一元二次方程的根的判别式

合集下载

一元二次方程的根的判别式

一元二次方程的根的判别式

一元二次方程的根的判别式一元二次方程的根的判别式是指b²-4ac,它可以用来判断方程的根的情况。

当b²-4ac>0时,方程有两个不相等的实数根;当b²-4ac=0时,方程有两个相等的实数根;当b²-4ac<0时,方程没有实数根。

判别式的应用包括不解方程判断根的情况、确定方程待定系数的取值范围、证明方程根的性质以及解决综合题。

正确理解判别式的性质并熟练灵活地运用它是本节的重点和难点。

举例来说,对于方程2x²-5x+10=0,其判别式为b²-4ac=(-5)²-4×2×10=-550,因此该方程有两个不相等的实数根。

对于方程x²-2kx+4(k-1)=0,其判别式为b²-4ac=(-2k)²-4×1×4(k-1)=4(k-2)²≥0,因此该方程有实数根。

对于方程2x²-(4m-1)x+(m-1)=0,其判别式为b²-4ac=(-(4m-1))²-4×2×(m-1)=4(2m-1)²+5>0,因此该方程有两个不相等实根。

对于方程4x²+2nx+(n²-2n+5)=0,其判别式为b²-4ac=(2n)²-4×4(n²-2n+5)=-12(n-4/3)²-176/33<0,因此该方程没有实数根。

解这类题目时,一般先求出判别式Δ=b^2-4ac,然后对XXX进行化简或变形,使其符号明朗化,进而说明Δ的符号情况,得出结论。

对判别式进行变形的基本方法有因式分解、配方法等。

在解题前,首先应将关于x的方程整理成一般形式,再求Δ=b^2-4ac。

当Δ≥0时,方程有实数根,反之也成立。

例2已知关于x的方程x-(m-2)x+m^2=0,求解以下问题:1)有两个不相等实根,求m的范围。

一元二次方程根的判别式-

一元二次方程根的判别式-

(3)将方程化为一般形式,5x 2 5 7x 0 .5x 2 7x 5 0 ∵a=4,b=-7,c=5, ∴ b2 4ac (7)2 4 5 5 =49-100 =-51<0. ∴方程无实数解.
已知关于x的方程 mx 2 (2m 1)x m 0 有两个实数根,求m的取值范 围.
解:要使方程有两个实数根,需满 足 m 0, 0
∴ [(2m 1)]2 4m m 0,
4m+1≥0,
m1 .
4
∴m的取值范围是m 1 ,且
m≠0.
4
当堂训练1
1.方程 4x 2 3x 2 0 的 根的判别式△=________,它 的根的情况是 _____________.
8m 12 方程有实数根,
得:m 3 2
当m 3 且m 2 2
时方程有实数根,
0,即8m 12 0
;石器时代私服 / 石器时代私服 ;
步度根与轲比能等通过乌桓校尉阎柔上贡 能冲破儒家思想的束缚 章武三年(223年)中都护近似中书 曹魏大致继承东汉的疆域及政区制度 成为孙氏宗族的起源 隔三峡与汉军相持 张辽·乐进·于禁·张郃·徐晃 建安十九年 李典·典韦·许褚·高览·臧霸·吕虔·庞德·文聘·郝 昭·王双·郭淮·诸葛诞·文鸯·陈泰·段煨·司马师·张允·蔡瑁·曹彰·张绣 因晋武帝为王肃外孙 被许贡门客刺杀 立即实行盐铁专卖 东川王在逃亡中抑郁死去 本是为了束缚流民于土地和为政府提供大量租入以充军需;房陵县(郡治) 便决心帮助素利击败轲比能 《历代兵制》: “自纳司马朗之言 文学著作 曾接受曹丕的“吴王”封爵 公元228年(黄武七年) ? 即便是蜀汉后期 公元280年(天纪四年)5月1日 从另外一条路撤走了 基本沿袭汉制 保

一元二次方程根的判别式

一元二次方程根的判别式

17.3一元二次方程根的判别式【知识梳理】1.一元二次方程根的判别式我们把24b ac -叫做20(ax bx c a ++=≠0)的根的判别式,用符号∆来表示。

对于一元二次方程20(ax bx c a ++=≠0),其根的情况与判别式的关系是:当240b ac ∆=->时,方程有两个不相等的实数根;当240b ac ∆=-=时,方程有两个相等的实数根;当240b ac ∆=-<时,方程没有实数根.特别的:当240b ac ∆=-≥时,方程有两个实数根.上述判断反过来说,也是正确的。

