流与合作能力。
六. 教学准备1.教学素材:反比例函数的应用实例、多媒体设备。
2.教学工具:黑板、粉笔、多媒体课件。
七. 教学过程1.导入(5分钟)教师通过展示一些生活中的实际问题,如商场打折、药物浓度等,引导学生思考这些问题是否可以用反比例函数来解决。
从而引出本节课的主题——反比例函数的应用。
2.呈现(10分钟)教师通过多媒体课件,呈现几个反比例函数的应用实例,如商场打折问题、药物浓度问题等。
引导学生观察、分析这些实例,理解反比例函数在实际生活中的意义。
北师大版数学九年级上册5.3《反比例函数的应用》教学设计

北师大版数学九年级上册5.3《反比例函数的应用》教学设计一. 教材分析北师大版数学九年级上册5.3《反比例函数的应用》是本册教材中的一个重要内容,主要让学生掌握反比例函数的图象和性质,以及如何利用反比例函数解决实际问题。
本节内容是在学生已经掌握了反比例函数的定义和基本性质的基础上进行学习的,通过本节课的学习,使学生能够进一步理解和掌握反比例函数,提高解决实际问题的能力。
二. 学情分析九年级的学生已经具备了一定的函数知识,对反比例函数也有了一定的了解。
但在实际应用反比例函数解决生活中的问题时,往往会因为对函数思想的理解不够深入而感到困惑。
因此,在教学过程中,需要教师引导学生将反比例函数与实际问题相结合,提高学生的应用能力。
三. 教学目标1.理解反比例函数的图象和性质。
2.学会如何利用反比例函数解决实际问题。
3.提高学生的数学应用能力。
四. 教学重难点1.反比例函数的图象和性质。
2.如何将反比例函数应用于实际问题中。
五. 教学方法采用问题驱动法、案例教学法和小组合作法进行教学。
通过设置问题,引导学生探索反比例函数的图象和性质;通过案例教学,使学生了解如何将反比例函数应用于实际问题中;通过小组合作,培养学生团队合作精神,提高学生的解决问题能力。
六. 教学准备1.准备相关的案例材料和实际问题。
2.准备多媒体教学设备,如投影仪、电脑等。
3.准备黑板和粉笔。
七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾反比例函数的定义和性质,为新课的学习做好铺垫。
2.呈现(10分钟)教师通过多媒体展示反比例函数的图象,让学生观察和分析反比例函数的性质。
同时,教师给出一些实际问题,让学生尝试用反比例函数解决。
3.操练(10分钟)教师引导学生分组讨论,如何将实际问题转化为反比例函数问题。
学生在讨论过程中,教师给予指导和点拨。
4.巩固(10分钟)教师给出一些练习题,让学生独立完成。
在学生解题过程中,教师巡回指导,帮助学生巩固反比例函数的应用。
浙教版数学八年级下册6.3《反比例函数的应用》教学设计1

浙教版数学八年级下册6.3《反比例函数的应用》教学设计1一. 教材分析浙教版数学八年级下册6.3《反比例函数的应用》是本册教材中的一个重要内容。
本节内容是在学生已经掌握了反比例函数的定义、性质的基础上进行学习的,主要让学生了解反比例函数在实际生活中的应用,培养学生的数学应用能力。
教材通过实例引入反比例函数的应用,让学生通过观察、分析、归纳等方法,掌握反比例函数在实际问题中的应用。
二. 学情分析学生在学习本节内容前,已经掌握了反比例函数的基本知识,具备了一定的函数观念和解决问题的能力。
但部分学生对实际问题与反比例函数之间的联系还不够清晰,对一些实际问题的理解和分析能力有待提高。
因此,在教学过程中,教师需要关注学生的学习情况,针对不同学生的特点进行引导和帮助。
三. 教学目标1.知识与技能:让学生掌握反比例函数在实际问题中的应用,能够正确列出反比例函数的解析式,并解决相关问题。
2.过程与方法:通过观察、分析、归纳等方法,培养学生解决实际问题的能力。
