一次函数图象应用教学设计

合集下载

一次函数的图像和性质教案

一次函数的图像和性质教案

一次函数的图像和性质教案一、教学目标1. 让学生理解一次函数的概念,掌握一次函数的表示方法。

2. 让学生能够绘制一次函数的图像,理解图像的性质。

3. 培养学生运用数学知识解决实际问题的能力。

二、教学重点1. 一次函数的概念及表示方法。

2. 一次函数图像的性质。

三、教学难点1. 一次函数图像的性质的理解和应用。

四、教学准备1. 教学课件或黑板。

2. 练习题。

五、教学过程1. 引入:通过生活中的实例,如购物时商品的价格,引出一次函数的概念。

2. 讲解:讲解一次函数的定义,举例说明一次函数的表示方法,如y=2x+3。

3. 演示:通过课件或黑板,演示一次函数的图像,让学生观察图像的形状和特点。

4. 讲解:讲解一次函数图像的性质,如直线、斜率、截距等。

5. 练习:让学生绘制一些一次函数的图像,并分析其性质。

7. 作业:布置一些有关一次函数图像和性质的练习题,巩固所学知识。

8. 课后反思:教师对本节课的教学进行反思,看学生对一次函数图像和性质的理解程度,为下一节课的教学做好准备。

六、教学拓展1. 引导学生思考:一次函数在实际生活中的应用,如交通费用计算、物体运动速度与时间的关系等。

2. 让学生尝试解决一些与一次函数相关的生活问题,培养学生的应用能力。

七、课堂小结2. 强调一次函数在实际生活中的应用,激发学生学习兴趣。

八、课后作业1. 完成练习册上的一次函数相关习题。

2. 选择一个生活中的实例,运用一次函数的知识进行分析和解答。

九、教学反思1. 教师反思本节课的教学效果,观察学生对一次函数的理解程度和运用能力。

2. 根据学生的实际情况,调整教学方法和策略,为下一节课的教学做好准备。

十、教学评价1. 对学生的课堂表现、作业完成情况进行评价,了解学生对一次函数知识的掌握程度。

2. 通过课后访谈、问卷调查等方式,了解学生对一次函数图像和性质的理解程度及应用能力。

3. 根据评价结果,针对学生的薄弱环节进行有针对性的辅导,提高学生的数学素养。

《一次函数的图象和性质》教学设计优秀8篇

《一次函数的图象和性质》教学设计优秀8篇

《一次函数的图象和性质》教学设计优秀8篇一次函数篇一11.2 一次函数§11.2.1正比例函数教学目标1.认识正比例函数的意义。

2.掌握正比例函数解析式特点。

3.理解正比例函数图象性质及特点。

4.能利用所学知识解决相关实际问题。

教学重点1.理解正比例函数意义及解析式特点。

2.掌握正比例函数图象的性质特点。

3.能根据要求完成转化,解决问题。

教学难点正比例函数图象性质特点的掌握。

教学过程ⅰ.提出问题,创设情境一九九六年,鸟类研究者在芬兰给一只燕鸥(候鸟)套上标志环。

4个月零1周后人们在2.56万千米外的澳大利亚发现了它。

1.这只百余克重的小鸟大约平均每天飞行多少千米(精确到10千米)?2.这只燕鸥的行程y(千米)与飞行时间x(天)之间有什么关系?3.这只燕鸥飞行1个半月的行程大约是多少千米?我们来共同分析:一个月按30天计算,这只燕鸥平均每天飞行的路程不少于:25600÷(30某4+7)≈200(km)若设这只燕鸥每天飞行的路程为200km,那么它的行程y(千米)就是飞行时间x(天)的函数。

