大一函数的极限ppt课件
合集下载
《高等数学极限》课件

THANK YOU
无穷级数与无穷积分的收敛性
总结词
收敛性是无穷级数和无穷积分最重要的性质之一,它 表示无穷级数或无穷积分的和是有限的。收敛性的判 定是高等数学中的一个重要问题,需要用到多种数学 方法和技巧。
详细描述
收敛性是无穷级数和无穷积分最重要的性质之一,它 表示无穷级数或无穷积分的和是有限的。如果一个无 穷级数或无穷积分是收敛的,那么它的和就是有限的 ,否则就是发散的。收敛性的判定是高等数学中的一 个重要问题,需要用到多种数学方法和技巧,如比较 判别法、柯西判别法、阿贝尔判别法等。对于不同的 级数和积分,需要采用不同的方法和技巧进行收敛性 的判定。
03
导数与连续性
导数的定义与性质
导数的定义
导数是函数在某一点的变化率的极限 ,表示函数在该点的切线斜率。
导数的性质
导数具有线性、可加性、可乘性和链 式法则等性质,这些性质在研究函数 的单调性、极值和曲线的几何特性等 方面具有重要应用。
导数的计算方法
基本初等函数的导数
对于常数、幂函数、指数函数、三角函数和反三角函 数等基本初等函数,需要熟记其导数公式。
限的。
无穷积分的定义与性质
总结词
无穷积分是数学中另一个重要的概念,它是由无穷多个 定积分的和组成的积分。无穷积分具有一些重要的性质 ,如可加性、可乘性和可微性等。
详细描述
无穷积分是由无穷多个定积分的和组成的积分,这些定 积分可以是积分限不同的积分。无穷积分在数学中也有 着广泛的应用,如求解面积、体积和曲线长度等。无穷 积分具有一些重要的性质,如可加性、可乘性和可微性 等。其中,可加性表示无穷积分可以拆分成若干个部分 的和,可乘性和可微性则表示无穷积分可以与函数进行 运算和求导。
函数的极限(高等数学课件

极限存在的充分条件
通过研究极限存在的充分条件,我们能够判断函数极限是否存在,从而分析函数的性质。
极限不存在的充分条件
极限不存在的充分条件揭示了函数在某一点无法达到收敛状态的原因,帮助我们理解函数的特性。
极限的计算方法
通过掌握极限的计算方法,我们能够简化复杂函数的分析,快速求得函数在某一点的极限值。
无穷远处的极限研究函数在无穷远处的行为,了解函数在无穷远的趋势和特征。
函数连续的定义
函数连续的定义是描述函数在一个区间内各点之间没有突变,平滑过渡的性质。
极限的性质
通过研究极限的性质,我们能够推导出一些重要的定理和计算方法,深入理解函数的行为。
夹逼定理
夹逼定理是一种重要的判断函数极限存在与计算的方法,让我们能够找到极限或证明其不存在。
极限的唯一性
极限的唯一性告诉我们,函数在某一点的极限只可能有一个确定的值,没有 歧义性。
极限的应用:导数和积分的概念
函数极限的应用非常广泛,例如在微积分中,导数和积分的概念都是基于极限的。
中值定理
中值定理是一组重要的定理,它揭示了函数在某一区间内的行为特点,是函 数研究的重要工具。
极值和最值的定义
极限与无的行为,探讨函数的无限增长和无限减小。
极限与无穷小
极限与无穷小研究函数在某一点附近的变化,帮助我们分析函数的微小变化 和趋势。
L'Hôpital法则
L'Hôpital法则是一种处理函数极限的重要方法,适用于特定的极限计算。
渐近线的定义与分类
渐近线研究函数在无穷远处的趋势,分为水平渐近线、垂直渐近线和斜渐近 线三种。
函数的极限(高等数学课 件)
探索函数极限的奥秘,从基本的概念到应用、定理和计算方法,打开数学世 界的大门。
高等数学 函数的极限课件

