高考状元——【人教版】高考数学总复习:第7章《立体几何》[3]
高考总复习数学人教A版文科第7单元 立体几何 第一节 课件

A ②④
3. (教材改编题)给出下列命题: ①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆 柱的母线; ②圆锥的顶点与底面圆周上任意一点的连线是圆锥的母线; ③在圆台的上、下底面的圆周上各取一点,则这两点的连线是圆 台的母线; ④圆柱的所有母线所在的直线是互相平行的. 其中正确的是 ( ) A. ①② B. ②③ C. ①③ D. ②④
答案:1. (1)互相平行 四边形 互相平行 (2)多边形 有一个公共顶点 (3)棱台 2. (1)面 圆柱 (2)圆锥 (3)球体 球 3. (1)正前方 正左方 正上方 正视图 侧视图 俯视图 (2) 正视图 下方 右方 (3)长对正、高平齐、宽相等 (4)①x′轴和y′轴 ∠x′O′y′=45°(或135°) 水平面 ②x′轴或y′轴 ③保 持原长度不变 长度变为原来的一半
解:(1)如图1所示,该几何体满足有两个面平行,其余六个面都 是矩形,可使每相邻两个面的公共边都互相平行,故该几何体是正 六棱柱. (2)如图2所示,等腰梯形两底边中点的连线将梯形平分为两个直角 梯形,每个直角梯形旋转180°形成半个圆台,故该几何体为圆台. (3)如图3所示,由梯形ABCD的顶点A引AO⊥CD于O点,将直角梯形 分为一个直角三角形AOD和矩形AOCB,绕CD旋转一周形成一个组合 体,该组合体由一个圆锥和一个圆柱组成.
第七单元 立体几何
第一节 空间几何体的结构及其 三视图和直观图
基础梳理
1. 多面体 (1)有两个面________,其余各面都是________,并且每相邻 两个四边形的公共边都________,由这些面所围成的多面体 叫做棱柱. (2)有一个面是________,其余各面都是____________的三角 形,由这些面所围成的多面体叫做棱锥. (3)用一个平行于棱锥底面的平面截棱锥,底面和截面之间的 这部分多面体叫做______.
高考数学一轮复习第七章 立体几何答案

第七章 立体几何第33讲 空间几何体的表面积与体积链教材·夯基固本 激活思维 1.B【解析】设圆柱的直径为2R ,则高为2R ,由题意得4R 2=8,所以R =2,则圆柱表面积为π×(2)2×2+2×2π×22=12π.故选B. 2.B【解析】设底面半径为r cm ,因为S 表=πr 2+πrl =πr 2+πr ·2r =3πr 2=12π,所以r 2=4,所以r =2.3. A 【解析】 底面边长为2,高为1的正三棱柱的体积是V =Sh =12×2×2sin60°×1=3.4. C 【解析】 由题意,正方体的对角线就是球的直径,所以2R =3×23=6,所以R =3,S =4πR 2=36π.5.C【解析】设正四棱锥的高为h ,底面边长为a ,侧面三角形底边上的高为h ′,则依题意有⎩⎪⎨⎪⎧h2=12ah ′,h2=h ′2-⎝ ⎛⎭⎪⎪⎫a 22,因此有h ′2-⎝ ⎛⎭⎪⎪⎫a 22=12ah ′,4⎝ ⎛⎭⎪⎪⎫h ′a 2-2⎝ ⎛⎭⎪⎪⎫h ′a -1=0,解得h ′a =5+14(负值舍去).知识聚焦1. (1) 平行且相等 全等 多边形 公共点 平行于底面 相似 (2) 任一边任一直角边 垂直于底边的腰 直径2. 2πrl πrl π(r 1+r 2)l3. Sh 4πR 2研题型·融会贯通 分类解析【答案】 C【解析】 对于A ,通过圆台侧面上一点只能做出1条母线,故A 错误;对于B ,直角三角形绕其直角边所在直线旋转一周得到的几何体是圆锥,绕其斜边旋转一周,得到的是两个圆锥的组合体,故B 错误;对于C ,由圆柱的定义得圆柱的上底面、下底面互相平行,故C 正确; 对于D ,五棱锥有十条棱,故D 错误.(1) 【答案】 D 【解析】因为在梯形ABCD 中,∠ABC =π2,AD∥BC ,BC =2AD =2AB =2,所以将梯形ABCD 绕AD 所在直线旋转一周而形成的曲面所围成的几何体是一个底面半径为AB =1,高为BC =2的圆柱减去一个底面半径为AB =1,高为BC -AD =2-1=1的圆锥的组合体,所以该几何体的表面积S =π×12+2π×1×2+π×1×12+12=(5+2)π.(2) 【答案】 B【解析】 由题知三棱锥P -ABC 的四个顶点都在球O 上, 故该球为三棱锥P -ABC 的外接球. 在△ABC 中,BC =3,∠BAC =60°, 根据三角形的外接圆半径公式r =a2sin A ,可得△ABC 的外接圆半径r =12·332=3,设点P 在平面ABC 内的射影为D ,则AD =r =3.又球心O 在PD 上,在Rt△PAD 中,PA 2=PD 2+AD 2,则PD =3.设三棱锥P -ABC 外接球半径为R ,如图,在Rt △ODA 中,OA 2=OD 2+AD 2,即(3-R )2+(3)2=R 2,解得R =2.根据球体的表面积公式S =4πR 2,可得球O 的表面积为S =4π×22=16π.(例2(2))(1) 【答案】 12【解析】设正六棱锥的高为h ,侧面的斜高为h ′.由题意,得13×6×12×2×3×h =23,所以h =1,所以斜高h ′=12+(3)2=2, 所以S 侧=6×12×2×2=12.(2) 【答案】 C 【解析】 如图所示,当点C 位于垂直于平面AOB 的直径端点时,三棱锥O -ABC 的体积最大,设球O 的半径为R ,此时V O -ABC =V C -AOB =13×12×R 2×R =16R 3=36,故R =6,则球O 的表面积为4πR 2=144π.(变式)【答案】 43【解析】由图可知,该多面体为两个全等正四棱锥的组合体,正四棱锥的高为1,底面正方形的边长等于2,所以该多面体的体积为2×13×1×(2)2=43.(1) 【答案】 C 【解析】过点C 作CE 垂直AD 所在直线于点E ,梯形ABCD 绕AD 所在直线旋转一周而形成的旋转体是由以线段AB 的长为底面圆半径,线段BC 为母线的圆柱挖去以线段CE 的长为底面圆半径,ED 为高的圆锥,如图所示,该几何体的体积为V =V 圆柱-V 圆锥=π·AB 2·BC -13·π·CE 2·DE =π×12×2-13π×12×1=5π3.(变式(1))(2) 【答案】 61π 【解析】由圆台的下底面半径为5,知下底面在外接球的大圆上,如图所示,设球的球心为O ,圆台上底面的圆心为O ′,则圆台的高OO ′=OQ2-O ′Q2=52-42=3,所以圆台的体积V =13π×3×(52+5×4+42)=61π.(变式(2))【答案】 C【解析】 因为正方体的内切球的体积与“牟合方盖”的体积之比应为π∶4,“牟合方盖”的体积为18,所以正方体的内切球的体积V 球=π4×18=92π,设正方体内切球半径为r ,则43πr 3=92π, 解得r =32,所以正方体的棱长为2r =3.【答案】 C【解析】 如图所示,过球心O 作平面ABC 的垂线, 则垂足为BC 的中点M .又AM =12BC =52,OM =12AA 1=6,所以球O 的半径R =OA =⎝ ⎛⎭⎪⎪⎫522+62=132.(变式)课堂评价 1.3π【解析】 设圆锥的底面半径为r ,母线为l ,高为h ,则由题意可得l =2r .因为S 侧=πrl =2πr 2=6π,所以r =3,l =23,则h =l2-r2=12-3=3,所以圆锥的体积为V =13πr 2h =13π×3×3=3π.2.29π【解析】根据题意可知三棱锥P -ABC 可看作长方体的一个角,如图,该长方体的外接球就是经过P ,A ,B ,C 四点的球.