函数解析式为:y=200x(0≤x≤127)这只燕鸥飞行1个半月的行程,大约是x=45时函数y=200x的值。

即y=200某45=9000(km)以上我们用y=200x对燕鸥在4个月零1周的飞行路程问题进行了刻画。

尽管这只是近似的,但它可以作为反映燕鸥的行程与时间的对应规律的一个模型。

类似于y=200x这种形式的函数在现实世界中还有很多。

它们都具备什么样的特征呢?我们这节课就来学习。

ⅱ.导入新课首先我们来思考这样一些问题,看看变量之间的对应规律可用怎样的函数来表示?这些函数有什么共同特点?1.圆的周长l随半径r的大小变化而变化。

3.铁块的质量m(g)随它的体积v(cm3)的大小变化而变化。

.一些练习本摞在一些的总厚度h(cm)随这些练习本的本数n的变化而变化。

4.冷冻一个0℃的物体,使它每分钟下降2℃.物体的温度t(℃)随冷冻时间t(分)的变化而变化。

北师大版数学八年级上册3《一次函数的图象》教学设计5

北师大版数学八年级上册3《一次函数的图象》教学设计5

北师大版数学八年级上册3《一次函数的图象》教学设计5一. 教材分析《一次函数的图象》是北师大版数学八年级上册第3节的内容,本节主要让学生掌握一次函数的图象特征,学会用图象来分析和解决问题。

内容主要包括一次函数的图象是一条直线,直线的斜率表示倾斜程度,截距表示与y轴的交点等。

二. 学情分析学生在学习本节内容前,已经学习了函数的概念、一次函数的定义和性质,对本节内容有一定的认知基础。

但学生对函数图象的理解和运用还不够熟练,需要通过本节内容的学习来进一步掌握。

三. 教学目标1.让学生理解一次函数的图象是一条直线,掌握直线的斜率和截距的含义。

2.学会用图象来分析和解决问题,提高学生的直观思维能力。

3.培养学生的合作交流能力和数学思维习惯。

四. 教学重难点1.一次函数图象的特征和性质。

2.斜率和截距的含义和运用。

3.用图象来分析和解决问题。

五. 教学方法采用问题驱动法、案例分析法、合作交流法等,引导学生通过观察、思考、操作、交流等活动,掌握一次函数的图象特征和运用。

六. 教学准备1.PPT课件2.教学素材(函数图象的实例)3.黑板、粉笔七. 教学过程1.导入(5分钟)通过复习一次函数的定义和性质,引出本节课的主题——一次函数的图象。

2.呈现(10分钟)展示几个一次函数的图象,让学生观察并描述出图象的特征。

3.操练(10分钟)让学生分组合作,通过观察和分析,找出一次函数图象的斜率和截距,并解释其含义。

4.巩固(10分钟)让学生自主完成一些练习题,巩固对一次函数图象的理解。

5.拓展(10分钟)让学生运用一次函数图象的知识,解决一些实际问题,培养学生的应用能力。

6.小结(5分钟)对本节课的内容进行总结,强调一次函数图象的特征和斜率、截距的含义。

7.家庭作业(5分钟)布置一些练习题,让学生回家巩固所学知识。

8.板书(5分钟)总结本节课的主要内容和知识点。

本节课通过问题驱动、案例分析、合作交流等方式,让学生掌握了一次函数的图象特征和斜率、截距的含义。

八年级数学北师大版上册 第4章《4.4 一次函数的应用》教学设计 教案

八年级数学北师大版上册 第4章《4.4 一次函数的应用》教学设计 教案

第四章第四节一次函数的应用(2)一、教材分析本节课内容选自义务教育课程标准实验教科书北京师范大学版的数学教材八年级上册的第四章第四节,课题为《一次函数图象的应用》。

本节课为第2课时。

其主要内容是学生已经学习掌握了一次函数的意义、一次函数的图象及其性质、确定一次函数的表达式的基础之上,通过开展经历体验探究活动,进行应用一次函数的图象解决简单的实际问题并发现一元一次方程与一次函数之间关系的过程。

使学生体会到数学学习过程中“数形结合”思想的重要性。

在整个函数知识体系中,对于图象的感受、解读、分析特别是应用函数的图象解决问题是极其重要的内容,而一次函数图象的应用是学生在整个学习生涯中所接触的第一个相关内容,对于后续其它函数图象应用的学习将积累宝贵的学习经验和经历,因此本节课内容的重要性不言而喻。

