弹性极限、屈服极限、抗拉极限应力-应变曲线PPT课件
合集下载
弹性极限、屈服极限、抗拉极限应力-应变曲线..PPT文档共22页

21、要知道对好事的称颂过于夸大,也会招来人们的反感轻蔑和嫉妒。——培根 22、业精于勤,荒于嬉;行成于思,毁于随。——韩愈
23、一切节省,归根到底都归结为时间的节省。——马克思 24、意志命运往往背道而驰,决心到最后会全部推倒。——莎士比亚
25、学习是劳动,是充满思想的劳动。——乌申斯基
1、不要轻言放弃,否则对不起自己。
2、要冒一次险!整个生命就是一场冒险。走得最远的人,常是愿意 去做,并愿意去冒险的人。“稳妥”之船,从未能从岸边走远。-戴尔.卡耐基。
梦 境
3、人生就像一杯没有加糖的咖啡,喝起来是苦涩的,回味起来却有 久久不会退去的余香。
弹性极限、屈服极限、抗拉极限应力-应 4、守业的最好办法就是不断的发展。 5、当爱不能完美,我宁愿选择无悔,不管来生多么美丽,我不愿失 去今生对你的记忆,我不求天长地久的美景,我只要生生
应力应变曲线材料力学_图文

200 A(sp)
E=Etgy=atga a
O
O1 O2 0.1
e 0.2
金属材料的压缩试样,一般制成短圆柱形,柱的 高度约为直径的1.5 ~ 3倍,试样的上下平面有平行 度和光洁度的要求非金属材料,如混凝土、石料等 通常制成正方形。
低碳钢是塑性材料,压缩时的应力–应变图, 如图示。
在屈服以前,压缩时的曲线和拉伸时的曲线 基本重合,屈服以后随着压力的增大,试样被 压成“鼓形”,最后被压成“薄饼”而不发生 断裂,所以低碳钢压缩时无在卸载过程中 应力和应变是线形关系, 这就是卸载定律。
材料的比例极限增高, 延伸率降低,称之为冷作硬 化或加工硬化。
1、弹性范围内卸载、再加载 2、过弹性范围卸载、再加载
5、灰铸铁 对于脆性材料(铸铁),拉伸时的应力
应变曲线为微弯的曲线,没有屈服和径缩现 象,试件突然拉断。断后伸长率约为0.5%。 为典型的脆性材料。
σbt—拉伸强度极限(约为140MPa)。它是 衡量脆性材料(铸铁)拉伸的唯一强度指标。
二、压缩时的应力——应变曲线 1、试样及试验条件
§9-5
常温、静载
2、低碳钢压缩实验
s (MPa) 400
低碳钢压缩 应力应变曲线
E(sb)
C(ss上)
f1(f)
低碳钢拉伸
g
(se) B
D(ss下)
应力应变曲线
4.塑性指标 试件拉断后,弹性变形消失,但塑性变形仍保 留下来。工程上用试件拉断后遗留下来的变形 表示材料的塑性指标。常用的塑性指标有两个:
伸长率:
%
断面收缩率 :
%
L1 —试件拉断后的标距 L —是原标距 A1 —试件断口处的最小横截面面积 A —原横截面面积。
弹性极限、屈服极限、抗拉极限应力-应变曲线演示幻灯片

低碳钢是塑性材料,压缩时的应力–应变图, 如图示。
在屈服以前,压缩时的曲线和拉伸时的曲线 基本重合,屈服以后随着压力的增大,试样被 压成“鼓形”,最后被压成“薄饼”而不发生 断裂,所以低碳钢压缩时无强度极限。
16
3、灰铸铁
by
灰铸铁的 压缩曲线 bL
灰铸铁的 拉伸曲线 O
= 45o~55o
弹性极限与比例极限非常接近,工程实际中通常对二者不 作严格区分,而近似地用比例极限代替弹性极限。
8
(2)屈服阶段 屈服点 s
曲线超过b点后,出现了一段锯齿形曲线, 这—阶段应力没有增加,而应变依然在增加,材 料好像失去了抵抗变形的能力,把这种应力不增 加而应变显著增加的现象称作屈服,bc段称为屈
服阶段。屈服阶段曲线最低点所对应的应力 s
4、局部径缩阶段ef
明显的四个阶段
1、弹性阶段ob E
P — 比例极限 e — 弹性极限
E tan
7
(1)弹性阶段 比例极限σp
oa段是直线,应力与应变在此段成正比关系,材