因为PA =2 m ,PB =3 m ,PC =4 m ,所以长方体的体对角线的长为PA2+PB2+PC2=29 m ,即外接球的直径2R =29m ,可得R =292m ,因此外接球的表面积为S =4πR 2=4π×⎝ ⎛⎭⎪⎪⎫2922=29π(m 2).(第2题)(第3题)3.3【解析】如图,将直三棱柱ABC-A1B1C1沿BB1展开,则AM+MC1最小等价于在矩形ACC1A1中求AM+MC1的最小值.当A,M,C1三点共线时,AM+MC1最小.又AB=1,BC=2,AB∶BC=1∶2,所以AM=2,MC1=22.又在原三棱柱中,AC1=9+5=14,所以cos∠AMC1=AM2+C1M2-AC212AM·C1M=2+8-142×2×22=-12,故sin∠AMC1=32,△AMC1的面积为S=12×2×22×32=3.4. 10 【解析】因为长方体ABCD-A1B1C1D1的体积为120,所以AB·BC·CC1=120,因为E为CC1的中点,所以CE=12CC1,由长方体的性质知CC1⊥底面ABCD,所以CE是三棱锥E-BCD的底面BCD上的高,所以三棱锥E-BCD的体积V=13·12AB·BC·CE=13·12AB·BC·12CC1=112×120=10.第34讲空间点、线、面之间的位置关系链教材·夯基固本激活思维1. C 【解析】点A在平面α外,故A∉α;直线l在平面α内,故l⊂α.2. C 【解析】此时三个平面两两相交,且有三条平行的交线.3. C 【解析】根据平面的特征,绝对的平,无限延展,不计大小和厚薄,即可知,①对,②错;再根据点线面的关系可知,③④正确.4. C 【解析】如图,因为M,N分别是长方形A1B1C1D1与长方形BCC1B1的中心,所以M,N分别是A1 C1,BC1的中点,所以直线MN与直线A1B平行,所以A错误;因为直线MN经过平面BB1D1D内一点M,且点M不在直线DD1上,所以直线MN与直线DD1是异面直线,所以B错误;因为直线MN经过平面ABC1内一点N,且点N不在直线AC1上,所以直线MN与直线AC1是异面直线,所以C正确;因为直线MN经过平面A1CC1内一点M,且点M不在直线A1C上,所以直线MN与直线A1C是异面直线,所以D错误.(第4题)5. C 【解析】连接BD,BC1,因为AB=D1C1,AB∥D1C1,所以四边形ABC1D1为平行四边形,所以AD1∥BC1,所以∠BC1D为异面直线AD1与DC1所成的角.在正方体ABCD-A1B1C1D1中,BD=BC1=DC1,所以△BC1D为等边三角形,所以∠BC1D=60°,所以异面直线AD1与DC1所成的角的大小为60°.知识聚焦1. 两点所有的点经过这个公共点的一条直线有且只有一个平面2. 在同一平面内异面直线3. (1) 平行(2) 平行相同4. (3) 互相垂直研题型·融会贯通分类解析【解答】 (1) 因为EF是△D1B1C1的中位线,所以EF∥B1D1.在正方体AC1中,B1D1∥BD,所以EF∥BD,所以EF,BD确定一个平面,即D,B,F,E四点共面.(2) 在正方体AC1中,设A1ACC1确定的平面为α,又设平面BDEF为β.因为Q∈A1C1,所以Q∈α.又Q∈EF,所以Q∈β,则Q是α与β的公共点,所以α∩β=PQ.又A1C∩β=R,所以R∈A1C.所以R∈α,且R∈β,则R∈PQ,故P,Q,R三点共线.【解答】(1) 因为PQ⊂平面PQR,M∈直线PQ,所以M∈平面PQR.因为RQ ⊂平面PQR,N∈直线RQ,所以N∈平面PQR,所以直线MN⊂平面PQR.(2) 因为M∈直线CB,CB⊂平面BCD,所以M∈平面BCD.由(1)知M∈平面PQR,所以M在平面PQR与平面BCD的交线上,同理,可知N,K也在平面PQR与平面BCD的交线上,所以M,N,K三点共线,所以点K在直线MN上.【解答】(1) 不是异面直线,理由:连接MN,A1C1,AC,如图,因为M,N分别是A1B1,B1C1的中点,所以MN∥A1C1.又因为A1A綊D1D,D1D綊C1C,所以A1A綊C1C,所以四边形A1ACC1为平行四边形,所以A1C1∥AC,故MN∥A1C1∥AC,所以A,M,N,C在同一个平面内,故AM和CN不是异面直线.(例2)(2)是异面直线,证明如下:显然D1B与CC1不平行,假设D1B与CC1在同一个平面CC1D1内,则B∈平面CC1D1,C∈平面CC1D1,所以BC⊂平面CC1D1,这显然是不正确的,所以假设不成立,故D1B与CC1是异面直线.【解答】 (1) 由题意易知PQ∥DE,MN∥DE,所以PQ∥MN,所以M,N,P,Q四点共面.(2) 由条件知AD=1,DC=1,BC=2,(例3)如图,延长ED至R,使DR=ED,则ER=BC,ER∥BC,故四边形ERCB为平行四边形,所以RC∥EB,又AC∥QM.所以∠ACR为异面直线BE与QM所成的角(或补角).因为DA=DC=DR,且三线两两互相垂直,由勾股定理得AC=AR=RC=2.因为△ACR为正三角形,所以∠ACR=60°.所以异面直线BE 与MQ 所成的角为60°. 【题组强化】 1. C【解析】 如图,取CD 的中点M ,CF 的中点N ,连接MN ,则MN ∥DF .延长BC 到点P ,使CP =12BC ,连接MP ,NP ,则MP ∥AC .(第1题)令AB =2,则MP =MN =2,又△BCF 是等边三角形,NC =PC =1,在△NCP 中,由余弦定理可得NP 2=CP 2+CN 2-2·CP ·CN ·cos ∠PCN =1+1-2×1×1×⎝ ⎛⎭⎪⎪⎫-12=3,所以NP =3,又异面直线AC 和DF 所成角为∠NMP ,在△NMP 中,由余弦定理得cos ∠NMP =2+2-32×2×2=14.2. D 【解析】 如图,取CD 的中点G ,连接EG ,FG ,则FG ∥BC ,EG ∥AD ,则∠EGF 为异面直线AD 与BC 所成的角(或补角),因为FG =12BC =2,EG =12AD =3,所以由余弦定理得cos ∠EGF =4+9-22×2×3=1112,故异面直线AD 与BC 所成角的余弦值为1112.(第2题)3.C【解析】如图,设AC ∩BD =O ,连接OE ,易知OE 是△SAC 的中位线,故EO∥SA ,则∠BEO 为异面直线BE 与SA 所成的角.设SA =AB =2a ,则OE =12SA =a ,BE =32SA =3a ,OB =22SA =2a ,在△EOB 中,由余弦定理可得cos ∠BEO =a2+3a2-2a223a2=33.(第3题)4. 2 【解析】 如图,设AB 的中点为E ,连接EN ,则EN ∥AC 且EN =12AC ,所以∠MNE 或其补角即为异面直线MN 与AC 所成的角.连接ME ,在Rt △MEN 中,tan ∠MNE =MENE=2.所以异面直线MN 与AC 所成角的正切值为2.(第4题)【答案】 A 【解析】如图所示,在正方体ABCD -A 1B 1C 1D 1中,平面AB 1D 1与棱A 1A ,A 1B 1,A 1D 1所成的角都相等,又正方体的其余棱都分别与A 1A ,A 1B 1,A 1D 1平行,故正方体ABCD -A 1B 1C 1D 1的每条棱所在直线与平面AB 1D 1所成的角都相等.如图所示,取棱AB ,BB 1,B 1C 1,C 1D 1,D 1D ,DA 的中点E ,F ,G ,H ,M ,N ,则正六边形EFGHMN 所在平面与平面AB 1D 1平行且面积最大,此截面面积为S 正六边形EFGHMN =6×12×22×22×sin60°=334.故选A.(例4)【答案】 26【解析】由题知,过BD1的截面可能是矩形,可能是平行四边形.(1) 当截面为矩形,即截面为ABC1D1,A1BCD1,BB1D1D时,由正方体的对称性可知S矩形ABC1D1=S矩形A1BCD1=S矩形BB1D1D=42.