二、教学目标及分析知识与能力目标:(1)能通过函数图象获取信息,发展形象思维。

(2)能利用函数图象解决简单的实际问题,发展学生的数学应用能力。

过程与方法目标:(1)在亲身的经历与实践探索过程中体会数学问题解决的办法。

(2)初步体会方程与函数的关系,体会数形结合思想。

情感态度与价值观目标:(1)进一步体会数学知识与现实生活的密切联系,丰富数学情感。

(2)树立良好的环境保护意识,引发热爱自然、热爱家乡的情感。

重点:利用函数图象解决简单的实际问题,提高数学的应用意识和能力。

难点:体会函数与方程的关系,发展“数形结合”的思想”。

三、教学对象分析学生已学习了一次函数及其图象,认识了一次函数的性质。

在现实生活中也见识过大量的函数图象,所以具备了从函数图象中获取信息,并借助这些信息分析问题、解决问题的基础。

但由于初中学生的年龄特点,他们认识事物还不够全面、系统,所以还需通过具体实例来培养他们这方面的能力。

四、教法学法根据本节课的特点、目标要求及学生的实际情况,在教法上主要采用探究式教学法,引导学生进行观察探索、合作交流、归纳总结等学习活动。

4.4.1一次函数的应用教学设计2024-2025学年北师大版八年级数学上册

4.4.1一次函数的应用教学设计2024-2025学年北师大版八年级数学上册
在讲解过程中,注意观察学生的反应,及时解答学生的疑问。
3.巩固练习(15分钟)
a.课堂练习(5分钟):教师布置几道一次函数在实际问题中的应用题,要求学生在课堂上独立完成,巩固所学知识。
b.小组讨论(5分钟):学生分为小组,讨论解题思路,分享解题经验,互相学习。
c.课堂提问(5分钟):教师针对练习题进行提问,检查学生对一次函数应用的掌握情况。
板书设计
①重点知识点:
-一次函数的定义与图象特征
-一次函数在实际问题中的应用
-建立一次函数模型的方法
②关键词与句:
-关键词:一次函数、图象、应用、模型、实际问题
-关键句:一次函数图象是一条直线;通过一次函数解决实际问题;建立数学模型分析数量关系
③艺术性与趣味性设计:
-使用不同颜色的粉笔,突出重点知识点和关键句;
6.课后作业(5分钟)
布置与一次函数应用相关的课后作业,巩固所学知识,提高学生的实际应用能力。
教学过程中,注意以下几点:
1.教师应密切关注学生的学习情况,根据学生的反应调整教学节奏和难度。
2.创设情境和提出问题时,要贴近学生的生活实际,激发学生的学习兴趣。
3.讲解过程中,注重师生互动,鼓励学生提问,培养学生的逻辑思维和问题解决能力。
2.教学软件:运用数学软件辅助教学,让学生更直观地观察一次函数的性质,提高教学效果。
3.网络资源:引导学生查阅相关资料,拓展知识面,培养自主学习能力。
教学过程设计
1.导入环节(5分钟)
创设情境:教师展示一次函数在实际生活中的应用实例,如“小明骑自行车去公园,速度与时间的关系”,引发学生思考一次函数在现实情境中的作用。
学情分析
八年级学生在知识层面,已具备一次函数的基本概念、图象特征及简单应用能力,但在将一次函数与实际问题结合解决方面,仍需加强。在能力方面,学生的逻辑思维能力、观察能力和分析能力逐渐提升,但问题解决能力、团队合作能力有待提高。素质方面,学生具备一定的自主学习能力和探究精神,但学习习惯、时间管理等方面存在差异,对学习效果产生影响。