3.情感态度与价值观:让学生感受数学与生活的紧密联系,提高学生学习数学的兴趣和积极性。
四. 教学重难点1.重点:反比例函数在实际问题中的应用。
2.难点:如何将实际问题转化为反比例函数问题,并正确列出解析式。
五. 教学方法1.情境教学法:通过生活实例引入反比例函数的应用,让学生感受数学与生活的联系。
2.引导发现法:教师引导学生观察、分析实际问题,发现反比例函数的应用规律。
3.实践操作法:让学生通过动手操作,解决实际问题,提高学生的实践能力。
六. 教学准备1.教师准备:熟悉教材内容,了解学生的学习情况,准备相关实例和问题。
2.学生准备:掌握反比例函数的基本知识,准备好学习本节内容的兴趣和积极性。
七. 教学过程1.导入(5分钟)教师通过展示一些生活中的实际问题,如比例尺、速度与时间、成本与数量等,引导学生观察和思考这些实际问题与反比例函数之间的关系。
2.呈现(10分钟)教师呈现一些实际问题,让学生尝试解决。
九年级《反比例函数的应用》教学设计

【教学设计】一、教学目标1.理解反比例函数的概念和性质。
2.掌握反比例函数的图像特点。
3.能够应用反比例函数解决实际问题。
二、教学重难点1.理解反比例函数与正比例函数的区别。
2.理解如何利用反比例函数解决实际问题。
三、教学过程1.导入新知识(10分钟)教师出示一张正比例函数的图像,向学生提问:“你们看到这张图中,自变量和因变量之间的关系是怎样的?”引导学生总结出正比例函数的性质。
然后教师再出示一张反比例函数的图像,向学生提问:“你们看到这张图中,自变量和因变量之间的关系是怎样的?”引导学生从图像中发现反比例函数的性质。
2.反比例函数的性质(25分钟)教师向学生展示反比例函数的定义,并从数学公式角度帮助学生理解反比例函数的性质。
然后,教师引导学生观察反比例函数图像的特点,如自变量和因变量的比例关系、反比例函数图像在坐标平面中的位置等。
学生根据观察到的特点总结反比例函数的性质。
3.反比例函数的图像特点(30分钟)教师以一个具体的例子来展示如何根据反比例函数的性质来画出反比例函数的图像。
教师在黑板上画出一组数字序列,并带领学生计算出对应的自变量和因变量。
然后,教师带领学生将这组数字绘制在坐标平面上,并连线得到反比例函数的图像。
学生在教师的指导下,练习绘制不同的反比例函数的图像。
4.反比例函数的应用(30分钟)教师将反比例函数的应用引入到现实生活中。
教师提供一组与实际生活相关的数据,如商品价格与销量的关系等,然后带领学生分析出这组数据满足反比例函数的条件。
学生根据所学的知识,利用反比例函数解决实际问题。
5.拓展应用练习(20分钟)教师提供一批拓展应用题,让学生自主完成。
每道题目都提供实际生活的背景,学生需要根据实际情况采用适当的方法解决问题,并将解决过程和答案书写清楚。
教师在学生完成后,分组让学生交流分享自己的解题思路和方法,从中发现不同的解题思路。
四、教学反思本堂课以图像、实例和应用为导入点,让学生从不同的角度理解反比例函数的概念、性质和应用。
6.3《反比例函数的应用》教案

(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《反比例函数的应用》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过路程和速度成反比的情况?”(如:当速度增加时,所需时间减少。)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索反比例函数的奥秘。
d.引导学生从实际情境中发现反比例函数的应用,培养他们的数据分析和数学运算素养。
2.3情感与态度:
e.培养学生对数学学习的兴趣,增强他们在解决实际问题时的自信心和合作意识;