料符合虎克定律,直线oa的斜率 tan E 就是材
料的弹性模量,直线部分最高点所对应的应力值 记作σp,称为材料的比例极限。曲线超过a点,图 上ab段已不再是直线,说明材料已不符合虎克定 律。但在ab段内卸载,变形也随之消失,说明ab 段也发生弹性变形,所以ab段称为弹性阶段。b点 所对应的应力值记作σe ,称为材料的弹性极限。
圆截面试件标距:L0=10d0或5d0
3
2、试验机
4
0
5
3、低碳钢拉伸曲线
6
b
e P
a
o
e
b
f
2、屈服阶段bc(失去抵 抗变形的能力)
在屈服以前,压缩时的曲线和拉伸时的曲线 基本重合,屈服以后随着压力的增大,试样被 压成“鼓形”,最后被压成“薄饼”而不发生 断裂,所以低碳钢压缩时无强度极限。
16
3、灰铸铁
by
灰铸铁的 压缩曲线 bL
灰铸铁的 拉伸曲线 O
= 45o~55o
弹性极限与比例极限非常接近,工程实际中通常对二者不 作严格区分,而近似地用比例极限代替弹性极限。
8
(2)屈服阶段 屈服点 s
曲线超过b点后,出现了一段锯齿形曲线, 这—阶段应力没有增加,而应变依然在增加,材 料好像失去了抵抗变形的能力,把这种应力不增 加而应变显著增加的现象称作屈服,bc段称为屈
服阶段。屈服阶段曲线最低点所对应的应力 s
4、局部径缩阶段ef
明显的四个阶段
1、弹性阶段ob E
P — 比例极限 e — 弹性极限
E tan
7
(1)弹性阶段 比例极限σp
oa段是直线,应力与应变在此段成正比关系,材
料符合虎克定律,直线oa的斜率 tan E 就是材
料的弹性模量,直线部分最高点所对应的应力值 记作σp,称为材料的比例极限。曲线超过a点,图 上ab段已不再是直线,说明材料已不符合虎克定 律。但在ab段内卸载,变形也随之消失,说明ab 段也发生弹性变形,所以ab段称为弹性阶段。b点 所对应的应力值记作σe ,称为材料的弹性极限。
圆截面试件标距:L0=10d0或5d0
3
2、试验机
4
0
5
3、低碳钢拉伸曲线
6
b
e P
a
o
e
b
f
2、屈服阶段bc(失去抵 抗变形的能力)
材料拉伸时的力学性能.ppt

(4)弹性模量E随温度上升而一直下降,泊松比μ则一 直上升。
6.2.2 高温蠕变和应力松弛
(l) 蠕变现象
(2)松弛现象
6.2.3 在动载荷下应变速率对材料力学性能的影响
§6.3 安全系数 许用应力
通常把材料破坏的极限应力σu除以大于1的 数n作为许用应力,用[σ]表示,即
u
n
n称为安全系数,对于塑性材料,σu为屈服极限 σs,对于脆性材料,σu为强度极限σb。
③强化阶段(ce) 强化现象:材料恢复抵抗变形的能力,要使应变增加,
必须增大应力值。 曲线表现为上升阶段。
应力特征性:强度极限 b ——材料能承受的最大应力值。
冷作硬化——材料预拉到强化阶段,使之发生塑性变形,
然后卸载,当再次加载时弹性极限 和屈e 服极限 提高 s、
塑性降低的现象。工程上常用冷作硬化来提高某些材料在 弹性范围内的承载能力,如建筑构件中的钢筋、起重机的 钢缆绳等,一般都要作预拉处理。但冷作硬化使材料变硬、 变脆,使加工发生困难,且易产生裂纹,这时可以采用退 火处理,部分或全部地消除材料的冷作硬化效应。
(35l0)℃强b显温著度下在降25。0 ~ (3020)~流35动0极℃限后σ,s和流比动例阶极段限消σ失p随。温度升高而下降。到
(3)延伸率δ和截面收缩率Ψ在250~350 ℃时最低, 此时钢材呈现一定程度的脆性,以后δ和Ψ又随温度上 升而增加。
低碳钢拉伸试验现象:
屈服:
颈缩:
断裂:
6.1.2 铸铁在轴向拉伸时的力学性能
铸铁拉伸直到断裂,应力和应变近似地呈 现直线关系(图6-4)。因此,铸铁直至断裂 都满足胡克定律。铸铁拉伸直到断裂,试件尺