北师大版数学八年级上册3《一次函数的图象》教学设计4

北师大版数学八年级上册3《一次函数的图象》教学设计4

北师大版数学八年级上册3《一次函数的图象》教学设计4一. 教材分析《一次函数的图象》是北师大版数学八年级上册3的教学内容。

本节课主要让学生了解一次函数的图象特点,学会如何绘制一次函数的图象,并能够通过图象分析一次函数的性质。

教材通过生动的实例和丰富的练习,引导学生探索一次函数图象的规律,培养学生的数形结合思想。

二. 学情分析八年级的学生已经学习了函数的概念和相关性质,对函数有一定的认识。

但是,对于一次函数的图象,学生可能还比较陌生,需要通过具体的实例和操作来加深理解。

此外,学生可能对图象的绘制和分析存在一定的困难,需要教师的引导和帮助。

三. 教学目标1.了解一次函数的图象特点,学会绘制一次函数的图象。

2.能够通过图象分析一次函数的性质。

3.培养学生的数形结合思想,提高学生的数学素养。

四. 教学重难点1.一次函数的图象特点。

2.一次函数图象的绘制方法。

3.通过图象分析一次函数的性质。

五. 教学方法1.情境教学法:通过生动的实例,引导学生进入学习情境,激发学生的学习兴趣。

2.数形结合法:通过图象和函数性质的结合,帮助学生深入理解一次函数的图象特点。

3.小组合作学习:鼓励学生分组讨论,共同探索一次函数图象的规律,培养学生的合作意识。

六. 教学准备1.教学课件:制作一次函数图象的课件,展示一次函数的图象特点和绘制方法。

2.练习题:准备一些有关一次函数图象的练习题,用于巩固所学知识。

3.绘图工具:准备一些绘图工具,如直尺、圆规等,方便学生绘制一次函数的图象。

七. 教学过程1.导入(5分钟)利用实例引入一次函数的图象,让学生感受一次函数图象的特点,引发学生的思考。

2.呈现(10分钟)展示一次函数的图象,引导学生观察图象的形状、位置等特征,总结一次函数图象的一般规律。

3.操练(10分钟)学生分组讨论,共同探索一次函数图象的绘制方法。

教师巡回指导,帮助学生解决问题。

4.巩固(10分钟)学生独立完成一些有关一次函数图象的练习题,检验自己对于一次函数图象的理解。

八年级《一次函数》教学设计(5篇)

八年级《一次函数》教学设计(5篇)

八年级《一次函数》教学设计(5篇)八年级《一次函数》教学设计篇一教学目标:(知识与技能,过程与方法,情感态度价值观)(一)教学知识点1、一元一次不等式与一次函数的关系、2、会根据题意列出函数关系式,画出函数图象,并利用不等关系进行比较、(二)能力训练要求1、通过一元一次不等式与一次函数的图象之间的结合,培养学生的数形结合意识、2、训练大家能利用数学知识去解决实际问题的能力、(三)情感与价值观要求体验数、图形是有效地描述现实世界的重要手段,认识到数学是解决问题和进行交流的重要工具,了解数学对促进社会进步和发展人类理性精神的作用、教学重点了解一元一次不等式与一次函数之间的关系、教学难点自己根据题意列函数关系式,并能把函数关系式与一元一次不等式联系起来作答、教学过程创设情境,导入课题,展示教学目标1、张大爷买了一个手机,想办理一张电话卡,开米广场移动通讯公司业务员对张大爷介绍说:移动通讯公司开设了两种有关神州行的通讯业务:甲类使用者先缴15元基础费,然后每通话1分钟付话费0.2元;乙类不交月基础费,每通话1分钟付话费0.3元。

你能帮帮张大爷选择一种电话卡吗?2、展示学习目标:(1)、理解一次函数图象与一元一次不等式的关系。

(2)、能够用图像法解一元一次不等式。

(3)、理解两种方法的关系,会选择适当的方法解一元一次不等式。

积极思考,尝试回答问题,导出本节课题。

阅读学习目标,明确探究方向。

从生活实例出发,引起学生的好奇心,激发学生学习兴趣学生自主研学指出探究方向,巡回指导学生,答疑解惑探究一:一元一次不等式与一次函数的关系。

问题1:结合函数y=2x-5的图象,观察图象回答下列问题:(1) x取何值时,2x-5=0?(2) x取哪些值时,2x-50?(3) x取哪些值时,2x-50?(4) x取哪些值时,2x-53?问题2:如果y=-2x-5,那么当x取何值时,y>0 ? 当x取何值时,y1 ?你是怎样求解的?与同伴交流让每个学生都投入到探究中来养成自主学习习惯小组合作互学巡回每个小组之间,鼓励学生用不同方法进行尝试,寻找最佳方案。