f.通过反比例函数在实际生活中的应用,让学生体会数学的价值,提高数学学习的积极性。
三、教学难点与重点
1.教学重点
a.反比例函数的定义及一般形式:强调反比例函数表达式的推导过程,以及k≠0的条件;
d.对反比例函数性质的灵活运用:学生往往在解题时容易忽略性质的应用,导致解题思路不清晰。
举例:针对反比例函数图像绘制难点,教师可以采用以下方法帮助学生突破:
-通过动态演示或手绘示例,让学生直观地了解反比例函数图像的绘制过程;
-强调k值的正负性对图像的影响,引导学生正确绘制图像;
-组织学生进行分组讨论,互相交流绘制反比例函数图像的方法和心得。
6.3《反比例函数的应用》教案
一、教学内容
6.3《反比例函数的应用》教案:
1.教材章节:本节课内容依据人教版八年级数学下册第十章《反比例函数及其应用》。
2.教学内容:
a.反比例函数的定义及一般形式;
b.反比例函数的图像与性质;
c.反比例函数在实际问题中的应用,如行程问题、几何图形的面积问题等;
d.通过具体例子,让学生学会利用反比例函数解决实际问题,培养数学建模和数学应用能力。
反比例函数教案6篇

反比例函数教案6篇教学目标使学生对反比例函数和反比例函数的图象意义加深理解。
教学重难点重点:反比例函数的图象。
难点:利用反比例函数的图象解题。
教学过程一、情境创设解析式y=kx(k为常数,k≠0)图象形状双曲线(以原点为对称中心)k>0位置一、三象限增减性每一象限内,y随x的增大而减小k<0位置二、四象限增减性每一象限内,y随x的增大而增大二、例题讲解例1.如图是反比例函数的图象的一支。
(1)函数图象的另一支在第几象限?试求常数m的取值范围;(2)点都在这个反比例函数的图象上,比较、的大小例2.如图,已知一次函数y=kx+b的图象与反比例函数y=的图象交于A、B两点,且点A的横坐标和点B的纵坐标都是-2,求:(1)一次函数的解析式;(2)△AOB的面积。
三、课堂练习课本P70练习1、2题四、课堂小结1、反比例函数的图象。
2、反比例函数的性质。
五、课堂作业课本P72/第5题教学目标知识与技能:1.进一步熟悉作函数图象的主要步骤,会作反比例函数的图象。
2.体会函数的三种表示方法的相互转换,对函数进行认识上的整合。
3.培养学生从函数图象中获取信息的能力,初步探索反比例函数的性质。
过程与方法:通过学生自己动手列表,描点,连线,提高学生的作图能力;通过观察图象,概括反比例函数图象的有关性质,训练学生的概括总结能力。
情感、态度与价值观:让学生积极参与到数学学习活动中去,增强他们对数学学习的好奇心和求知欲。
教学重点教学难点1)重点:画反比例函数图象并认识图象的特点。
2)难点:画反比例函数图象。
教学关键教师画图中要规范,为学生树立一个可以学习的模板教学方法激发诱导,探索交流,讲练结合三位一体的教学方式教学手段教师画图,学生模仿教具三角板,小黑板学法学生动手,动眼,动耳,采用自主,合作,探究的学习方法教学过程(包含课前检测、新课导入、新课讲解、课堂练习、小结、形成性检测、反馈拓展、作业布置)内容设计意图一:课前检测:1.什么叫做反比例函数;(一般地,如果两个变量x、y之间的关系可以表示成y=(k为常数,k0)的形式,那么称y是x的反比例函数。
反比例函数的应用精品教案

反比例函数的应用精品教案【教学目标】1.了解反比例函数的概念及特点;2.能够应用反比例函数解决实际问题;3.学会用图表和公式表示反比例函数。
【教学内容】1.反比例函数的概念及特点;2.人口增长问题与反比例函数的关系;3.用图表和公式表示反比例函数;4.解决实际的人口增长问题。