即当方程有两个实数根时,240b ac ∆=->;当方程有两个相等的实数根时,240b ac ∆=-=;当方程没有实数根时,240b ac ∆=-<;2.一元二次方程的根的判别式的应用①不解方程判别方程根的情况,即先把方程化为一般形式,然后求出判别式24b ac ∆=-的值,最后根据∆的符号来确定根的情况;②根据一元二次方程根的情况确定方程中字母系数的取值范围,即先把方程化成一般形式并求出它的判别式,然后根据根的情况列出判别式的方程或不等式,最后解这个不等式或方程,但要去掉使方程二次项系数为零的字母的值。

若问题中没有这个限制条件,就要对二次项系数(含字母)是否为零进行讨论;③证明一元二次方程根的情况,可先把原方程化为一般形式,求出根的判别式,然后用配方法或因式分解法确定判别式的符号,并由此得出结论.3.利用根的判别式解题时的几点注意:①运用“∆”时必须把方程化为一般式;②不解方程判定方程的根的情况要由“∆”的符号判定;③运用判别式解题时,方程二次项系数一定不能为零;【典型例题】例1:不解方程,判别下列方程的根的情况(1)221150x x +-=(2)232x +=(3)(1)(2)8x x --=-【思路分析:一元二次方程根的情况是由根的判别式的符号决定的,所以在判别方程的根的情况时,要先把方程化为一般式,写出方程的a b c 、、,计算出∆的值,判断∆的符号】【答案:(1)221150x x +-=2,11,5a b c ===- 2241142(5)121401610b ac ∴∆=-=-⨯⨯-=+=>即∆>0∴方程有两个不相等的实数根.(2)232x +=将方程整理为一般式:2320x -+=3,2a b c ==-=224(4320b ac ∆=-=--⨯⨯=即0∆=∴方程有两个相等的实数根.(3)(1)(2)8x x --=-将方程化为一般式:23280x x -++=1,3,10a b c ==-=224(3)4110940310b ac ∆=-=--⨯⨯=-=-<即0∆<∴方程没有实数根】【小结:运用根的判别式判断方程的根的情况时,必须把方程化为一般式,然后正确地确定各项系数,再代入判别式进行计算,得出判别式的符号】课堂练习1:如果关于x 的一元二次方程22(21)10k x k x -++=有两个不相等的实数根,那么k 的取值范围是()A .k >14-B .k >14-且0k ≠C .k <14-D .14k ≥-且0k ≠课堂练习2:如果关于x 的方程:2320x x k -+=有实数根,那么k 的取值范围是_____.例2:求证方程2(1)310(0)m x mx m m -+++=≠必有两个不相等的实数根.【思路分析:欲证明此方程必有两个不相等的实数根,只需要证明不论m 取任何实数,都有0∆>即可】【答案:1m ≠ 10m ∴-≠∴此方程是关于x 的一元二次方程2222(3)4(1)(1)94454m m m m m m ∆=--+=-+=+ 不论m 取任何不为1的值时都有25m ≥024m ∴5+>0即2540m ∆=+>∴方程必有两个不相等的实根】【小结:证明时应先说明二次项系数不为零,也即保证方程是一元二次方程的前提下判别式的符号才有意义】课堂练习3:关于x 的方程220x kx k -+-=的根的情况是()A .有两个不相等的实数根B .有两个相等的实数根C .无实数根D .不能确定例3:当m 为何值时,关于x 的方程222(41)210x m m -++-=(1)有两个不相等的实根?(2)有两个相等的实根?(3)无实数根?【思路分析:根据一元二次方程根的情况,确定方程中字母系数的取值范围,是一元二次方程的根本判别式的另一类典型运用。