一次函数的图象-教学设计

一次函数的图象-教学设计

华东师大版17.3.2《一次函数的图象》教学设计一、内容和内容分析内容:华师大版八年级下册“17.3.2 一次函数的图象和性质”.本节教学内容属于“数与代数”知识领域中的函数部分,函数是刻画和研究现实世界变化规律的重要模型,是中学数学的重要内容之一,而一次函数是函数中最简单最基本的函数类型之一。

本节课是华东师大版教材中第17章第3节第2课时内容,通过前两节的学习,学生初步掌握了一次函数等相关概念,并且经历了列表、描点、连线画图象的过程,简单体会到数形结合的思想。

本节课是在此基础上,通过动手操作接受一次函数图象是直线这一事实,并在实践中体会“两点法”的简便性,同时向学生再次渗透数形结合的数学思想,以使学生借助直观的图形,生动形象的变化来发现k和b对一次函数图象的影响。

本节课内容为探索下节课一次函数的性质作准备。

同时它的研究方法具有一般性和代表性,为后面研究反比例函数和二次函数奠定了基础。

基于上述分析,确定本节教学本节教学重点如下:1.会熟练作出一次函数的图象;2.理解一次函数解析式中k,b的取值对函数图象的影响;二、目标和目标解析1.理解用描点画出一次函数的图象一般步骤,经历描点法画函数图象的全过程,巩固并掌握描点法画函数图象的一般方法,掌握一次函数图象形状,培养良好的动手操作能力.2.掌握一次函数图象及其特征,培养学生观察、比较、探究、分析、归纳、概括的能力,学会数形结合地研究函数问题的方法.3.进一步体会并理解数形结合思想.三、问题诊断分析1.教师教学可能存在的问题:(1)直接帮助学生用描点法画出一次函数图象,没有让学生亲身经历画图过程;(2)没有提前准备好网络画板用动态演示的方法让学生再次观察图象变化;(3)不能设计合理的探究方案,适当引导学生小组合作去观察、体会、归纳、概括出一次函数的图象特征;(4)过分强调知识的获得,忽略了数形结合数学思想方法的渗透.2.学生学习中可能出现的问题:(1)识图读图能力不强,不能发现并全面概括出函数的图象特征;(2)个别学生互助合作学习的热情和参与探索的积极性不高.鉴于上述分析,确定本节的教学难点是:通过设计合理有效的数学实验,激活学生的数学思维,引导观察、归纳函数的图象特征探讨k,b对一次函数图象的影响,渗透数形结合的数学思想方法.四、教学支持条件设计教学中,为使能较好地帮助学生深入理解一次函数的图象特征,利用网络画板的画图和动画功能,直观、形象地展现函数图象的变化规律,发现k,b对一次函数图象的影响、体会数形结合思想,激发学生参与的积极性,提高分析和解决问题的能力.五、教学过程设计导言上节课我们与一次函数初次相识,我们知道认识了一个新事物就更想再深入了解它的性质和应用,而函数图象正是能帮助我们了解函数方方面面性质的一个有力工具,所以今天我将带领大家一同来探讨一次函数的图象问题.活动一:导学诱思问题1一次函数的概念是什么?能否将黑板上有一次函数的卡片挑出来?问题2用描点法画图的一般步骤是什么?活动方式:教师提出问题,由学生口答之后,通过生生互评、师生共评,纠正出现的问题.设计目的:从提问复习入手,承接上一节课的内容,同时引出本节课的内容,既起到复习巩固的作用,又激发学生的学习兴趣,同时为本节课的学习奠定基础.活动二:自主探究问题1选一个你喜欢的一次函数,并用描点法画出该函数图象.问题2 观察你所画的一次函数图象是什么形状?问题3 几个点确定一条直线?有没有简单的一次函数图象的作图方法?活动方式:学生动手画图,自主探究,之后教师提问,学生回答.设计目的:让学生在动手作图的过程中从“形”的角度感知一次函数的图象的形状,发挥学生的主动性,锻炼学生动手操作能力,激发学生学习兴趣.活动三:合作探究提出问题:对于一次函数y=kx+b(k,b为常数,k≠0),常数k和b的取值分别对一次函数的图象有什么影响?