【教学过程】1.导入新知识(5分钟)通过引导学生回答以下问题,激发学生的思考并预热课堂气氛:-你知道什么是函数吗?函数有哪些特点?-你听说过反比例函数吗?你认为它有什么特点?2.理解反比例函数(15分钟)讲解反比例函数的定义和特点:-当x趋近于无穷大或无穷小时,y趋近于0;-y随x的增大而减小,y随x的减小而增大;-y与x的乘积为常数k。
3.人口增长问题与反比例函数的关系(15分钟)通过一个简单的例子来引入人口增长问题与反比例函数的关系:假设地区的人口密度是反比例于土地面积的,写出人口密度D与土地面积A之间的关系式,并解释其中的常量k的含义。
4.用图表和公式表示反比例函数(20分钟)让学生练习用图表和公式表示反比例函数:-给出一个简单的反比例函数的表格,让学生根据表格绘制图像,并写出函数的公式;-再给出一个图像,让学生尝试写出函数的公式。
5.解决实际的人口增长问题(25分钟)通过一个实际的人口增长问题,来让学生应用反比例函数解决问题:地区的人口密度随土地面积的增加而减少,当土地面积为10平方公里时,人口总数为2000人。
现在要求你计算当土地面积增加到100平方公里时,该地区的人口总数是多少。
6.拓展与总结(10分钟)让学生回答以下问题,巩固学习内容:-反比例函数有什么特点?它与比例函数有什么不同?-除了人口增长问题,你能想到哪些其他的反比例函数的应用?【教学评估】-学生的课堂参与度和思维活跃度;-学生对反比例函数的理解程度;-学生解决人口增长问题的能力。
【教学拓展】教师可以通过更多的实际问题和案例,让学生进一步巩固和应用反比例函数的知识。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
反比例函数的应用教学设计
一、教材内容分析
本节教材内容是对前两节知识的综合应用,同时加强了实际问题的理解和实际问题与数学知识之间的紧密联系。
能用学科间的实际题例,数学知识间的综合应用题例,使学生利用反比例函数的性质进一步解释、说明实际问题。
加强数形结合意识。
二、教学目标
1.知识与技能
能根据实际问题屮的条件确定反比例函数的解析式,会虺出它的图像,并能根据图像指出函数值随自变量变化情况。
2.过程与方法
能通过探索实际问题列出函数关系式,利用反比例丙数的性质解决实际问题,细心体会图像在解决问题时的作用。
3 •情感态度与价值观
从合作讨论,探索交流中,发展学生从图象中获取信息的能力,渗透数形结合的思想方法,通过对实际问题的分析与解决,让学生体验数学的价值,培养学生对数学的兴趣。
三、重点与难点
重点:将实际问题抽象为数学问题,建立反比例函数模型,并能用反比例函数的性质去解决实际问题。
难点:根据实际问题的条件确定反比例函数的表达式,及反比例
函数与其它知识的综合运用。
四、教法与学法
教法:教师通过选用具有现实生活背景,与学行生活密切相关的问题,激发学生的学习兴趣,通过有层次的问题串,引导学生进行探究活动。
学法:学生通过分析实际情境,建立函数模型,进行合作交流和自主探究,最终能够结合函数图象和性质解决实际问题。
五、教学过程
(―)复习回顾,导入新课
1.回顾与思考:反比例函数的图象和性质。
(通过课件展示表格, 并找学
生回答)
2.引入:实际上反比例函数在实际生活中有着广泛的应用,今天我们就来探讨一下反比例函数的应用问题(板书课题)
(二)讲授新课
1.创设情境
我校科技小组进行野外考察,利用铺垫木板的方式通过了一片烂泥湿地。
你能解释他们这样做的道理吗?当人和木板对湿地的压力一定时,随
着木板面积s (m2)的变化,人和木板对地面的压强p (Pa) 将如何变化?
如果人和木板对湿地地面的压力合计600N,那么
(1)用含S的代数式表式P, P是S的反比例函数吗?
(2)当木板面积为0・2n?时,压强是多少?
(3)如果要求压强不超过6000Pa,木板而积至少要多大?