(2) 当截面为平行四边形时,如图所示,过点E作EM⊥BD1于M,S▱BED1F=BD1·EM,又因为BD1=23,所以S▱BED1F=EM·23,过点M作MN∥D1D交BD于N,连接AN,当AN⊥BD时,AN最小,此时,EM的值最小,且EM=2,故四边形BED1F面积的最小值为S▱BED1F=2×23=26,又因为42>26,所以过BD1的截面面积S的最小值为26.(变式)课堂评价1. D 【解析】因为一条直线与两条异面直线中的一条平行,所以它与另一条异面直线可能异面也可能相交.2. B 【解析】当两个平面相互平行时,把空间分成3部分.当两个平面相交时,把空间分成4部分.所以不重合的两个平面可以把空间分成3或4部分.3. BD 【解析】对于A,两两相交的三条直线,若相交于同一点,则不一定共面,故A不正确;对于B,平行四边形两组对边分别平行,则平行四边形是平面图形,故B正确;对于C,若一个角的两边分别平行于另一个角的两边,则这两个角相等或互补,故C不正确;对于D,由公理可得,若A∈α,A∈β,α∩β=l,则A∈l,故D正确.4. ABC 【解析】如图,过点A作AM⊥BF于点M,过点C作CN⊥DE于点N.在翻折过程中,AF是以F为顶点,AM为底面半径的圆锥的母线,同理AB,E C,DC边均可看作圆锥的母线.对于A,点A和点C的轨迹为圆周,所在平面平行,显然无公共点,故A正确;对于B,AF,EC分别可看成圆锥的母线,只需看以F为顶点、AM为底面半径的圆锥的轴截面的顶角是否大于等于60°即可,故B正确;对于C,同理B,故C正确;对于D,能否使直线AB与CD所成的角为90°,只需看以B为顶点、AM为底面半径的圆锥轴截面的顶角是否大于等于90°即可,可知D不成立.故选ABC.(第4题)5. 【解答】(1) 因为DD1⊥平面ABCD,所以斜线BD1在平面ABCD内的射影是BD.又直线BD1和直线AC不同在任何一个平面内,所以直线BD1和直线AC是异面直线.(2) 连接BD.因为DD1⊥平面ABCD,AC⊂平面ABCD,所以DD1⊥AC.又因为AC⊥BD,BD∩DD1=D,所以AC⊥平面BDD1.因为BD1⊂平面BDD1,所以AC⊥BD1,故直线BD1和直线AC所成的角是90°.第35讲直线、平面平行的判定与性质链教材·夯基固本激活思维1. D 【解析】与一个平面平行的两条直线可以平行,相交,也可以异面.2. D 【解析】依题意,直线a必与平面α内的某直线平行,又a∥b,因此直线b与平面α的位置关系是平行或直线b在平面α内.3. BD 【解析】因为直线a∥平面α,直线a与平面α无公共点,所以直线a和平面α内的任意一条直线都不相交,与无数条直线平行.4. 平面ABCDEF、平面CC1D1D【解析】在正六棱柱中,易知A1F1∥AF,AF⊂平面ABCDEF,且A1F1⊄平面ABCDEF,所以A1F1∥平面ABCDEF.同理,A1F1∥C1D1,C1D1⊂平面CC1D1D,且A1F1⊄平面CC1D1D,所以A1F1∥平面CC1D1D.其他各面与A1F1均不满足直线与平面平行的条件.5. ①③【解析】直线l在平面α外⇔l∥α或直线l与平面α仅有一个交点.知识聚焦1. 直线a与平面α平行直线a与平面α相交直线a在平面α内研题型·融会贯通分类解析【答案】 D【解析】对于A,若a⊥c,b⊥c,则a与b可能平行、异面、相交,故A是假命题;对于B,设α∩β=m,若a,b均与m平行,则a∥b,故B是假命题;对于C,a,b可能平行、异面、相交,故C是假命题;对于D,若α∥β,a⊂α,则a与β没有公共点,故a∥β,故D是真命题.【答案】 C【解析】对于A,两条直线可能平行也可能异面或相交;对于B,如图,在正方体ABCD-A1B1CD1中,平面ABB1A1和平面BCC1B1与B1D1所成的角相等,但这两个平面垂直;对于D,1两平面也可能相交.C正确.(变式)【解答】因为在直三棱柱ABC-A1B1C1中,点D,E分别是边BC,B1C1的中点,所以EC1綊BD,所以四边形BDC1E是平行四边形,所以BE∥C1D.因为BE⊄平面AC1D,C1D⊂平面AC1D,所以BE∥平面AC1D.【解答】如图,连接BD,令AC∩BD=O,连接EO.因为在△BPD中,BO=OD,PE=ED,所以OE∥BP.又因为BP⊄平面ACE,OE⊂平面ACE,所以BP∥平面ACE.(变式)【解答】 因为BC ∥平面GEFH ,BC ⊂平面ABCD ,平面GEFH ∩平面ABCD =EF ,所以BC ∥EF .同理可得,BC ∥GH ,所以GH ∥EF .【解答】 因为AB ∥平面MNPQ ,平面ABC ∩平面MNPQ =MN ,且 AB ⊂平面ABC ,所以由线面平行的性质定理,知 AB ∥MN .同理可得PQ ∥AB ,故MN ∥PQ .同理可得MQ ∥NP ,所以截面四边形 MNPQ 为平行四边形.【解答】 (1) 在正方形AA 1B 1B 中,因为AE =B 1G =1,所以BG =A 1E =2,所以BG 綊A 1E ,所以四边形A 1GBE 是平行四边形,所以A 1G ∥BE .又C 1F 綊B 1G ,所以四边形C 1FGB 1是平行四边形,所以FG 綊C 1B 1綊D 1A 1,所以四边形A 1GFD 1是平行四边形,所以A 1G 綊D 1F ,所以D 1F 綊EB ,故E ,B ,F ,D 1四点共面.(2) 因为H 是B 1C 1的中点,所以B 1H =32. 又B 1G =1,所以B1G B1H =23. 又FC BC =23,且∠FCB =∠GB 1H =90°,所以△B 1HG ∽△CBF , 所以∠B 1GH =∠CFB =∠FBG ,所以HG ∥FB .因为GH ⊄平面FBED 1,FB ⊂平面FBED 1,所以GH ∥平面BED 1F .由(1)知A 1G ∥BE ,A 1G ⊄平面FBED 1,BE ⊂平面FBED 1,所以A 1G ∥平面BED 1F .又HG ∩A 1G =G ,所以平面A 1GH ∥平面BED 1F .【解答】 因为PM ∶MA =BN ∶ND =PQ ∶QD ,所以MQ ∥AD ,NQ ∥BP .又BP ⊂平面PBC ,NQ ⊄平面PBC ,所以NQ∥平面PBC.又因为四边形ABCD为平行四边形,所以BC∥AD,所以MQ∥BC.又BC⊂平面PBC,MQ⊄平面PBC,所以MQ∥平面PBC.又MQ∩NQ=Q,所以平面MNQ∥平面PBC.课堂评价1. D2. A3. B 【解析】因为平面SBC∩平面ABC=BC,EF⊂平面SBC,又EF∥平面ABC,所以EF∥BC.4. ABC 【解析】由题意知,OM是△BPD的中位线,所以OM∥PD,故A正确;因为PD⊂平面PCD,OM⊄平面PCD,所以OM∥平面PCD,故B正确;同理可得OM∥平面PDA,故C正确;因为OM与平面PBA相交,故D不正确.第36讲直线、平面垂直的判定与性质链教材·夯基固本激活思维1. B 【解析】设a,b为异面直线,a∥平面α,b∥平面α,直线l⊥a,l⊥b.过a作平面β∩平面α=a′,则a∥a′,所以l⊥a′.同理过b作平面γ∩α=b′,则l⊥b′.因为a,b异面,所以a′与b′相交,所以l⊥α.2. A 【解析】由l⊥α且m∥α能推出m⊥l,充分性成立;若l⊥α且m⊥l,则m∥α或者m⊂α,必要性不成立,因此“m∥α”是“m⊥l”的充分不必要条件,故选A.3. A 【解析】因为DD1⊥平面ABCD,所以AC⊥DD1.又因为AC⊥BD,DD1∩BD=D,所以AC⊥平面BDD1B1.因为OM⊂平面BDD1B1,所以OM⊥AC.设正方体的棱长为2,则OM=1+2=3,MN=1+1=2,ON=1+4=5,所以OM2+MN2=ON2,所以OM⊥MN.