活动方式:教师展示多个一次函数图象,师生共同观察,发现不同之处.设计目的:引导学生从“形”的角度观察多个一次函数图象的不同之处,同时从“数”的角度发现解析式的不同之处,由此提出问题.解决问题:设计数学实验.数学试验1:当b相同,k不同时 (第1,3,5组完成)合作要求:组长先确定一个b值,每位组员再各自确定一个k值,依次在同一个坐标纸中画出对应函数图象.数学试验2:当k相同,b不同时(第2,4,6组完成)合作要求:组长先确定一个k值,每位组员再各自确定一个b值,依次在同一个坐标纸中画出对应函数图象.规律总结:当b相同,k不同时,观察函数图象发现:相同点:与y轴交点相同,都为(0,b).不同点:直线的方向不同,倾斜程度不同.在直线y=k1x+b1与直线y=k2x+b2中,如果b1= b2,k1≠k2,那么这两条直线与y轴相交于同一个点.当k相同,b不同时,观察函数图象发现:相同点:直线的倾斜程度一样,直线相互平行.不同点:直线与y轴交点不同.在直线y=k1x+b1与直线y=k2x+b2中,如果k1 = k2,b1 ≠b2,那么这两条直线平行.活动方式:小组合作,先作图,再看图,总结结论,小组代表通过学生平板用“学生讲”的方式展示交流,随后教师借助平板网络画板进行动态演示.设计目的:让学生充分感受图形特点,找到规律,锻炼学生动手操作、观察、归纳、合作探究的能力,体会数学充满探究性和创造性,小组代表展示交流,培养学生的表现力和语言表达能力,教师动画演示,再次渗透“数形结合”思想.活动四:达标检测1.已知一次函数y=kx+b的图象与y=x的图象平行,那么它必过点()A.(-1 , 0)B.(2 , -1)C.(2 , 1)D.(0 , -1)2.已知点(k , b)在第四象限内,则一次函数y=-kx+b的图象大致是()A. B. C. D.3.在平面直角坐标系中,将直线l1:y=-2x-2平移后得到直线l2:y=-2x+4,则下列平移作法中,正确的是()A.将直线l1向上平移6个单位 B.将直线l1向上平移3个单位C.将直线l1向上平移2个单位 D.将直线l1向上平移4个单位4.一次函数y=x-2的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限5.已知函数y=3x+3的图象与x轴交点的坐标是()A.(1 , 0) B.(-1 , 0) C.(0 , 1) D.(0 , -1)活动方式:学生利用平板,在线作答,完成后提交答案,教师根据后台数据精准讲解.设计目的:学生在前面学习的基础上进行练习,一方面对所学内容加以巩固,另一方面让学生将所学知识学会应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一次函数图象的应用(一)
白银市景泰县芦阳二中赵颖
一、学生起点分析
学生已学习了一次函数及其图象,认识了一次函数的性质.在现实生活中也见识过大量的函数图象,所以具备了从函数图象中获取信息,并借助这些信息分析问题、解决问题的基础.但由于初中学生的年龄特点,他们认识事物还不够全面、系统,所以还需通过具体实例来培养他们这方面的能力.
二、教学任务分析
《一次函数图象的应用》是义务教育课程标准北师大版实验教科书数学八年级(上)第六章《一次函数》的第五节.本节内容安排了2个课时完成,本节为第一课时.主要是利用一次函数图象解决有关现实问题,与原传统教材相比,新教材更注重借助材料让学生在具体操作中获取一次函数图象的有关信息,从而回答和解决现实生活中的具体问题,也就是说,新教材注重在图象信息的识别与分析中,提高学生的识图能力,进一步培养学生的数形结合能力和数学应用能力,发展形象思维.
三、教学目标分析
知识与技能目标:
1.能通过函数图象获取信息,解决简单的实际问题;
2.在解决问题过程中,初步体会方程与函数的关系,建立各种知识的联系。