寸几乎没有变化,所以,铸铁是脆性材料。脆
6.2.2 高温蠕变和应力松弛
(l) 蠕变现象
(2)松弛现象
6.2.3 在动载荷下应变速率对材料力学性能的影响
§6.3 安全系数 许用应力
通常把材料破坏的极限应力σu除以大于1的 数n作为许用应力,用[σ]表示,即
u
n
n称为安全系数,对于塑性材料,σu为屈服极限 σs,对于脆性材料,σu为强度极限σb。
③强化阶段(ce) 强化现象:材料恢复抵抗变形的能力,要使应变增加,
必须增大应力值。 曲线表现为上升阶段。
应力特征性:强度极限 b ——材料能承受的最大应力值。
冷作硬化——材料预拉到强化阶段,使之发生塑性变形,
然后卸载,当再次加载时弹性极限 和屈e 服极限 提高 s、
塑性降低的现象。工程上常用冷作硬化来提高某些材料在 弹性范围内的承载能力,如建筑构件中的钢筋、起重机的 钢缆绳等,一般都要作预拉处理。但冷作硬化使材料变硬、 变脆,使加工发生困难,且易产生裂纹,这时可以采用退 火处理,部分或全部地消除材料的冷作硬化效应。
(35l0)℃强b显温著度下在降25。0 ~ (3020)~流35动0极℃限后σ,s和流比动例阶极段限消σ失p随。温度升高而下降。到
(3)延伸率δ和截面收缩率Ψ在250~350 ℃时最低, 此时钢材呈现一定程度的脆性,以后δ和Ψ又随温度上 升而增加。
低碳钢拉伸试验现象:
屈服:
颈缩:
断裂:
6.1.2 铸铁在轴向拉伸时的力学性能
铸铁拉伸直到断裂,应力和应变近似地呈 现直线关系(图6-4)。因此,铸铁直至断裂 都满足胡克定律。铸铁拉伸直到断裂,试件尺
寸几乎没有变化,所以,铸铁是脆性材料。脆
金属材料的力学性能ppt课件.ppt

为塑性变形。
F F F
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
拉伸试验
d0
F
F
l0
L 拉伸前
dk
lk
拉伸后
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
标准冲击试样有两种,一种是U形缺口试样,另一种是V
形缺口试样。它们的冲击韧度值分别以a KU和a KV。
材料的a K值愈大,韧性就愈好;材料的a K值愈小,材料
的脆性愈大
通常把a K值小的材料称为脆性材料 研究表明,材料的a K值随试验温度的降低而降低。
加载速度越快,温度越低,表面及冶金质量越差, a K在值
Fe
e
k
4、s’b曲线:弹性变形+均匀塑性变
形
5、b点出现缩颈现象,即试样局部
o
截面明显缩小试样承载能力降低,
拉伸力达到最大值,而后降低,但
变形量增大,K点时试样发生断裂。
F S0 拉伸曲线
l l0
应力—应变曲线
l
e — 弹性极限点 S — 屈服点 b — 极限载荷点
K — 断裂点
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
3) 维氏硬度
维氏硬度试验原理
维氏硬度压痕
维氏硬度计
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
F F F
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
拉伸试验
d0
F
F
l0
L 拉伸前
dk
lk
拉伸后
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
标准冲击试样有两种,一种是U形缺口试样,另一种是V
形缺口试样。它们的冲击韧度值分别以a KU和a KV。
材料的a K值愈大,韧性就愈好;材料的a K值愈小,材料
的脆性愈大