故选A.4. AC 【解析】由题意知PA⊥平面ABC,因为BC⊂平面ABC,所以PA⊥BC,故A正确;因为AC⊥BC,PA⊥BC,且PA∩AC=A,PA,AC⊂平面PAC,所以BC⊥平面PAC,故C正确;若AC⊥PB,因为AC⊥BC,故可得AC⊥平面PBC,则AC⊥PC,与题目矛盾,故B错误;由BC⊥平面PAC可得,BC⊥PC,则△PBC为直角三角形,若PC ⊥PB ,则BC ,PB 重合,与已知矛盾,故D 错误.5. (1) 外 (2) 垂【解析】 (1) 如图(1),连接OA ,OB ,OC ,OP ,在Rt △POA ,Rt △POB 和Rt △POC 中,PA =PC =PB ,所以OA =OB =OC ,即O 为△ABC 的外心.(2)如图(2),延长AO ,BO ,CO 分别交BC ,AC ,AB 于点H ,D ,G .因为PC ⊥PA ,PB ⊥PC ,PA ∩PB =P ,所以PC ⊥平面PAB ,又AB ⊂平面PAB ,所以PC ⊥AB ,又AB ⊥PO ,PO ∩PC =P ,所以AB ⊥平面PGC .又CG ⊂平面PGC ,所以AB ⊥CG ,即CG 为△ABC 边AB 的高.同理可证BD ,AH 为△ABC 底边上的高,即O 为△ABC 的垂心.(第5题(1))(第5题(2))知识聚焦1. (1) 任意一条直线 (2) 两条相交直线都垂直2. (1) 射影 锐角 直角 (2) ⎣⎢⎢⎡⎦⎥⎥⎤0,π2 3. (1) 两个半平面 (2) 垂直于棱 (4) 直二面角研题型·融会贯通分类解析【答案】 B【解析】 如图,连接AC 1,因为∠BAC =90°,所以AC ⊥AB ,因为BC 1⊥AC ,BC 1∩AB =B ,所以AC ⊥平面ABC 1. 又AC 在平面ABC 内,所以根据面面垂直的判定定理,知平面ABC ⊥平面ABC 1, 则根据面面垂直的性质定理知,在平面ABC 1内一点C 1向平面ABC 作垂线,垂足必落在交线AB 上.故选B.(例1)【答案】 C【解析】因为α∩β=l,所以l⊂β,又n⊥β,所以n⊥l.【解答】因为AB=AC,D是BC的中点,所以AD⊥BC. 在直三棱柱ABC-A1B1C1中,因为BB1⊥底面ABC,AD⊂底面ABC,所以AD⊥B1B.因为BC∩B1B=B,BC,B1B⊂平面B1BCC1,所以AD⊥平面B1BCC1.因为B1F⊂平面B1BCC1,所以AD⊥B1F.方法一:在矩形B1BCC1中,因为C1F=CD=1,B1C1=CF=2,所以Rt△DCF≌Rt△FC1B1,所以∠CFD=∠C1B1F,所以∠B1FD=90°,即B1F⊥FD.因为AD∩FD=D,AD,FD⊂平面ADF,所以B1F⊥平面ADF.方法二:在Rt△B1BD中,BD=CD=1,BB1=3,所以B1D=BD2+BB21=10.在Rt△B1C1F中,B1C1=2,C1F=1,所以B1F=B1C21+C1F2=5.在Rt△DCF中,CF=2,CD=1,所以DF=CD2+CF2=5.显然DF2+B1F2=B1D2,所以∠B1FD=90°,所以B1F⊥FD.因为AD∩FD=D,AD,FD⊂平面ADF,所以B1F⊥平面ADF.【解答】在矩形CDEF中,CD⊥DE.因为∠ADC=90°,所以CD⊥AD.因为DE∩AD=D,DE,AD⊂平面ADE,所以CD⊥平面ADE. 因为DM⊂平面ADE,所以CD⊥DM.又因为AB∥CD,所以AB⊥DM.因为AD=DE,M为AE的中点,所以AE⊥DM.又因为AB∩AE=A,AB,AE⊂平面ABE,所以MD⊥平面ABE.因为BE⊂平面ABE,所以BE⊥MD.【解答】 (1) 因为四边形ABCD是矩形,所以AB∥CD.又AB⊄平面PDC,CD⊂平面PDC,所以AB∥平面PDC.因为AB⊂平面ABE,平面ABE∩平面PDC=EF,所以AB∥EF.(2) 因为四边形ABCD是矩形,所以AB⊥AD.因为AF⊥EF,AB∥EF,所以AB⊥AF.又AB⊥AD,点E在棱PC上(异于点C),所以点F异于点D,所以AF∩AD=A.又AF,AD⊂平面PAD,所以AB⊥平面PAD.又AB⊂平面ABCD,所以平面PAD⊥平面ABCD.【解答】 (1) 因为PA=PC,O是AC的中点,所以PO⊥AC. 在Rt△PAO中,因为PA=5,OA=3,所以由勾股定理得PO=4.因为AB=BC,O是AC的中点,所以BO⊥AC.在Rt△BAO中,因为AB=5,OA=3,所以由勾股定理得BO=4.因为PO=4,BO=4,PB=42,所以PO2+BO2=PB2,所以PO⊥BO.因为BO∩AC=O,所以PO⊥平面ABC.因为PO⊂平面PAC,所以平面PAC⊥平面ABC.(2) 由(1)可知平面PAC⊥平面ABC.因为平面ABC∩平面PAC=AC,BO⊥AC,BO⊂平面ABC,所以BO⊥平面PAC,所以V POBQ=V BPOQ=13S△PQO·BO=13×12S△PAO×4=13×14×3×4×4=4.所以四面体POBQ的体积为4.【解答】(1) 因为AB⊥AD,AB⊥BC,且A,B,C,D四点共面,所以AD ∥BC.因为BC⊄平面PAD,AD⊂平面PAD,所以BC∥平面PAD.(2) 如图,过点D作DH⊥PA于点H,因为△PAD是锐角三角形,所以H与A不重合.因为平面PAD⊥平面PAB,平面PAD∩平面PAB=PA,DH⊂平面PAD,所以DH⊥平面PAB,因为AB⊂平面PAB,所以DH⊥AB.因为AB⊥AD,AD∩DH=D,AD,DH⊂平面PAD,所以AB⊥平面PAD.因为AB⊂平面ABCD,所以平面PAD⊥平面ABCD.(变式2)课堂评价1. ③⑤②⑤2. AC 【解析】如图,连接AC,BD相交于点O,连接EM,EN,SO.由正四棱锥的性质可得SO⊥底面ABCD,AC⊥BD,进而得到SO⊥AC,可得AC⊥平面SBD,利用三角形的中位线结合面面平行判定定理得平面EMN∥平面SBD,进而得到AC⊥平面EMN,故A正确;由异面直线的定义可知不可能EP∥BD;由A易得C正确;由A同理可得EM⊥平面SAC,故D错误.3. [2,3] 【解析】因为CD⊥平面B1C1CB,EF⊂平面B1C1CB,所以CD⊥EF.连接BC1,B1C,则EF∥BC1,BC1⊥B1C,所以EF⊥B1C,因为CD∩B1C=C,所以EF⊥平面A1B1CD.当点P在线段CD上时,总有A1P⊥EF,所以A1P的最大值为A1C=3,A1P的最小值为A1D=2,故线段A1P长度的取值范围是[2,3].4. 【解答】 (1) 如图,连接BD,交AC于点O,连接OF.因为四边形ABCD是矩形,O是矩形ABCD对角线的交点,所以O为BD的中点.又因为F是BE的中点,所以在△BED中,OF∥DE.因为OF⊂平面ACF,DE⊄平面ACF,所以DE∥平面ACF.(2) 因为四边形ABCD是矩形,所以AB⊥BC.又因为平面ABCD⊥平面BCE,且平面ABCD∩平面BCE=BC,AB⊂平面ABCD ,所以AB ⊥平面BCE .因为CF ⊂平面BCE ,所以AB ⊥CF .在△BCE 中,因为CE =CB ,F 是BE 的中点,所以CF ⊥BE .因为AB ⊂平面ABE ,BE ⊂平面ABE ,AB ∩BE =B ,所以CF ⊥平面ABE .又CF ⊂平面AFC ,所以平面AFC ⊥平面ABE .(第4题)第37讲 综合法求角与距离链教材·夯基固本激活思维1. B 【解析】 如图,取AD 的中点F ,连接EF ,CF .因为E 为AB 的中点,所以EF ∥DB ,则∠CEF 为异面直线BD 与CE 所成的角.在正四面体ABCD 中,因为E ,F 分别为AB ,AD 的中点,所以CE =CF .设正四面体的棱长为2a ,则EF =a ,CE =CF =(2a )2-a 2=3a .在△CEF 中,由余弦定理得cos ∠CEF =CE2+EF2-CF22CE ·EF =a22×3a2=36.