过程与方法目标:
1.通过对函数图象的观察与分析,培养学生数形结合的意识,发展形象思维;2.通过具体问题的解决,培养学生的数学应用能力;
3.引导学生从事观察、操作、交流、归纳等探索活动,使学生初步形成多样的学习方式.
情感与态度目标:
1.在具体的案例中,培养学生良好的环保意识和对生活的热爱等.
●教学重点
一次函数图象的应用.
●教学难点
正确地根据图象获取信息,并解决现实生活中的有关问题.
四、课前准备
有条件的学校可以准备多媒体课件,没有条件的可以准备投影片或者小黑板.教学过程
本节课分为八个教学环节
第一环节复习引入
内容:在前几节课里,我们通过从生活中的实际问题情景出发,分别学习了一次函数,一次函数的图象,一次函数图象的性质,从中对一次函数在现实生活中的广泛应用有了一定的了解.怎样应用一次函数的图象和性质来解决现实生活中的实际问题,是我们这节课的主要内容.首先,想一想一次函数具有什么性质?在一次函数中
当时,随的增大而增大,
当时,直线交轴于正半轴,必过一、二、三象限;
当时,直线交轴于负半轴,必过一、三、四象限.
当时,随的增大而减小,
当时,直线交轴于正半轴,必过一、二、四象限;
当时,直线交轴于负半轴,必过二、三、四象限.
意图:在前面的学习中我们已得到一次函数的图象是一条直线,并且讨论了、的正负对图象的影响.通过对上节课学习内容的回顾,为进一步研究一次函数图象和性质的应用做好铺垫.
效果:学生通过知识回顾,再次明确一次函数图象和性质,为学习本节课在知识上作好准备.
说明:如果学生一次函数的图象和性质掌握较好,也可以直接从下一环节(第二环节)开始,进入本课题的学习.
第二环节初步探究
内容:由于持续高温和连日无雨,某水库的蓄水量随着时间的增加而减少.干旱持续时间(天)与蓄水量(万米3)的关系如下图所示,回答下列问题:
(1)干旱持续10天后,蓄水量为多少?连续干旱23天后呢?
(2)蓄水量小于400万米3时,将发生严重干旱警报.干旱多少天后将发出严重干旱警报?
(3)按照这个规律,预计持续干旱多少天水库将干涸?
(根据图象回答问题,有困难的可以互相交流.)
答案:(1)求干旱持续10天时的蓄水量,也就是求等于10时所对应的的值.当时,约为1000万米3.同理可知当为23天时,约为750万米3.
(2)当蓄水量小于400万米3时,将发出严重干旱警报,也就是当等于400万米3时,求所对应的的值.当等于400万米3时,所对应的的值约为40天.
(3)水库干涸也就是为0,所以求函数图象与横轴交点的横坐标即为所求.当为0时,所对应的的值约为60天.
意图:通过生动的现实情景引入一次函数图象的应用,目的是培养学生的识图能力.
效果:本题插图中干涸的河床势必给学生一个很强的视觉刺激,从而渗透环保教育.
说明:在具体的教学活动中,教师应注意学生对以上问题的掌握情况:如果学生掌握得好,进入下面的练习;如果学生掌握得不好,则可以再引导学生多练习一道类似的习题(见分层教学第1题).
第三环节反馈练习:
内容:当得知周边地区的干旱情况后,育才学校的小明意识到节约用水的重要性.当天在班上倡议节约用水,得到全班同学乃至全校师生的积极响应.从宣传活动开始,假设每天参加该活动的家庭数增加数量相同,最后全校师生都参加了活动,并且参加该活动的家庭数(户)与宣传时间(天)的函数关系如图所示.根据图象回答下列问题:
(1)活动开始当天,全校有多少户家庭参加了该活动?
(2)全校师生共有多少户?该活动持续了几天?
(3)你知道平均每天增加了多少户?
(4)活动第几天时,参加该活动的家庭数达到800户?
(5)写出参加活动的家庭数与活动时间之间的函数关系式
(4)第15天时,参加该活动的家庭数达到800户;
意图:通过创设情境,让学生进一步认识到一次函数图象的应用,倡导节约用水.同时,通过练习以检验学生对已学内容是否掌握.