通常把a K值小的材料称为脆性材料 研究表明,材料的a K值随试验温度的降低而降低。
加载速度越快,温度越低,表面及冶金质量越差, a K在值
Fe
e
k
4、s’b曲线:弹性变形+均匀塑性变
形
5、b点出现缩颈现象,即试样局部
o
截面明显缩小试样承载能力降低,
拉伸力达到最大值,而后降低,但
变形量增大,K点时试样发生断裂。
F S0 拉伸曲线
l l0
应力—应变曲线
l
e — 弹性极限点 S — 屈服点 b — 极限载荷点
K — 断裂点
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
3) 维氏硬度
维氏硬度试验原理
维氏硬度压痕
维氏硬度计
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
钢筋的应力—应变曲线分析

自开始加载至应力达到A点以前,应力应变成线性关系,A点称比例极限,OA段属于弹性工作阶段。
应力达到Bˊ点后,钢筋进入屈服阶段,产生很大的塑性形变,Bˊ点应力称为屈服强度(流限),在应力-应变曲线中呈现一水平段B〞B,称为流幅。
超过B点后,应力-应变关系重新表现为上升的曲线,B-C段为强化阶段。
曲线最高点C点的应力称为抗拉强度。
此后钢筋试件产生颈缩现象,应力应变关系成为下降曲线,应变继续增大,到D点钢筋被拉断。
D点所对应的横坐标称为伸长率,它标志钢筋的塑性。
伸长率越大,塑性越好。
钢筋塑性除用伸长率标志外,还用冷弯试验来检验。
冷弯就是把直径为D的钢辊转弯转α角而不发生裂纹。
钢筋塑性越好,钢辊直径D可越小,冷弯角α就越大。
屈服强度(流限)是软钢的主要强度指标。
在混凝土中的钢筋,当应力达到屈服强度后,荷载不增加,而应变会继续增大,使得混凝土开展过宽,构件变形过大,结构不能正常使用。
所以软钢钢筋的受拉强度限值以屈服强度为准,钢筋的强化阶段只作为一种安全储备考虑。
钢材中含碳量越高,屈服强度和抗拉强度就越高,伸长率就越小,流幅也相应缩短。
应力-应变曲线

应力-应变曲线
四、强度
1.强度是指金属材料抵抗塑性变形和断裂的能力。 2.强度特性指标主要是指屈服强度和抗拉强度。 (1)屈服强度:当材料受外力作用产生0.2%残余变形的应力,作为 该材料的屈服强度。
式中:
——材料屈服时的最小载荷, ;
——试件的原始横截面面积,;—源自屈服强度, 。应力-应变曲线
(4)强化:材料经过屈服点后,其变形抗力增大,这种现象称为强化。
应力-应变曲线
五、塑性
1.塑性:金属材料受力后在断裂之前产生塑性变形的能力。
2.塑性指标
(1)断后伸长率:
式中: ——试件拉断后的长度, ;
——试件的原始长度,
。
(2)断面收缩率:
式中: ——试件的原始横截面面积, mm2 ; ——试件拉断处的横截面面积,mm2 。
图1-6 卸荷曲线
应力-应变曲线
三、弹性
1.弹性的定义:具有弹性变形特性的材料能够发生弹性变形而不发生永久 变形的能力,称为弹性。
2.弹性模量 (1)表示引起单位应变所需的应力的大小。 (2)工程上常用弹性模量作为衡量材料刚度的指标,E越大,刚度越好。 (3)刚度是材料抵抗弹性变形的能力。 (4)材料在一定外力作用下,弹性变形越大,刚度越小,反之,其刚度 越大。 (5)弹性极限是试件在最大弹性变形时材料所承受的应力。
四、强度
(2)屈服:应力没有增加,但试件变形仍自动增长的现象称为屈服。 (3)抗拉强度:材料在断裂前所能承受的最大应力称为抗拉强度。 当应力达到抗拉强度时,试件某一部分的横截面积显著缩小。试件的变形 主要集中在该处,故抗拉强度通常被作为零件因断裂失效的设计依据。
式中: ——材料在屈服阶段后所能抵抗的最大力, ; ——试件的原始横截面面积, ; ——抗拉强度, 。