(第1题)2. A 【解析】 如图,连接A 1C 1,则∠AC 1A 1为AC 1与平面A 1B 1C 1D 1所成的角.因为AB =BC =2,所以A 1C 1=AC =22,又AA1=1,所以AC 1=3,所以sin ∠AC 1A 1=AA1AC1=13.故选A.(第2题)3. 233【解析】设棱长为a,BC的中点为E,连接A1E,AE,在正三棱柱ABC-A1B1C1中,由各棱长都相等,可得A1E⊥BC,AE⊥BC,故二面角A1-BC-A的平面角为∠A1EA.在Rt△AA1E中,AE=32a,所以tan ∠A1EA=AA1AE=a32a=233,即二面角A1-BC-A的平面角的正切值为233.(第3题)4. 8 【解析】由体积公式V=13Sh,得96=13×36h,所以h=8,即点P到平面ABCD的距离是8.5.33【解析】由题意知点S在平面ABC内的射影为AB的中点H,所以SH⊥平面ABC.因为SH=3,CH=1,在平面SHC内作SC的垂直平分线MO,交SH于点O,则O为三棱锥S-ABC的外接球球心.因为SC=2,所以SM=1,∠OSM=30°,所以SO=233,OH=33,即为O到平面ABC的距离.知识聚焦1. 锐角2. 垂直研题型·融会贯通分类解析【答案】 D【解析】因为PA⊥底面ABC,所以PA⊥AB,PA⊥AC,即∠PAB=∠PAC=90°,又因为AB=AC=1,PA=2,所以△PAB≌△PAC,所以PB=PC.如图,取BC的中点D,连接AD,PD,所以PD⊥BC,AD⊥BC.又因为PD∩AD=D,所以点BC⊥平面PAD.因为BC⊂平面PBC,所以平面PAD⊥平面PBC.过点A作AO⊥PD于点O,易得AO⊥平面PBC,所以∠APD就是直线PA与平面PBC所成的角. 在Rt△PAD中,AD=12,PA=2,则PD=PA2+AD2=32,则sin ∠APD=ADPD=13.故选D.(例1)【答案】 A【解析】因为平面ABD⊥底面BCD,AB=AD,取DB的中点O,连接AO,CO,则AO⊥BD,AO⊥平面BCD,所以∠ACO就是直线AC与底面BCD所成的角.因为BC⊥CD,BC=6,BD=43,所以CO=23.在Rt△ADO中,OA=AD2-OD2=2.在Rt△AOC中,tan ∠ACO=AOOC=33,故直线AC与底面BCD所成角的大小为30°.故选A.(变式)【答案】1 3【解析】如图,过点S作SO⊥底面ABC,点O为垂足,连接OA,OB,OC,则OA=OB=OC,点O为等边三角形ABC 的中心.延长AO交BC于点D,连接SD.(例2)则AD⊥BC,BC⊥SD,所以∠ODS为侧面SBC与底面ABC所成二面角的平面角.因为正三棱锥S-ABC的所有棱长均为2,所以SD=3,OD=13AD=33.在Rt△SOD中,cos ∠ODS=ODSD=13.【答案】π3【解析】在△BDC中,BC=3,CD=2,∠BCD=π2,则BD=13.在△ABC中,AB=1,BC=3,∠ABC=π2,则AC=10.又AD=23,在△ABD中,BD2=AB2+AD2,则∠BAD=π2.过点B作BE∥CD,使BE=CD,连接AE,DE,则四边形BEDC为矩形,BE=2.因为BC⊥AB,BC⊥BE,则BC⊥平面ABE,DE∥BC,则DE⊥平面ABE,则DE⊥AE,AE=AD2-DE2=3,在△ABE中,AE2+AB2=BE2,则∠BAE=π2,∠AEB=π6,∠ABE=π3,由于AB⊥BC,EB⊥BC,则∠ABE为二面角A-BC-D的平面角,且∠ABE=π3.【答案】 B【解析】过点B作BE∥AC,且BE=AC.因为AC⊥AB,所以BE⊥AB.因为BD⊥AB,BD∩BE=B,所以∠DBE是二面角α-l-β的平面角,且AB⊥平面DBE,所以AB⊥DE ,所以CE ⊥DE .因为AB =4,CD =8,所以DE =CD2-CE2=82-42=43,所以cos ∠DBE =BE2+BD2-DE22BE ·BD =36+36-482×6×6=13.故选B.【解答】 (1) 如图(1),取BD 的中点O ,连接OM ,OE .(例3(1))因为O ,M 分别为BD ,BC 的中点,所以OM ∥CD ,且OM =12CD .因为四边形ABCD 为菱形,所以CD ∥AB ,又EF∥AB ,所以CD∥EF ,又AB =CD =2EF ,所以EF =12CD ,所以OM∥EF ,且OM =EF ,所以四边形OMFE 为平行四边形,所以MF ∥OE .又OE ⊂平面BDE ,MF ⊄平面BDE ,所以MF ∥平面BDE .(2) 由(1)得FM ∥平面BDE ,所以点F 到平面BDE 的距离等于点M 到平面BDE 的距离. 如图(2),取AD 的中点H ,连接EH ,BH .(例3(2))因为EA =ED ,四边形ABCD 为菱形,且∠DAB =60°,所以EH ⊥AD ,BH ⊥AD .因为平面ADE ⊥平面ABCD ,平面ADE ∩平面ABCD =AD ,EH ⊂平面ADE ,所以EH ⊥平面ABCD ,所以EH ⊥BH ,易得EH =BH =3,所以BE =6,所以S △BDE =12×6×22-⎝ ⎛⎭⎪⎪⎫622=152.设点F 到平面BDE 的距离为h ,连接DM ,则S △BDM =12S △BCD =12×34×4=32,连接EM ,由V E -BDM =V M -BDE ,得13×3×32=13×h ×152,解得h =155,即点F 到平面BDE 的距离为155.【解答】(1)如图,连接AF ,则AF =2,又DF =2,AD =2,所以DF 2+AF 2=AD 2,所以DF ⊥AF .因为PA ⊥平面ABCD ,所以DF ⊥PA ,又PA ∩AF =A ,所以DF ⊥平面PAF .又PF ⊂平面PAF ,所以DF ⊥PF .(变式)(2) 如图,连接EP ,ED ,EF .因为S △EFD =S 矩形ABCD -S △BEF -S △ADE -S △CDF =2-54=34,所以V P -EFD =13S △EFD ·PA =13×34×1=14.设点E 到平面PFD 的距离为h , 则由V E -PFD =V P -EFD ,得13S△PFD ·h =13·62·h =14,解得h =64,即点E 到平面PFD 的距离为64. 课堂评价 1.D【解析】如图,连接BC 1,A 1C 1,易证BC 1∥AD 1,则∠A 1BC 1即为异面直线A 1B 与AD 1所成的角.(第1题)由AB =1,AA 1=2,易得A 1C 1=2,A 1B =BC 1=5,故cos ∠A 1BC 1=5+5-22×5×5=45,即异面直线A 1B 与AD 1所成角的余弦值为45.2.55【解析】连接EB ,由BB 1⊥平面ABCD ,知∠FEB 即为直线EF 与平面ABCD 所成的角.在Rt △FBE 中,BF =1,BE =5,则tan ∠FEB =BFBE =55.3. 60°【解析】 如图,取AB 的中点O ,连接VO ,CO .在三棱锥V -ABC 中,VA =VB =AC =BC =2,AB=23,VC =1,所以VO⊥AB ,CO⊥AB ,所以∠VOC 是二面角V -AB -C 的平面角,VO =VA2-⎝ ⎛⎭⎪⎪⎫AB 22=4-3=1,CO =BC2-⎝ ⎛⎭⎪⎪⎫AB 22=4-3=1,所以cos ∠VOC =VO2+CO2-VC22VO ·CO=1+1-12×1×1=12,所以∠VOC =60°,所以二面角V -AB -C 的平面角的度数为60°.(第3题)4.217【解析】 如图,取AB 的中点E ,连接CE ,C 1E ,过点C 作CF ⊥C 1E ,垂足为F .在正三棱柱ABC -A 1B 1C 1中,CC 1⊥平面ABC ,则AB ⊥CC 1. 