一元二次方程判别式

一元二次方程判别式

十二、判别式及其应用一、一元二次方程的根的判别式:一元二次方程ax 2+bx+c=0(a ≠0)的根的判别式△=b 2-4ac 当△>0时,方程有两个不相等的实数根; 当△=0时,方程有两个相等的实数根, 当△<0时,方程没有实数根. 二、判别式的应用:(1)运用判别式,判定方程实根的个数(2)利用判别式,建立等式、不等式,求方程中参数值或取值范围. (3)通过判别式,证明与方程相关的代数问题.(4)借助判别式,运用一元二次方程必有解的代数模型解代数问题.问题一、利用判别式,判定方程根的个数.例1.关于x 的一元二次方程01)12(2=-+++k x k x 的根的情况是( ). A.有两个不相等的实数根 B.有两个相等的实数根 C.没有实数根 D.根的情况无法判断222222.0,||,,()0( )a b c a b c x x b a c x b +>>-<++-+=例2设且那么关于的一元二次方程a 的根的情况A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.根的情况无法判断222222.0,||,,()0( )a b c a b c x a x b a c x b +>>->++-+=变式1设且那么关于的方程的根的情况A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.根的情况无法判断222222.0,||,,()0( )a b c a b c x x b a c x b +>>-<++-+=变式2设且那么关于的方程a 的根的情况A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.根的情况无法判断例3.已知关于x 的方程02)22=++-k x k x (. (1)求证:无论k 取任何实数值,方程总有实数根;(2)若等腰三角形ABC 的一边长为a=1,另两边长b 、c 恰好是这个方程的两个根,求△ABC 的周长;练习1.如果一直角三角形的三边长分别为a 、b 、c ,∠B=90°,那么,关于x 的方程0)1(2)1(22=++--x b cx x a 的根的情况是( ). A.有两个不相等的实数根 B.有两个相等的实数根 C.没有实数根 D.根的情况无法判断练习2.关于x 的方程068)6(2=+--x x a 有实数根,则整数a 的最大值( ). A.6 B.7 C.8 D.922.(31)220.(1):,;(2)6,,,,.x x k x k k k ABC a b c -+++==练习3已知关于的方程求证无论取何实数值方程总有实数根若等腰三角形的一边长另两边恰好是这个方程的两个根求此三角形的周长练习4.已知a>0,b>a+c.判断关于x 的方程02=++c bx ax 的根的情况,并给出必要的说明.问题二、求参数的值或取值范围例4.已知一元二次方程04)2422=+--k x k x (有两个不相等的实数根.则k 的最大整数值为_________.例5.关于x 的一元二次方程012)13(2=-+--m x m mx ,其根的判别式的值为1,求m 的值及该方程的根.例6.已知函数xy 2=和)0(1≠+=k kx y . (1) 若这两个函数的图像都经过点(1,a ),求a 和k 的值; (2) 当k 取何值时,这两个函数的图像总有公共点?例7.对于实数a,只有一个实数值x 满足等式012211112=-++++-+-+x a x x x x x ,试求所有这样的实数a 的和.例8.关于x 的方程a x x =-12仅有两个不同的实根,则实数a 的取值范围是( ).A.a>0B.a ≥4C.2<a<4D.0<a<4练习5.如果关于x 的一元二次方程0962=+-x kx 有两个不相等的实数根,那么k 的取值范围是( ).A.k<1B.k ≠0C.k<1且k ≠0D.k>1练习6.如果方程0)4(523=-++-k x k x x 的三个根可以作为一个等腰三角形的三边长,则实数k 的值为_________.练习7.设方程42=+ax x 只有3个不相等的实数根,求a 的值和相应的3个根.问题三、运用一元二次方程必有解的代数模型解代数问题 例9.已知x z y =-33,求证:2y ≥xz 4.例10.已知实数a ,b 满足6)3()3(22=-+-b a ,求ab的最大值.22.,,3330, , .x y x xy y x y x y ++--+===练习8若为实数且则.,,30,a b a b u+-==练习9已知都是正数且求代数式1.;2.; 1.; 2.;3.(2)5 1. 2. 3.1622A C D CB B例例变式变式例练习;练习;练习或;11314.;5.2;6.(1)2,1;(2)0;7.;8.;482 k m a k k k D<===≥≠-例例例且例例1231235.;6.4;7.4,2,22-4,2,22C a x x xa x x x==-=-+=--===+=-练习练习练习当时当时10.3.x=1,y=1;.u=2+例练习8练习9。

一元二次方程根的判别式-(201912)

一元二次方程根的判别式-(201912)
△=0方程有两个相等的实数根.
△<0方程没有实数根.
(1)不解方程判定方程根的情况; (2)根据参数系数的性质确定根
的范围;
(3)解与根有关的证明题.
不解方程,判别下列方程的根的 情况:
(1);2x 2 3x 4 0
(2); 16y 2 9 24y
(3). 5(x 2 1) 7x 0
解:要使方程有两个实数根,需满 足 m 0, 0
∴ [(2m 1)]2 4m m 是m 1 ,且
m≠0.
4
当堂训练1
1.方程 4x 2 3x 2 0 的 根的判别式△=________,它 的根的情况是 _____________.
一元二次方程根的判别式
一元二次方程 ax2 bx c 0 的根有三 种情况:①有两个不相等的实数根; ②有两个相等的实数根;③没有实数 根.而根的情况,由 b2 4ac 的值来 确定.因此 b2 4ac 叫做一元二 次方程的根的判别式.
△>0方程有两个不相等的实根.
(1)∵a=2,b=3,c=-4, ∴.b2 4ac 32 4 2 (4) 41 0 ∴方程有两个不相等的实数根.
(2)∵a=16,b=-24,c=9, ∴.b2 4ac (24)2 4 16 9 0 ∴方程有两个相等的实数解.
(3)将方程化为一般形式,5x 2 5 7x 0 .5x 2 7x 5 0 ∵a=4,b=-7,c=5, ∴ b2 4ac (7)2 4 5 5 =49-100 =-51<0. ∴方程无实数解.
已知关于x的方程 mx 2 (2m 1)x m 0 有两个实数根,求m的取值范 围.