金属材料应力应变曲线PPT(完整版)

发生弹性变形,所以ab段称为弹性阶段。b点所对
应的应力值记作σe ,称为材料的弹性极限。
弹性极限与比例极限非常接近,工程实际中通常对二者不
作严格区分,而近似地用比例极限代替弹性极限。
(2)屈服阶段 屈服点 s
曲线超过b点后,出现了一段锯齿形曲线, 这—阶段应力没有增加,而应变依然在增加,材 料好像失去了抵抗变形的能力,把这种应力不增 加而应变显著增加的现象称作屈服,bc段称为屈
4.塑性指标
试件拉断后,弹性变形消失,但塑性变形仍保
留下来。工程上用试件拉断后遗留下来的变形
屈服阶段曲线最低点所对应的应力 称为屈服点(或屈服极限)。
表示材料的塑性指标。常用的塑性指标有两个: 工程上一般不允许构件发生塑性变形,并把塑性变形作为塑性材料破坏的标志,所以屈服点 是衡量材料强度的一个重要指标。
服阶段。屈服阶段曲线最低点所对应的应力 s
称为屈服点(或屈服极限)。在屈服阶段卸载,将 出现不能消失的塑性变形。工程上一般不允许构 件发生塑性变形,并把塑性变形作为塑性材料破
坏的标志,所以屈服点 s是衡量材料强度的一
个重要指标。
(3)强化阶段 抗拉强度 b
经过屈服阶段后,曲线从c点又开始逐渐上升,说
L 3、强化阶段ce(恢复抵抗变形的能力)(均匀塑性变形)
%
金属材料的压缩试样,一般制成短圆柱形,柱的高度约为直径的1.
A A1 强度极限(对最大均匀塑性变形的抗力)
断面收缩率 : 100 % 在屈服以前,压缩时的曲线和拉伸时的曲线基本重合,屈服以后随着压力的增大,试样被压成“鼓形”,最后被压成“薄饼”而不发
金属材料应力应变曲线
力学性质:在外力作用下材料在变形和破坏方面所 表现出的力学性能
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4、局部径缩阶段ef
明显的四个阶段
1、弹性阶段ob E
P — 比例极限 e — 弹性极限
E tan
精选
7
(1)弹性阶段 比例极限σp
oa段是直线,应力与应变在此段成正比关系,材
料符合虎克定律,直线oa的斜率 tanE就是材
料的弹性模量,直线部分最高点所对应的应力值 记作σp,称为材料的比例极限。曲线超过a点,图 上ab段已不再是直线,说明材料已不符合虎克定 律。但在ab段内卸载,变形也随之消失,说明ab 段也发生弹性变形,所以ab段称为弹性阶段。b点 所对应的应力值记作σe ,称为材料的弹性极限。
精选
10
4.塑性指标 试件拉断后,弹性变形消失,但塑性变形仍保 留下来。工程上用试件拉断后遗留下来的变形
表示材料的塑性指标。常用的塑性指标有两个:
伸长率: L1 L 100 % 断面收缩率 : LA A1 100 %
A L1 —试件拉断后的标距
L —是原标距 A1 —试件断口处的最小横截面面积 A —原横截面面积。
精选
18
精选
19
塑性材料和脆性材料力学性能比较
塑性材料
脆性材料
延伸率 δ > 5%
延伸率 δ < 5%
断裂前有很大塑性变形
断裂前变形很小
抗压能力与抗拉能力相近 抗压能力远大于抗拉能力
可承受冲击载荷,适合于 适合于做基础构件或外壳 锻压和冷加工
材料的塑性和脆性会因为制造方法工艺条件 的改变而改变
精选
所对应的应力值记作, b 称为材料的抗拉强度
(或强度极限),它是衡量材料强度的又一个重
要(指4)标缩。颈断裂阶段
曲线到达e点前,试件的变形是均匀发生的,
曲线到达e点,在试件比较薄弱的某一局部(材
质不均匀或有缺陷处),变形显著增加,有效横
截面急剧减小,出现了缩颈现象,试件很快被
拉断,所以ef段称为缩颈断裂阶段。
20
应力—应变在外力作用下材料在变形和破坏方面所 表现出的力学性能
一、拉伸时的应力——应变曲线