效果:通过练习,学生会运用一次函数的图象去分析现实生活中的问题,同时渗透环保意识,珍惜水资源.
说明:在具体的教学活动中,教师应观察学生的表现,对知识是否掌握,如果学生掌握得好,进入下一个环节;如果学生掌握得不好,则可以再引导,以达到“过手”的目的.(视其情况,可以选用分层教学第2题)
第四环节深入探究
内容:1.看图填空
(1)当时,;
(2)直线对应的函数表达式是________________.
2.议一议
一元一次方程与一次函数有什么联系?(请大家根据刚做的练习来进行解答.)答案:一元一次方程的解为,一次函数包括许多点.因此是的特殊情况.
当一次函数的函数值为0时,相应的自变量的值即为方程的解.
函数与轴交点的横坐标即为方程的解.
意图:通过本题让学生认识到一次函数与一元一次方程的联系,从“数”的角度看,当一次函数的函数值为0时,相应的自变量的值即为方程的解;从“形”的角度看,函数与x轴交点的横坐标即为方程的解.
效果:通过练习,学生明晰了函数与方程的关系,能用函数关系解决方程问题,同时也能用方程的观点来看待函数.
第五环节反馈练习
内容:全国每年都有大量土地被沙漠吞没,改造沙漠,保护土地资源已经成为一项十分紧迫的任务,某地区现有土地面积100万千米2,沙漠面积200万千米2,土地沙漠化的变化情况如下图所示.
(1)如果不采取任何措施那么到第5年底,该地区沙漠面积将增加多少万千米2?
(2)如果该地区沙漠的面积继续按此趋势扩大,那么从现在开始第几年底后,该地区将丧失土地资源?
(3)如果从现在开始采取植树造林措施,每年改造4万千米2沙漠,那么到第几年底,该地区的沙漠面积能减少到176万千米2.
意图:通过土地沙漠化的问题进一步培养学生的识图能力,让学生能从图象中获取信息,建立相关的代数式,从而求解较复杂的问题;同时,通过土地沙漠化的问题情景引导学生关注自己身边的生存环境.
效果:通过对较复杂的问题的探究,培养了学生分析问题和解决问题的能力,并渗透德育教育.
第六环节探究升级
内容:(续前一问题)当得知周边地区的干旱情况后,育才学校的小明意识到节约用水的重要性,当天在班上倡议节约用水,得到全班同学乃至全校师生的积极响应.从宣传活动开始,假设每天参加该活动的家庭数增加数量相同,最后都参加了活动,并且参加该活动的家庭数(户)与宣传时间(天)的函数关系如图所示.根据图象回答下列问题:
(6)若每户每天节约用水0.1吨,那么活动第20天可节约多少吨水?
(7)写出活动开展的第天节约的水量与天数的函数关系.
意图:通过问题的层层深入,引导学生的思维向纵深发展,进一步巩固用函数的思想解决生活中的问题.
效果:学生通过合作交流,解决问题,在教师的引导下,逐步加深了对一次函数图象和性质的运用.
说明:视学生的掌握情况,对学有余力的同学可以给出这个问题的第(8)问.第七环节课堂小结
内容:本节课主要应掌握以下内容:
1.能通过函数图象获取信息.
2.能利用函数图象解决简单的实际问题.
3.初步体会方程与函数的关系.
意图:引导学生自己小结本节课的知识要点及数学方法,使这节课知识系统化,感性认识上升为理性认识.
效果:学生畅所欲言,相互进行补充,从小结中感知了一次函数的图象在生活中的应用.
说明:教师视其情况,可以选择展示一些前面小节中用过的实际问题与一次函数图象的实例的图片,让学生体会到数学与生活的联系,激发学生的学习热情.第八环节布置作业
内容:
1.课外探究
在生活中,你还遇到过哪些可以用一次函数关系来表示的实际问题?选择你感兴趣的问题,编制一道数学题与同学交流.
2.课外作业习题5.6
六、教学设计反思
(1)设计理念
一次函数是刻画现实世界变量间关系的最为简单的模型,其应用比比皆是.在教学设计中,争取选用最具有现实生活背景,与学生生活密切相关的问题,一方面力求让。

相关文档
最新文档