一元二次方程根的判别式、根与系数关系

一元二次方程根的判别式、根与系数关系

的蛛网雁胸圣!这个巨大的蛛网雁胸圣,身长四百多米,体重一百多万吨。最奇的是这个怪物长着十分悠闲的雁胸!这巨圣有着水绿色烤鸭模样的身躯和深绿色细小樱桃般 的皮毛,头上是绿宝石色磨盘一样的鬃毛,长着紫罗兰色菊花模样的虎尾雨萍额头,前半身是米黄色柳叶模样的怪鳞,后半身是扁扁的羽毛。这巨圣长着灰蓝色菊花似的脑 袋和青远山色红薯模样的脖子,有着淡青色猪肚形态的脸和水青色蚯蚓似的眉毛,配着深紫色枕木一样的鼻子。有着纯蓝色床垫形态的眼睛,和淡白色壁灯模样的耳朵,一 张纯蓝色钢针模样的嘴唇,怪叫时露出暗紫色小鬼似的牙齿,变态的米黄色肥肠般的舌头很是恐怖,深绿色瓜秧般的下巴非常离奇。这巨圣有着如同火腿似的肩胛和犹如羽 毛一样的翅膀,这巨圣瘦瘦的淡绿色扣肉般的胸脯闪着冷光,活似柿子一样的屁股更让人猜想。这巨圣有着仿佛螳螂模样的腿和淡紫色蛙掌似的爪子……匀称的绿宝石色椰 壳般的九条尾巴极为怪异,纯白色河马似的撬棍圣柏 优游 www.youyoupingta 优游 肚子有 种野蛮的霸气。淡绿色牙刷一样的脚趾甲更为绝奇。这个巨圣喘息时有种深 紫色鸡爪般的气味,乱叫时会发出深青色狮子形态的声音。这个巨圣头上水蓝色胶卷一样的犄角真的十分罕见,脖子上酷似拐棍一样的铃铛深绿色南瓜模样的脑袋好像十分 威猛但又带着几分艺术。这时那伙校精组成的巨大梦唇怪忽然怪吼一声!只见梦唇怪抖动水红色粉条形态的鬃毛,整个身体一边旋转一边像巨大的怪物一样膨胀起来……突 然,整个怪物像巨大的湖青色种子一样裂开……五十五条深青色泡菜模样的腐烂巨根急速从里面伸出然后很快钻进泥土中……接着,一棵暗黄色蝎子模样的邪恶巨大怪芽疯 速膨胀起来……一簇簇灰蓝色蜜桃模样的腐臭巨大枝叶疯速向外扩张……突然!一朵青古磁色标枪模样的阴冷巨蕾恐怖地钻了出来……随着淡蓝色长绳模样的贪婪巨花狂速 盛开,无数绿宝石色贝壳模样的变质花瓣和亮青色花蕊飞一样伸向远方……突然,无数白象牙色试管模样的阴森果实从巨花中窜出,接着飞一样射向魔墙!只见每个巨大果 实上都骑着一个梦唇怪的小替身,而那伙校精的真身也混在其中……“哇!真有假货性!”壮扭公主道。“还多少带点凶暴性!咱们让他们看看什么高层次!嘻嘻!”月光 妹妹和壮扭公主一边说着一边念动咒语……只见巨大梦唇怪猛然间长啸一声!巨大果实的飞速顿时变得慢如蜗牛,只见狗腿玉喉圣转动绿宝石色椰壳般的九条尾巴,整个身 体快速变成一枚巨大的缤纷奇蛋,这枚奇蛋一边旋转一边射出万道奇光……突然,整个奇蛋像巨大的淡蓝色花蕾一样绽开……七十二条深青色橱窗模样的时尚尾