件试 件 和 实 验 条
静常 载温
、
精选
2
1、 试件
(1)材料类型: 低碳钢: 塑性材料的典型代表; 灰铸铁: 脆性材料的典型代表;
标距
L0
(2)标准试件:
d0
标点
尺寸符合国标的试件;
2.标用标于距准测:试试件的:等截面部分长度;
圆截面试件标距:L0=10d0或5d0
精选
3
2、试验机
精选
4
0
精选
5
3、低碳钢拉伸曲线
精选
6
b
e P
a
o
e
b
f
2、屈服阶段bc(失去抵 抗变形的能力)
c
s — 屈服极限 (s 力达到此线以上3就、叫强“化屈阶服段”c)e(恢复抵抗
变形的能力)(均匀塑性变形)
b — 强度极限(对最大均匀塑 ) 性变形的抗力
弹性极限与比例极限非常接近,工程实际中通常对二者不
作严格区分,而近似地用比例极限代替弹性极限。
精选
8
(2)屈服阶段 屈服点 s
曲线超过b点后,出现了一段锯齿形曲线,
这—阶段应力没有增加,而应变依然在增加,材
料好像失去了抵抗变形的能力,把这种应力不增
加而应变显著增加的现象称作屈服,bc段称为屈
服阶段。屈服阶段曲线最低点所对应的应力
称为屈服点(或屈服极限)。在屈服阶段卸载,将
s
出现不能消失的塑性变形。工程上一般不允许构
件发生塑性变形,并把塑性变形作为塑性材料破
坏的标志,所以屈服点
个重要指标。
s 是衡量材料强度的一
精选
9
(3)强经化过阶屈服段阶段抗后拉,强曲度线从 cb点又开始逐渐上
升,说明要使应变增加,必须增加应力,材料 又恢复了抵抗变形的能力,这种现象称作强化, ce段称为强化阶段(加工硬化)。曲线最高点
13
二、压缩时的应力——应变曲线 1、试样及试验条件
§9-5
精选
载常 温 、 静
14
2、低碳钢压缩实验
(MPa) 400
低碳钢压缩 应力应变曲线
E(b)
C(s上)
f1(f)
低碳钢拉伸
g
(e) B
D(s下)
应力应变曲线
200 A(p)
E=Etgy=tg
O
O1 O2
0.1
精选
0.2
15
金属材料的压缩试样,一般制成短圆柱形,柱的 高度约为直径的1.5 ~ 3倍,试样的上下平面有平行 度和光洁度的要求非金属材料,如混凝土、石料等 通常制成正方形。
低碳钢是塑性材料,压缩时的应力–应变图, 如图示。
在屈服以前,压缩时的曲线和拉伸时的曲线 基本重合,屈服以后随着压力的增大,试样被 压成“鼓形”,最后被压成“薄饼”而不发生 断裂,所以低碳钢压缩时无强度极限。
精选
16
3、灰铸铁
by
灰铸铁的
压缩曲线
bL
灰铸铁的 拉伸曲线
O
精选
= 45o~55o 剪应力引起断裂
d g
o
f h
1、弹性范围内卸载、再加载
2、过弹性范围卸载、再加载
精选
12
5、灰铸铁
对于脆性材料(铸铁),拉伸时的应力 应变曲线为微弯的曲线,没有屈服和径缩现 象,试件突然拉断。断后伸长率约为0.5%。 为典型的脆性材料。
bt
o
σbt—拉伸强度极限(约为140MPa)。它是衡
量脆性材料(铸铁)拉伸精选的唯一强度指标。
、 值越大,其塑性越好。一般把 ≥5%的材
料称为塑性材料,如钢材、铜、铝等;把 <5%的
材料称为脆性材料,如铸铁、混凝土、石料等。
精选
11
工程应用:冷作硬化
e
d
b
b
e P
a c s
即材料在卸载过程中 应力和应变是线形关系,
f 这就是卸载定律。
材料的比例极限增高, 延伸率降低,称之为冷作硬 化或加工硬化。
17
曲线没有明显的直线部分,应力较 小时,近似认为符合虎克定律。曲线没 有屈服阶段,变形很小时沿与轴线大约 成45°的斜截面发生破裂破坏。曲线最
高点的应力值 by 称为抗压强度。
铸铁材料抗压性能远好于抗拉性能, 这也是脆性材料共有的属性。因此,工 程中常用铸铁等脆性材料作受压构件, 而不用作受拉构件。