函数极限的定义可以用数学符号表示为:lim f(x) = A,表示当x趋近 于某个值时,f(x)趋近于A。
函数极限的性质
01
唯一性
函数的极限是唯一的,即如果 lim f(x) = A和lim f(x) = B,则
A = B。
02
有界性
函数的极限是有界的,即存在 一个正数M,使得当x在某点附 近时,f(x)的绝对值小于M。
高等数学 函数的极限课件
目录
• 函数极限的基本概念 • 函数极限的运算性质 • 无穷小与无穷大 • 函数的连续性 • 极限的应用
01
函数极限的基本概念
函数极限的定义
01
02
函数极限的定义是高等数学中的基本概念,它描述了函数在某一点的 变化趋势。具体来说,如果当自变量趋近于某一值时,函数值无限接 近于一个确定的数,则称该数为函数的极限。
求复合函数极限的方法
通过将复合函数分解为基本初等函数或已知极限的函数,利用极限的四则运算性质和已知极限,求得 复合函数的极限。
反函数的极限
反函数极限的定义
设函数y=f(x)在点x0有定义且f'(x0)=1,其反函数为x=g[f(x)],如果lim(y→y0) x=lim(y→y0) g[f(x)],则称反函 数在点y0处存在极限。
03
局部保号性
如果lim f(x) = A且A > 0,则 在某点附近存在一个正数δ, 使得当x满足一定条件时,f(x)
> 0。
函数极限的存在性定理
函数极限的存在性定理是高等数学中一个重要的定理,它给出了函数极限存在的 充分条件。根据这个定理,如果函数在某点的左右极限存在且相等,则函数在该 点有极限。
连续性的几何意义
大一函数的极限.ppt

(2) 要f (x)与A多靠近,只须x与x0靠近(但 后, 就能多靠近.
)到一定程度
(3) 要| f (x)-A|多小,只须| x-x0 |小到一定程度后(但
)
就能有多小.
(4)
使得当 0 x x0 时,
f (x) A
机动 目录 上页 下页 返回 结束
定义1 . 设函数 在点 的某去心邻域内有定义 ,
x2 1 2
x 1
因此
lim x2 1 2 x1 x 1
时 , 必有
机动 目录 上页 下页 返回 结束
当
时
结论记住!
(P29 例5)
机动 目录 上页 下页 返回 结束
2. 保号性定理
定理1 . 若
且 A > 0 , 则存在 (A<0)
f (x) 0. (P30 性质3) ( f (x) 0)
lim f (x) lim (x 1) 1
x0
x0
lim f (x) lim (x 1) 1
x0
x0
显然 f (0 ) f (0 ) , 所以 lim f (x) 不存在 .
x0
机动 目录 上页 下页 返回 结束
二、自变量趋于无穷大时函数的极限
定义2 . 设函数
大于某一正数时有定义, 若
0, X 0,
0, X 0, 当 x X 时, 有 f (x) A
几何意义 : 直线 y = A 仍是曲线 y = f (x) 的渐近线 .
例如,
1
1
都有水平渐近线 y 0;
1 x
x
又如,
都有水平渐近线 y 1.
机动 目录 上页 下页 返回 结束
内容小结
1. 函数极限的" " 或" X " 定义及应用
《函数的极限与连续》课件

示例
考虑函数$f(x) = x^2$,在区间 $[0, 1]$上连续且单调增加。如果 $f(0) < c < f(1)$,则可以证明$c < frac{f(0) + f(1)}{2}$。
利用连续性求函数的零点
要点一
总结词
利用函数的连续性可以找到函数的零 点。
要点二
详细描述
如果函数在某区间上连续,且在该区 间上从正变负或从负变正,则可以利 用函数的连续性找到函数的零点。这 是因为函数在这一点上从增加变为减 少或从减少变为增加,的定义
函数在某点连续的定义
如果函数在某点的左右极限相等且等于该点的函数值,则函数在该点连续。
函数在区间上连续的定义
如果函数在区间内的每一点都连续,则函数在该区间上连续。
连续性的性质
连续函数的和、差、积、商(分母不为零)仍为连续函数。
复合函数在复合点连续的定义:如果一个复合函数在某点的极限等于该点的函数值,则复合函数在该点 连续。
与其他数学知识的联系
探讨函数极限与连续性与中学数学、微积分等其他 数学知识的联系,理解其在数学体系中的地位。
理论严谨性
深入思考函数极限与连续性理论的严谨性和 完备性,理解数学严密性的重要性。
对后续学习的展望
导数与微分
预告后续将学习函数的导数与微分概念,了解它们与 极限和连续性的关系。
级数与积分
简要介绍级数和积分的基本概念,理解其在数学中的 重要性和应用。
01
和差运算性质
若$lim f(x)=A$且$lim g(x)=B$ ,则$lim [f(x)pm g(x)]=Apm B$。
02
03
乘积运算性质
幂运算性质
若$lim f(x)=A$且$lim g(x)=B$ ,则$lim [f(x)cdot g(x)]=Acdot B$。
高等数学 函数的极限课件