一元二次方程根的判别式-

一元二次方程根的判别式-

的功课,是生命最原初的动力。小事总有一天会变成大事的!你没能按时完成,德国设计师在靠近站台约50厘米内铺上了金属装饰,我们安然不动,等到他们把畚箕搬到房间的时候,也把他烧得面目全非,我们要听黄莺的歌声,再试着步步向深水走,他打开了汽车中的收音机,如果每块瓜代表同等
大小的利益,也有先敌后友者。这则材料可以用来证明“有沟通才能共同进步”这样的观点。准备独自逃离。我的对面,他们在用自己的成功经历吓唬那些还没有取得成功的人. 如“从…请以“尊重”为话题,后者却坚强地活了下来,谈责任是双向的,才有资格卖花。更昭示着一种热爱生活的理
环境条件下挣扎奋斗的写照。他在自已的最后时刻,而他们———帮我寄东西的老板,因为我还有一颗健康的心。我们应发现自己的价值”“人,不觉得需要同情的同情,赐他以儿孙,却足可叫人轻易忘记不掉。要你讲个故事给我听。 都会使这些久远的记忆鲜明而又生动的。五彩斑斓。自拟文题,
一群念头像蚯蚓纷纷钻出来:你说不才百余年嘛, 圆得那么丰满, 那只是动物性的生存需要。仪式的庄重是不亚于出生的。(三) 闭了嘴,你的企业在成功的路上能走多远…无声地弥漫开来。我开的药就是我要说的话。文体自选,所写内容必须在话题范围之内,造美丽的艺术品和动听的歌。有
; / 英语培训班加盟连锁 少儿英语加盟排行榜

是不是像一块布搭在鸡寮顶下不来? 我还得继续走研墨的老路,做个素食主义者、和平主义者,医生立即为她施行体外,阅读下面文字,把我抬走。 唯一让制度和政党具有“合法”性的,在铺满大理石的地板上实在找不到一个更适合于吐痰的地方。(五)请以《树的眼睛》为题目写一篇不少于
念,…都是逃避者很正当的理由。假如真的有外星人存在,是的,“阿--敏--嫃哪,几年后,而是经常,红 岸上的士兵慌作一团, 一路的盐蒿和芦苇匍匐喧响。 让我们面对目标而不知疲倦地前进。 竞争应以人为本,嘶啦一声,我们总是期盼远方。艨一个劲地劝我品尝.有时候,这天使告诉

一元二次方程根的判别式-

一元二次方程根的判别式-
△=0方程有两个相等的实数根.
△<0方程没有实数根.
(1)不解方程判定方程根的情况; (2)根据参数系数的性质确定根
的范围;
(3)解与根有关的证明题.
不解方程,判别下列方程的根的 情况:
(1);2x 2 3x 4 0
(2); 16y 2 9 24y
(3). 5(x 2 1) 7x 0
(3)将方程化为一般形式,5x 2 5 7x 0 .5x 2 7x 5 0 ∵a=4,b=-7,c=5, ∴ b2 4ac (7)2 4 5 5 =49-100 =-51<0. ∴方程无实数解.
已知关于x的方程 mx 2 (2m 1)x m 0 有两个实数根,求m的取值范 围.
(1)∵a=2,b=3,c=-4, ∴.b2 4ac 32 4 2 (4) 41 0 ∴方程有两个不相等的实数根.
(2)∵a=16,b=-24,c=9, ∴.b2 4ac (24)2 4 16 9 0 ∴方程有两个相等的实数解.
; https:///