因为△ABC 是等边三角形,所以AB ⊥CE , 又CE ∩CC 1=C ,所以AB ⊥平面CC 1E .因为CF ⊂平面CC 1E ,所以CF ⊥AB ,因为C 1E ∩AB =E ,所以CF ⊥平面ABC 1,则CF 的长即为所求. 在Rt △CEC 1中,CC 1=1,CE =32AB =32,所以C 1E =CC21+CE2=72,由等面积法,得CF =CC1×CE C1E =217.(第4题)第38讲 空间直角坐标系与空间向量链教材·夯基固本 激活思维 1.D【解析】因为向量OA→,OB →,OC →不能构成空间的一个基底,所以向量OA→,OB→,OC→共面,因此O ,A ,B ,C 四点共面,故选D.2. C 【解析】 AE →=AA 1+A 1E =AA 1+12A 1C 1=AA 1+12(AB →+AD →),故x =12,y =12.3. 2 【解析】 |EF→|2=EF →2=(EC →+CD →+DF →)2=EC →2+CD →2+DF →2+2(EC →·CD →+EC →·DF →+CD →·DF →) =12+22+12+2(1×2×cos 120°+0+2×1×cos 120°) =2,所以|EF→|=2,所以EF 的长为2.4. 18 【解析】 因为P ,A ,B ,C 四点共面,所以34+18+t =1,所以t =18. 5. α⊥β α∥β 【解析】 当v =(3,-2,2)时,u ·v =(-2,2,5)·(3,-2,2)=0⇒α⊥β.当v =(4,-4,-10)时,v =-2u ⇒α∥β.知识聚焦2. (1) ①〈a ,b 〉 [0,π] 互相垂直 ②|a ||b |cos 〈a ,b 〉 a·b |a ||b |cos 〈a ,b 〉 (2) λ(a ·b ) b ·a3. a 1b 1+a 2b 2+a 3b 3 a 1=λb 1,a 2=λb 2,a 3=λb 3 a 1b 1+a 2b 2+a 3b 3=0研题型·融会贯通 分类解析【解答】 ①因为P 是C 1D 1的中点,所以AP→=AA1→+A1D1→+D1P →=a +AD →+12D1C1→=a +c +12AB →=a +12b +c . ②因为N 是BC 的中点,所以A1N →=A1A →+AB →+BN →=-a +b +12BC →=-a +b +12AD →=-a +b +12c .③因为M 是AA 1的中点,所以MP →=MA →+AP →=12A1A →+AP →=-12a +⎝ ⎛⎭⎪⎪⎫a +12b +c =12a +12b +c . 又NC1→=NC →+CC1→=12BC →+AA1→=12AD →+AA1→=a +12c ,所以MP →+NC1→=⎝ ⎛⎭⎪⎪⎫12a +12b +c +⎝ ⎛⎭⎪⎪⎫a +12c =32a +12b +32c . (1) 【答案】 -3 【解析】因为AB→=(3,-1,1),AC →=(m +1,n -2,-2),且A ,B ,C 三点共线,所以存在实数λ,使得AC→=λAB→,即(m +1,n -2,-2)=λ(3,-1,1)=(3λ,-λ,λ),所以⎩⎪⎨⎪⎧m +1=3λ,n -2=-λ,-2=λ,解得⎩⎪⎨⎪⎧λ=-2,m =-7,n =4.所以m +n =-3.(2) 【解答】 ①由题知OA→+OB →+OC →=3OM →,所以OA →-OM →=(OM →-OB→)+(OM →-OC →),即MA →=BM →+CM →=-MB →-MC →,所以MA →,MB →,MC →共面. ②由①知MA→,MB→,MC→共面且过同一点M ,所以M ,A ,B ,C 四点共面,从而点M 在平面ABC 内.【解答】 因为AM→=k AC1→,BN →=k BC →,所以MN →=MA →+AB →+BN →=k C1A →+AB→+k BC →=k (C1A →+BC →)+AB →=k (C1A →+B1C1→)+AB →=k B1A →+AB →=AB →-k AB1→=AB →-k (AA1→+AB →)=(1-k )AB →-k AA1→,所以由共面向量定理知向量MN →与向量AB →,AA1→共面.【解答】 (1) 设AB→=a ,AC →=b ,AD →=c ,由题意知EG →=12(AC →+AD →-AB →)=12(b +c -a ),所以EG →·AB →=12(a ·b +a ·c -a 2)=12⎝ ⎛⎭⎪⎪⎫1×1×12+1×1×12-1=0. 故EG→⊥AB →,即EG ⊥AB . (2) 由题意知EG →=-12a +12b +12c ,得|EG →|2=14a 2+14b 2+14c 2-12a ·b +12b ·c -12c ·a =12,则|EG →|=22,即EG 的长为22.(3) 因为AG →=12(AC →+AD →)=12b +12c ,CE →=CA →+AE →=-b +12a ,所以cos 〈AG→,CE →〉=AG →·CE →|AG→||CE →|=⎝ ⎛⎭⎪⎪⎫12b +12c ·⎝ ⎛⎭⎪⎪⎫-b +12a ⎝ ⎛⎭⎪⎪⎫12b +12c 2·⎝ ⎛⎭⎪⎪⎫12a -b 2=-1232×32=-23,由于异面直线所成角的范围是⎝ ⎛⎦⎥⎥⎤0,π2, 所以异面直线AG 与CE 所成角的余弦值为23.。
2023年高考数学总复习《立体几何》附答案解析

所以 z1=0,
,故可取
, ,,
于是 < , >
,
设所成锐二面角为θ,所以 sinθ
,
所以平面 PAD 和平面 PBE 所成锐二面角的正弦值为 .
第3页共3页
第1页共3页
∴CF CC1 AA1 , ∵∠BAC=90°,
∴CD
,
在 Rt△FCD 中,tan∠FDC 맨
,
故直线 DF 与平面 ABC 所成角的正切值为 .
2.如图所示,四棱锥 P﹣ABCD 的底面 ABCD 是边长为 1 的菱形,∠BCD=60°,E 是 CD 的中点,PA⊥底面 ABCD,PA=2. (1)证明:平面 PBE⊥平面 PAB; (2)求平面 PAD 和平面 PBE 所成二面角(锐角)的正弦值.
【解答】(1)证明:如图所示,连接 BD,由 ABCD 是菱形且∠BCD=60°, 知△ABC 是等边三角形. ∵E 是 CD 的中点, ∴BE⊥CD,又 AB∥CD, ∴AB⊥BE,∴BE⊥平面 PAB, 又 BE⊂平面 PBE, ∴平面 PBE⊥平面 PAB. (2)解:在平面 ABCD 内,过点 A 作 AB 的垂线,如图所示,以 A 为原点建立空间直角
【解答】(1)证明:连接 DG、FG, 由直三棱柱的性质知,BB1∥CC1,且 BB1=CC1, ∵B1E=2EB,C1F=2FC, ∴EB∥FC,且 EB=FC, ∴四边形 BCFE 为平行四边形, ∴EF∥BC,EF=BC, ∵BD=2DA,CG=2GA, ∴GD∥BC,且 GD BC, ∴EF∥GD,且 GD EF, ∴四边形 DEFG 为梯形,即 D、E、F、G 四点共面, ∴点 G 在平面 EFD 内. (2)解:由直三棱柱的性质知,CC1⊥平面 ABC, ∵F 为 CC1 上一点, ∴点 F 在平面 ABC 上的投影为点 C, 连接 CD,则∠FDC 即为直线 DF 与平面 ABC 所成角. ∵点 D 在棱 AB 上,且 BD=2DA, ∴AD AB , ∵C1F=2FC,
人教版高考数学复习课件第7章-立体几何第4节

(1)取 BC 的中点 H,证明平面 FGH∥平
面 BOE,进而证明 FG∥平面 BOE;
课 时 提 升 练
菜
单
高三总复习·数学(文)
提 素 养 · 满 分 指 导
研 动 向 · 考 纲 考 向
解 法一 如图所示.作 PM∥AB 交 BE 于 M,作 QN ∥AB 交 BC 于 N,连接 MN.