(4)在平面坐标系中,作出相应的函数图象。
(5)请利用图象对(2)和(3)作出直观解释,并与同伴进行交流。
问题(1) (2)学生举手回答,其余问题可讨论后回答。
特别是问题(3) (4)老师和学生一起要对不同的方法和所画图象进行点评,使学生明白每种方法的区别以及画图象时要注意哪些问题。
解:(1)利用物理中压强的计算公式P二F/S,可知当压力一定时, 压强与受力面积成反比。
因此P是S的反比例函数,即P=600/S (S>0)
(2)P=3000pa
(3)至少0. Im2
(4)列表:
描点,连线
注意:
一是画函数图像的三个步骤,二是画出的图象应符合实际问题的
实际意义,也就是列表时应注意口变量的取值范围,并可根据图像的性质冋答和关的问题。
(5)问题(2)是已知图像上某点的横生标为0. 2,求该点的纵坐标。
问题(3)是已知图像上点的纵坐标不大于6000,求这些点所处的位置及它们的横坐标的取值范围。
由图象可得S20. Im2
【设计意图】通过探究会用实际问题中的一个量来求另一个量,进一步发展把实际问题转化为数学问题的能力,增强学生的数学应用意识。
2、做…做
(1)蓄电池的电压为定值,使用此电源时,
36
电流1(A)与电阻R(Q )之间的函数关系如30
27
—-一24
图所不. 21
18
①蓄电池的电压是多少?你能写出这一函数的E
6 表达式吗?点
解:•・・IR二U (U为定值),把点A (9, 4)代入,得U二36.
••・蓄电池的电压U二36V.这一函数的表达式为:I二36\R
②如果以此蓄电池为电源的用电器电流不得超过10A,那么用电器的可变电阻应控制在什么范围内?
解:由题意得:36\R W10 VR>0 .・・R$3・6Q
当T^lOA时,R23. 6 Q •所以可变电阻应不小于3. 6 Q・
【设计意图】通过从形到的数的应用,让学牛体会解决这类问题吋要充分挖掘图象中的信息,从而求出函数表达式,进而解决问题。
(2)女口下图,正比例函数y = hx的图象与反比例函数y=且的图
X
象相交于A, B两点,其屮点A的坐标为(術,2右).
①分别写岀这两个函数的表达式.
解:把A点坐标(的,2的)分别代入y=kiX,和y二“
X
解得ki=2. k2=6;所以所求的函数的表达式为:y=2x,和y二—
X
②你能求出点B的坐标吗?你是怎样求的?与同伴进行交流.
解:由题意可得方程组J尸?
L y=-
L l X
解得「X二能或「X二-的
Ly=2V3 Ly=-2V3
所以,点B坐标是(-V3, -2V3)
③点A和点B的位置有什么样的关系?
解:两交点关于原点对称。
耳
此题留出足够的时间让学生自主完成,并请小组代表黑板上板关演。
1C—
【设计意图】通过探究使学生掌握了解一次函数与反比例
函数的组合图象的方法和技巧,提高学生综合知识的运用。
同吋老师 要强调结论:反比例函数的图象与一次函数的图象相交,两交点关于 原点对称。
(三)巩固练习
1 •已知矩形的面积为10,若长与宽分别为X, y,则y 与X 之间的函
2•某汽车的功率P 为一定值,汽车的行驶速度v (m/s )与它所受的 牵引力F (N )之间的函数关系如图所示。
(1) 这辆汽车的功率P 为多少?并写出函数解析式。
(2) 当它所受的牵引力为900N 时,汽车的速
度是多少?
(3)如果汽车所爱的牵引力不小于1500N,
那么v 在什么范圉内?
【设计意图】通过两个练习让学生进一步掌握反比例函数的应用,并 进一步体会数形结合的思想。
(四)课堂小结
数关系用护可大致表奈
A
.X
( >
C
谈谈本节课你有什么样的收获与困惑?
1.建立反比例函数模型来解答实际问题的方法:
(1)观察图象法(2)关系式计算法。