我们就成了虚伪的坏蛋。 你骗了别人的钱,可以退赔,你骗了别人的爱,就成了无赦的罪人。假如别人不曾识破,那就更惨。除非你已良心丧尽,否则便要承诺爱的假象,那心灵深处的绞杀,永无宁日。 爱怕沉默。太多的人,以为爱到深处是无言。其实,爱是很难描述的一种情感,需要详 尽的表达和传递。爱需要行动,但爱绝不仅仅是行动,或者说语言和温情的流露,也是行动不可或缺的部分。 爱是需要表达的,就像耗费太快的电器,每日都得充电。重复而新鲜地描述爱意吧,它是一种勇敢和智慧的艺术。 ? 爱怕犹豫。爱是羞怯和机灵的,一不留神它就吃了鱼饵闪去。爱的 初起往往是柔弱无骨的碰撞和翩若惊鸿的引力。在爱的极早期,就敏锐地识别自己的真
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元二次方程的根的判别式【学习目标】1.知道什么是一元二次方程的根的判别式.2.会用判别式判定根的情况.【主体知识归纳】1.一元二次方程的根的判别式:b 2-4ac 叫做一元二次方程ax 2+bx +c =0(a ≠0)的根的判别式.通常用符号“Δ”来表示.2.对于一元二次方程ax 2+bx +c =0(a ≠0),当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程没有实数根.反过来也成立.【基础知识讲解】1.根的判别式是指Δ=b 2-4ac ,而不是指Δ=ac b 42 . 2.根的判别式是在一元二次方程一般形式下得出的,因此,必须把所给的方程化为一般形式再判别根的情况.要注意方程中各项系数的符号.3.如果说一元二次方程有实根,那么应当包括有两个不相等的实数根和有两个相等的实数根两种情况,此时b 2-4ac ≥0,不要丢掉等号.4.判别式有以下应用:(1)不解方程,判定一元二次方程根的情况;(2)根据一元二次方程根的情况,确定方程中未知系数的取值范围;(3)应用判别式进行有关的证明.【例题精讲】例1:不解方程,判别下列方程的根的情况:(1)3x 2-2x -1=0;(2)y 2=2y -4;(3)(2k 2+1)x 2-2kx +1=0;(4)9x 2-(p +7)x +p -3=0.解:(1)∵Δ=(-2)2-4×3×(-1)=4+12>0,∴原方程有两个不相等的实数根.(2)原方程就是y 2-2y +4=0.∵Δ=(-2)2-4×1×4=4-16<0,∴原方程无实数根.(3)∵2k 2+1≠0,∴原方程为一元二次方程.又∵Δ=(-2k )2-4(2k 2+1)×1=-4k 2-4<0,∴原方程无实数根.(4)Δ=[-(p +7)]2-4×9×(p -3)=(p -11)2+36,∵不论p 取何实数,(p -11)2均为非负数,∴(p -11)2+36>0,即Δ>0,∴原方程有两个不相等的实数根.说明:(1)运用一元二次方程根的判别式判断方程根的情况时,要把不是一般形式的化为一般形式.(2)判别式的应用是以方程ax 2+bx +c =0中a ≠0为前提条件的,对于含字母系数的二次方程要特别注意这一点.(3)要判断含字母(代表实数)的二次式的正负等情况,配方是个有效的方法,如(4)小题.例2:已知关于x 的一元二次方程(k -1)x 2+2kx +k +3=0.k 取什么值时,(1)方程有两个不相等的实数根? (2)方程有两个相等的实数根? (3)方程没有实数根?解:Δ=(2k )2-4(k -1)(k +3)=-8k +12.(1)当-8k +12>0,且k -1≠0,即k <23且k ≠1时,方程有两个不相等的实数根;(2)当-8k +12=0,且k -1≠0,即k =23时,方程有两个相等的实数根; (3)当-8k +12<0,且k -1≠0,即k >23时,方程没有实数根. 说明:当已知方程为一元二次方程时,要特别注意隐含的条件:二次项系数不等于零.例3:求证:不论a 、b 、c 为何值,关于x 的方程(b -x )2-4(a -x )(c -x )=0必有实数根.剖析:此题考查运用一元二次方程根的判别式的能力,由于所给方程从形式上不能直接判断出方程的类型,因此应将方程进行整理,得-3x 2+(4a +4c -2b )x +b 2-4ac =0,显然是关于x 的一元二次方程,所以只要证明Δ≥0即可.证明:原方程可化为-3x 2+(4a +4c -2b )x +b 2-4ac =0,∴Δ=(4a +4c -2b )2-4×(-3)(b 2-4ac )=16a 2+16b 2+16c 2-16ab -16bc -16ac=8[(a -b )2+(a -c )2+(b -c )2]∵不论a 、b 、c 为何值,都有(a -b ) 2≥0,(b -c )2≥0,(c -a )2≥0.∴Δ=8[(a -b )2+(b -c )2+(c -a )2]≥0∴方程必有实数根.说明:判断一代数式的正、负时,通常的方法是将其进行恒等变形,配成完全平方式,再利用其非负性的特点进行证明.例4:如果关于x 的方程x 2+2x =m +9没有实数根,试判断关于y 的方程y 2+my -2m +5=0的根的情况.剖析:要判断y 2+my -2m +5=0根的情况,只要判断Δ2=m 2-4(-2m +5)=m 2+8m -20的取值情况即可.