∵正方形 ABCD 和正方形 ABEF 有公共 边 AB,
切 脉 搏 · 核 心 突 破
∴AE=BD. 又 AP=DQ,∴PE=QB,又 PM∥AB PM PE QB QN PM QN ∥QN,∴ = = = ,∴ = , AB AE BD DC AB DC
图 742 G 为 DE 的中点.证明:直线 HG∥平面 CEF.
菜 单
课 时 提 升 练
高三总复习·数学(文)
【证明】 如图,连接 BH,BH 与 CF 交于 K,连接 EK.
研 动 向 · 考 纲 考 向
∵F,H 分别是 AB,AC 的中点, ∴K 是△ABC 的重心, BK 2 ∴ = . BH 3 BE 2 又据题设条件知, = , BG 3 BK BE ∴ = ,∴EK∥HG. BH BG ∵EK⊂平面 CEF,HG⊄平面 CEF, ∴直线 HG∥平面 CEF.
切 脉 搏 · 核 心 突 破
ABCA1B1C1 中,E,F,G,H 分别是 AB,AC,A1B1,A1C1 的中点,求证:
演 实 战 · 沙 场 点 兵
课 时 提 升 练
菜
单
高三总复习·数学(文)
提 素 养 · 满 分 指 导
研 动 向 · 考 纲 考 向
切 脉 搏 · 核 心 突 破
图 743 (1)B,C,H,G 四点共面; (2)平面 EFA1∥平面 BCHG.
2025版高考数学一轮总复习第7章立体几何高考大题规范解答__立体几何pptx课件

(2)求直线DE与平面C1EF所成角的正弦值.
[解析] (1)取C1C的中点H,(1分) 连接A1B,A1G,BH,GH,所以截面BA1GH为要求作的截面.(2分) 理由如下: 因 为 E , F 分 别 为 A1B1 , BB1 的 中 点 , 所 以 A1B ∥ EF , 又 A1B ⊄ 平 面 C1EF,EF⊂平面C1EF,所以A1B∥平面C1EF.(3分) 在正方形A1B1C1D1中,因为G为C1D1的中点, 所以A1E∥GC1,且A1E=GC1, 所以四边形A1EC1G为平行四边形,所以A1G∥EC1,
评分细则: 本题(1)还有如下解法: (1)取 BC 中点 H,连接 OH,EH,证平面 DEH∥平面 PDC; (2)建系求出平面 PDC 的法向量 n,证O→E·n=0 且说明 OE⊄平面 PDC, 若没证明 OE⊄平面 PDC 扣 1 分.
2. (2023·江西上饶、景德镇等地名校联考)(12分)如图,在棱长为2的 正方体ABCD-A1B1C1D1中,E,F,G分别为A1B1,BB1,C1D1的中点.
(1)证明:AE∥平面BCD. (2)求平面ACE与平面BDE的夹角的余弦值.
[解析] (1)证明:取 CD 的中点 F,连接 EF, BF.
因为△ECD 是边长为 2 的正三角形,所以 EF ⊥CD,且 EF= 3.(1 分)
因为平面 ECD⊥平面 BCD,且平面 ECD∩ 平面 BCD=CD,EF⊂平面 ECD,所以 EF⊥平面 BCD.(2 分)
评分细则:
(1)第(1)问中,若得到的截面为△A1BG,且证明了截面A1BG∥平面 C1EF,第(1)问只得3分.
高三数学人教版一轮复习课件第7章 第7讲

与A→B平行的非零向量均为直线 l 的方向向量.
数 学
文
理 合
2.平面的法向量的确定:设 a,b 是平面 α 内两不共线向量,n 为平面 α 的
订
法向量,则求法向量的方程组为nn··ab==00,.
返回导航
第七章 立体几何
1.已知两平面的法向量分别为 m=(0,1,0),n=(0,1,1),则两平面所成的二面
设 BA=a,则 A(a,0,0),G(a2,1,4),A1(a,0,4).
(1)因为B→A=(a,0,0),B→D=(0,2,2),B→1D=(0,2,-2),
数
学
文
理 合 订
所以B→1D·B→A=0,B→1D·B→D=0.
所以B→1D⊥B→A,B→1D⊥B→D,即 B1D⊥BA,B1D⊥BD.
又 BA∩BD=B,所以 B1D⊥平面 ABD.
4.直线和平面所成角的求法
如图所示,设直线 l 的方向向量为 e,平面 α 的法向量为 n,直线 l 与平面 α 数
|n·e|
学
文 理
所成的角为 φ,向量 e 与 n 的夹角为 θ,则有 sinφ=|cosθ|=___|n_|_|e_|__.
合
订
返回导航
第七章 立体几何
5.求二面角的大小 (1)如图①,AB,CD 分别是二面角 α-l-β 的两个面内与棱 l 垂直的直线,则 二面角的大小 θ=__A→_B__,__C→_D.
数
文 系;
学
理
合
②建立空间图形与空间向量之间的关系,用空间向量表示出问题中所涉及
订
的点、直线、平面的要素;
③通过空间向量的坐标运算研究平行、垂直关系;
④根据运算结果解释相关问题.
广东专用2024版高考数学大一轮总复习第七章立体几何7

1.直线与直线平行
(1)基本事实4
文字语言
平行于同一条直线的两条直线______
图形语言
符号语言
说明
基本事实4表明了平行线的传递性
平行
(2)等角定理
文字语言
如果空间中两个角的两条边分别对应________那么这两个角___________
(3)同一条直线与两个平行平面所成的角相等.
1.判断下列命题是否正确,正确的在括号内画“√”,错误的画“×”.
(1) 若一条直线平行于一个平面内的一条直线,则这条直线平行于这个平面. ( )
×
(2) 若一条直线平行于一个平面,则这条直线平行于这个平面内的任一条直线. ( )
×
(3) 如果一个平面内的两条直线平行于另一个平面,那么这两个平面平行. ( )
图形语言
符号语言
平行
(2)性质定理
文字语言
一条直线与一个平面平行,如果过该直线的平面与此平面______,那么该直线与______平行
图形语言
符号语言
相交
(1) 证明: 平面 ;
证明:分别取 , 的中点 , ,连接 , , ,如图所示.
(2) (2023届湖南岳阳适应考节选)如图,圆柱的轴截面 为正方形,点 在底面圆周上,且 , 为 上的一点,且 , ,设平面 平面 ,求证: .
证明:因为平面 平面 ,所以要证 ,只需证 平面 .因为 平面 ,平面 平面 ,所以证明 即可.又 ,故只பைடு நூலகம்证明 即可.由题知 平面 , 平面 ,则 .由 为底面圆的直径,知 .
又 ,所以平面 平面 .又因为 平面 ,所以 平面 .
【点拨】①证明线线平行,可以运用基本事实4、中位线定理,也可以证明包含这两边的四边形是平行四边形,或者运用线面平行的性质定理来证明.②要证明直线和平面平行,通常有两种方法: 利用线面平行的判定定理,只要在平面内找到一条直线与已知平面外直线平行即可; 由面面平行的性质定理:如果两个平面平行,那么其中一个平面内的任何一条直线和另外一个平面平行.第一种方法是常用方法,一般需要连接特殊点、画辅助线,再证明线线平行,从而得到线面平行.第二种方法常用于非特殊位置的情形.③判定面面平行的主要方法: 利用面面平行的判定定理; 面垂直的性质(垂直于同一直线的两平面平行).利用面面平行的判定定理证明两平面平行时需要说明是一个平面内的两条相交直线与另一个平面平行.