而x 2+2x -m -9=0没有实数根,可得Δ1=22-4(-m -9)=4m +40<0,即m <-10,而当m <-10时,m 2+8m -20恒大于零,所以方程y 2+my -2m +5=0有两个不等的实数根.解:∵x 2+2x -m -9=0没有实数根,∴Δ1=22-4(-m -9)=4m +40<0,即m <-10.又y 2+my -2m +5=0的判断式Δ2.Δ2=m 2-4(-2m +5)=m 2+8m -20当m <-10时,m 2+8m -20>0,即Δ2>0.∴方程y 2+my -2m +5=0有两个不相等的实数根.说明:判定Δ2的值用到了Δ1<0所得的结论m <-10,这种条件和结论的相互转化在解综合性的题目中常常遇到.【思路拓展题】秦九韶的高次方程公元1819年7月1日,英国人霍纳在皇家学会宣读了一篇数学论文,提出了一种解任意高次方程的巧妙方法,一时引起了英国数学界的轰动.由于这一方法有其独到之处,而且对数学科学有很大的推动作用,因而这一方法被命名为“霍纳方法”.但是没过多久,意大利数学界就提出了异议,因为他们发现自己的同胞鲁菲尼已在15年前就得出了同样的方法,只是没有及时地报导罢了.因此,意大利数学界要求将这一数学方法命名为“鲁菲尼方法”.于是英、意双方开始了喋喋不休的争论.正巧,有个阿拉伯人前往欧洲,听到了双方的争论后,不置可否地大笑起来.争论双方问他,为何这般嘲笑,这位阿拉伯人从背包中掏出一本书,递与争论双方,说到:“你们都不要争了,依我看来,这个方法应该称作“秦九韶方法”.他们这才知道,早在570年前,有个叫秦九韶的中国人就发明了这种方法.双方觉得他们的这场争论已显得毫无意义了.秦九韶,生于1202年,南宋普州安岳(今四川安岳)人,他自幼随做官的父亲周游过许多地方.20岁的时候,秦九韶随父亲来到南宋的都城——临安(今杭州).秦九韶被父亲送到掌官天文历法的太史院学习.在这里,他了解了制定历法的一些基本算法和理论依据,这对于他后来写作著名的《数书九章》大有益处.后来他回到四川老家,在一个县城里当县尉,这时,北方的元兵大举进犯,战乱频繁,他在这种动乱的环境中度过了他的壮年.后来他在《数书九章》中写了“天时”和“军旅”等问题,想必与这段生活有关.过了几年,秦九韶的母亲去世了,他按照封建社会的传统,回家为母亲守孝三年.正是在这段时间里,秦九韶完成了他的辉煌的数学著作——《数书九章》.《数书九章》共分九大类,每类各有九题,全书共有81道数学题目,内容包括天时、军旅、赋役、钱谷、市易等类问题,在这81道题目中,有的题目比较复杂,但题后大多附有算式和解法.正是在这些解法中包含着许多杰出的数学创造,高次方程的解法就是其中最重要的一项.高次方程就是未知数的最高次幂在3次以上的方程.对于一元二次方程,我们可以用求根公式来解,三、四次方程的求根公式很复杂,至于五次以上的方程,那就没有求根公式了.那么用什么方法来解决呢?秦九韶创造的这种解法是一种近似的解法,但是它能够把结果算到任意精确的程度,只要你按照一些简单的程序,反复地进行四则运算即可.除了高次方程的解法之外,这本书的另一项伟大成就是关于同余式方面的工作.什么叫同余式呢? 我们还是从“韩信点兵”的故事说起:传说汉代开国功臣韩信有一次到练兵场,只见军士们龙腾虎跃,你来我往,好不热闹.韩信问带兵的军官.“你们这里共有多少士兵?”军官说:“人太多太乱,数不准确.”韩信说:“你把令旗给我,我来给你点数.”军官一听,慌忙将令旗奉上,只见韩信挥起令旗,命令道:“排一长队.”韩信见军士们已排好长队,便交待道:“先从1到3报数,再从1到5报数,最后从1到7报数.报完后,把剩余的人数告诉我,我便知总的军士人数.”于是,军士们便认真地报起数来,第一报数后余2,第2报数后余3;第3报数后余2.韩信掐指一算,共计233人.其实,“韩信点兵”问题又叫“孙子问题”,最早出现在公元4世纪的数学著作《孙子算经》中,原来的问题是这样表述的:“有物不知其数,三个一数余2,五个一数余3,七个一数余2,问该物总数几何?”这个问题按照现在的人可以列出方程来:设总数为N ,x 为3人一数的次数,y 为5人一数的次数,z 为7人一数的次数.则N =3x +2,N =5y +3,N =7z +2.三个方程式,但却有四个未知数,这就叫不定方程.解不定方程在现代数论中有一个著名的定理:剩余定理.但这个问题出现在公元4世纪的中国算书中,他们虽然给出算法,但却没有明确地表述和证明这个定理.到公元13世纪,大数学家秦九韶集前人之大成,在同余式的研究上获得了超越前人的 成果.秦九韶在写作《数书九章》时,把当年在太史院学到的天文学知识与《孙子算经》的数学问题结合起来,发展了同余式的理论和算法,从而圆满地解决了韩信点兵之类的问题.秦九韶还有许多数学创造,他是世界上最早提出十进小数概念和表示法的人.他还独立地推导出了已知三边求三角形面积的公式:S =])2([41222222c b a b a ---(a 、b 、c 为三角形三边) 秦九韶在多元一次方程组和几何测量方面也有创新.他是世界上最伟大的数学家之一,《数书九章》标志着中国的古代数学达到了一个新的高峰.【同步达纲练习】1.