2025版高考数学一轮总复习第七章立体几何专题突破15立体几何综合问题课件

图2
(2)图2中的与分别是图1中的 与,所以, .
又,所以 平面,则.又 ,所以 平面.则为二面角 的平面角.可知,则在中,, ,则
.在中,, .由余弦定理,得 .所以二面角的余弦值为 .
考点二 立体几何中的最值(范围)问题
例2 在如图所示的多面体中,四边形为正方形,,,,四点共面,且 和均为等腰直角三角形, ,平面 平面 , .
设平面与平面的二面角的平面角为 ,则 .当时,取最小值为,此时 取最大值为 .所以,此时 .
考点三 开放探究问题
例3 如图,在三棱锥中, ,,,点在平面内,, .
(1)求证: 平面 .
(2)是否存在点在棱上,使得二面角的余弦值为 ?若存在,求 的值;若不存在,请说明理由.
解:(1)证明:连接,设交于点.因为 是等腰直角三角形,所以,.又,所以是和的中点.又 ,所以四边形是正方形.则 .又, ,所以 平面, .同理, .又,所以 平面 .
(1)求证: .
(2)当为何值时,平面与平面 所成的二面角的正弦值最小?
解:因为三棱柱是直三棱柱,所以 底面 .所以 .因为,,所以 .又,所以 平面 .
所以,, 两两垂直.
以为坐标原点,分别以,,所在直线为轴、轴、 轴建立空间直角坐标系,如图.则,,,,,,, .由题意,设 .
(1)证明:因为, ,所以.所以 .(2)设平面的法向量为 .因为, ,所以即 令,则 .平面的一个法向量为 .
第七章 立体几何
专题突破15 立体几何综合问题
考点一 平面图形的翻折问题
例1 如图1,菱形中, ,为的中点,将沿 折起使得平面 平面,如图2,与相交于点,是棱 上的一点且满足 .
图1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 [听课记录] ∵EF 綊 CD1, 2 ∴直线 D1F 和 CE 必相交. 设 D1F∩CE=P,
∵P∈D1F 且 D1F⊂平面 AA1D1D,
∴P∈平面 AA1D1D.
又 P∈EC 且 CE⊂平面 ABCD,
∴P∈平面 ABCD, 即 P 是平面 ABCD 与平面 AA1D1D 的公共点. 而平面 ABCD∩平面 AA1D1D=AD. ∴P∈AD.∴CE、D1F、DA 三线共点.
的角的大小为________.
解析 连接B1D1,D1C,则B1D1∥EF, 故∠D1B1C为所求,又B1D1=B1C=D1C, ∴∠D1B1C=60°. 答案 60°
5.(教材习题改编)平行六面体ABCD-A1B1C1D1中既与AB共 面又与CC1共面的棱的条数为________.
相等或互补
.
4.异面直线所成的角(或夹角) (1)定义:设 a,b 是两条异面直线,经过空间中任一点 O 作直 直角) 线 a 与 b 所成的角.
π (2)范围:0, 2 .
叫做异面直
三、直线与平面的位置关系 位置关系 图示 符号表示 公共点个数
C [A中,若AC与BD共面,则A,B,C,D四点共面,则AD 与BC共面; B中,若AC与BD是异面直线,则A,B,C,D四点不共面, 则AD与BC是异面直线; C中,若AB=AC,DB=DC,AD不一定等于BC; D中,若AB=AC,DB=DC,可以证明AD⊥BC.]
)
A.充分不必要条件 C.充要条件
B.必要不充分条件 D.既不充分又不必要条件
A [若两直线为异面直线,则两直线无公共点,反之不 一定成立.]
3.已知空间中有三条线段AB,BC和CD,且∠ABC=∠BCD, 那么直线AB与CD的位置关系是
(
)
A.AB∥CD B.AB与CD异面
[跟踪训练]
1.(1)(2014·福州一中月考)设A,B,C,D是空间四个不 同的点,在下列命题中,不正确的是
(
)
A.若AC与BD共面,则AD与BC共面 B.若AC与BD是异面直线,则AD与BC是异面直线 C.若AB=AC,DB=DC,则AD=BC D.若AB=AC,DB=DC,则AD⊥BC
解析 如图,与AB和CC1都相交的棱有BC;
与AB相交且与CC1平行的棱有AA1,BB1;与
AB平行且与CC1相交的棱有CD,C1D1,故符
合条件的棱共有5条. 答案 5
[关键要点点拨]
1.三个公理的作用 (1)公理1的作用:①检验平面;②判断直线在平面内; ③由直线在平面内判断直线上的点在平面内. (2)公理2的作用:确定平面的依据,它提供了把空间问 题转化为平面问题的条件. (3)公理3的作用:①判定两平面相交;②作两相交平面 的交线;③证明多点共线.
(
)
A.异面
C.不可能平行
B.相交
D.不可能相交
C [由已知直线c与b可能为异面直线也可能为相交直线, 但不可能为平行直线,若b∥c,则a∥b.与a,b是异面直 线相矛盾.]
2 .(2014·广州模拟 ) 若空间中有两条直线,则“这两条 直线为异面直线”是“这两条直线没有公共点”的
(
直线l在平 面α内
直线l与平 面α相交
l⊂α
无数个
l∩α=A
一个
直线l与平面 α 平行
l∥α
0个
两个平面平行
α∥β
0个
四、平面与平面的位置关系 位置关系 图示 符号表示 公共点个数
两个平面相交
α∩β=l
无数 个(这些 公共点均在交线l上)
[基础自测自评]
1 . ( 教材习题改编 ) 已 知 a , b 是异面直线,直线 c 平行于 直线a,那么c与b
[规律方法]
1.证明线共点问题常用的方法是:先证其中两条直线交 于一点,再证交点在第三条直线上.
2.证明点或线共面问题一般有以下两种途径:①首先由 所给条件中的部分线 ( 或点 ) 确定一个平面,然后再证其 余线 ( 或点 ) 均在这个平面内;②将所有条件分为两部分, 然后分别确定平面,再证平面重合.
C.AB与CD相交
D.AB∥CD或AB与CD异面或AB与CD相交
D [若三条线段共面,如果AB,BC,CD构成等腰三角形, 则直线AB与CD相交,否则直线AB与CD平行;若不共面,则 直线AB与CD是异面直线.]
4.(教材习题改编)如图所示,在正方体
ABCD-A1B1C1D1中,E,F分别是AB, AD的中点,则异面直线B1C与EF所成
第三节 空间点、 直线、平面间的位置关系
[主干知识梳理]
一、平面的基本性质 名称 图示 文字表示 符号表示
公理1
如果一条直线上的两 A∈l,B∈l, 点在一个平面内,那 且 A ∈ α , 么这条直线在此平面 B∈α⇒ l⊂α 内
公理2
过不在一条直线上的 三点,有且只有一个 平面
公理3
P ∈ α , 且 如果两个不重合的平 面有一个公共点,那 P∈β⇒ 么它们有且只有一条 α∩β=l, 过该点的公共直线 且P∈l
二、空间直线的位置关系 1.位置关系的分类
相交 直线:同一平面内,有且只有 一个 公共点; 共面直线 平行 直线:同一平面内, 没有 公共点; 异面直线:不同在 任何 一个平面内,没有 公共点.
2.平行公理 平行于同一条直线的两条直线互相 平行 .
3.等角定理 空间中如果两个角的两边分别对应平行,那么这两个角
[互动探究] 本例条件不变试证明 E,C,D1,F 四点共面. 证明 ∵E,F 分别是 AB 和 AA1 的中点, 1 ∴EF 綊 A1B. 2
又 A1D1 綊 B1C1 綊 BC.
∴四边形 A1D1CB 为平行四边形. ∴A1B∥CD1,从而 EF∥CD1. ∴EF 与 CD1 确定一个平面. ∴E,C,F,D1 四点共面.
2.异面直线的有关问题 (1)判定方法:①反证法;
②利用结论即过平面外一点与平面内
一点的直线与平面内不过该点的直线 是异面直线,如图. (2)所成的角的求法:平移法.
平面的基本性质及应用
[典题导入]
如图所示,在正方体
ABCD-A1B1C1D1中,E为AB的
中点,F为A1A的中点, 求证:CE,D1F,DA三线共点.