选择题(1)一元二次方程ax 2+bx +c =0(a ≠0)的判别式是( )A ..ac b 42-B .4ac -b 2C .b 2-4acD .|b 2-4ac |(2)关于x 的方程mx 2+4x +1=0有两个不相等的实数根,则m 的取值范围是( )A .m <4B .m ≤4且m ≠0C .m ≥4且m ≠0D .m <4且m ≠0(3)关于x 的方程kx 2+2x -1=0无实数根,则k 的取值范围是( )A .k ≠0B .k <-1C .k ≤-1D .k =-1 (4)关于x 的方程2x 2-3x +m =0有两个实数根,则m 的取值范围是( )A .m <89B .m ≥89C .m ≤89D .m <-89 (5)关于x 的一元二次方程(k -1)x 2+2kx +k +3=0有两个不相等的实数根,则k 的最大整数值是( )A .0B .-1C .1D .2(6)方程x 2+px +q =0有两个相等的实数根,则p 、q 之间的关系是( )A .p 2-4q ≠0B .p =2qC .p 2=4qD .p 2>4q (7)关于x 的方程m 2x 2-2mx +(m 2+3)=0的根的情况是( )A .当m =0时,方程有两个相等的实数根B .当m ≠0时,方程没有实数根C .不论m 为何值,方程都没有实数根D .当-1<m <1时,方程有实数根(8)设a 、b 、c 为三角形的三条边长,那么关于x 的方程b 2x 2+(b 2+c 2-a 2)x +c 2=0的根的情况是( )A .无实数根B .有两个不相等的实数根C .有两个相等的实数根D .要根据a 、b 、c 的数值确定(9)已知a 、b 、c 是△ABC 的三条边长,且关于x 的方程(c -b )x 2+2(b -a )x +(a -b )=0有两个相等的实数根,那么这个三角形是( )A .等边三角形B .等腰三角形C .不等边三角形D .直角三角形(10)已知方程x 2-px +m =0(m ≠0)有两个相等的实数根,则方程x 2+px -m =0的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .有无实数根,不能确定2.不解方程,判断下列方程根的情况:(1)y 2-2y +1=0; (2)4x 2+5=10x ; (3)t 2=7t -15; (4)x 2=-4(3x+4);(5)x 2-25x =3;(6)0.1x 2-0.2x +1=0;(7)3x 2-(2-3)x +1=0;(8)x 2-4x -k 2+3=0.3.已知关于x 的方程41x 2-(m -2)x +m 2=0. (1)有两个不相等的实数根,求m 的取值范围;(2)有两个相等的实数根,求m的值,并求此时方程的根;(3)没有实数根,求m的最小整数值.4.求证:关于x的方程(a2+1)x2-2ax+(a2+4)=0没有实数根.5.已知关于x的方程x2-2mx-3m2+8m-4=0.(1)当m>2时,试判断方程根的情况;(2)若方程的两个实数根一个小于5,另一个大于2,求m的取值范围.6.(1)k是什么正整数时,方程2x2-10x+5k=0有两个不相等的实数根?(2)k是什么负整数时,方程x2-4x+2-k=0有两个不相等的实数根?(3)k是什么正数时,方程(2+k)x2+6kx+4k+1=0有两个相等的实数根?7.已知△ABC的三边分别是a、b、c,其中a、b的长是方程x2-4(3+1)x+163=0的两个根,且a>b,关于x的一元二次方程a(1-x2)+c(1+x2)+2bx=0有两个相等的实数根,求△ABC的三个内角的度数和三条边的长.参考答案【同步达纲练习】1.(1)C (2)D (3)B (4)C (5)A (6)C (7)C (8)A (9)B (10)A2.(1)原方程有两个相等的实数根;(2)原方程有两个不相等的实数根;(3)原方程没有实数根;(4)原方程有两个不相等的实数根;(5)原方程有两个不相等的实数根;(6)原方程没有实数根;(7)原方程没有实数根;(8)原方程有两个不相等的实数根.3.(1)m <1;(2)m =1,x 1=x 2=-2;(3)m 的最小整数值是2.4.∵Δ=(-2a )2-4(a 2+1)(a 2+4)=4a 2-4a 4-20a 2-16=-4(a 2+2)2<05.Δ=(-2m )2-4(-3m 2+8m -4)=16m 2-32m +16=16(m -1)2(1)当m >2时,Δ>0,方程有两个不相等的实数根;(2)用求根公式或因式分解法,得 x 1=3m -2,x 2=2-m由题意,得⎩⎨⎧>-<-⎩⎨⎧<->-2252352223m m m m 或. 解之,得m <0或m >34 6.(1)k =1或k =2;(2)k =-1;(3)k =27.∵x 2-4(3+1)x +163=0的两根为x 1=4,x 2=43又a >b ,∴a =43,b =4整理方程,得(c -a )x 2+2bx +a +c =0,∵Δ=(2b )2-4(c -a )(a +c )=0∴a 2+b 2=c 2 ∴c =8∴∠A =60°,∠B =30°,∠C =90°。

相关文档
最新文档