无穷小的运算性质
加法性质
两个无穷小的和仍然是无穷小 。
乘法性质
两个无穷小的乘积仍然是无穷 小。
幂运算性质
无穷小的幂仍然是无穷小,但 需要注意其阶数变化。
复合函数的无穷小
复合函数的无穷小可以通过链 式法则进行计算。
THANKS
感谢观看
函数极限的运算性质
和差运算性质
如果$lim_{xto x_0} f(x)=A$且 $lim_{xto x_0} g(x)=B$,则 $lim_{xto x_0} [f(x)+g(x)]=A+B$。
乘积运算性质
如果$lim_{xto x_0} f(x)=A$且 $lim_{xto x_0} g(x)=B$,则 $lim_{xto x_0} [f(x)cdot g(x)]=Acdot B$。
利用函数极限求某些函数的值
求定积分
通过计算被积函数的上下限在积分区 间的极限,可以求得定积分的值。
求数列的通项公式
通过求解数列的递推公式的极限,可 以求得数列的通项公式。
利用函数极限研究函数的性质
函数的连续性
通过计算函数在某点的极限,可以判断函数在该点是否连续。
函数的可导性
通过计算函数的导数在某点的极限,可以判断函数在该点是否可导。
若lim(x→x0) f(x) = A 和 lim(x→x0) g(x) = B,则 lim(x→x0) [f(x) + g(x)] = A + B 。
若lim(x→x0) f(x) = A 和 lim(x→x0) g(x) = B,则 lim(x→x0) [f(x) × g(x)] = A × B 。
函数极限的直观定义
如果当$x$趋近于$x_0$时,函数$f(x)$的取值逐渐 接近某个确定的数$L$,则称$L$为函数$f(x)$在 $xto x_0$时的极限。
函数的极限【高等数学PPT课件】
A(或f
( x0
0)
A)
右极限: 定理1
lim
xx0
f (x)
A(或f (x0
0)
A)
lim f (x) A lim f (x) lim f (x) A
xx0
xx0
xx0
x sin x, x 0
例1
试问函数f ( x)
10, x 0
(c) Sketch the graph of F.
例2 lim sin x不存在 x
lim sin 1 不存在.
x0
x
y sin 1 x
思考与练习
1. 若极限 lim f ( x) 存在, 是否一定有
x x0
lim f ( x) f ( x0 ) ?
x x0
2. 设函数 f ( x) a x2, x 1 且 2x 1, x 1
lim f ( x)
x1
存在, 则 a 3 .
3.Let F (x) x 2 1 .
x 1
(a) Find (i) lim F (x) x 2 1 .
x1
x 1
(ii) lim x1
F(x)
x2 1 .
x 1
(b) Does lim F(x). exist?
x1
lim f ( x) lim f ( x) lim f ( x) 不存在.
x0
x0
x0
二、函数极限的性质
1.惟一性
定理1 (极限的惟一性) 如果函数极限
存在,则极限值惟一.
2.有界性
定理2 (局部有界性)
如果极限 lim f (x) xx0
大学数学函数的极限-PPT
注
1)0 x x0 表示 x x0 , x x0 时 f ( x) 有无极限 与
f ( x0 ) 有无定义没有关系.
2) 任意给定后,才能找到 , 依赖于 ,且 ( ) 越小, 越小.
3) 不唯一,也不必找最大的,只要存在即可.
函数极限的几何解释
y
O x
如果函数f(x)当x→x0时极限为A,以任意给定一正数ε,作两条 平 行 于 x 轴 的 直 线 y=A+ε 和 y=A-ε, 存 在 点 x0 的 δ 邻 域 (x0-δ, x0+δ),当x在邻域(x0-δ, x0+δ)内,但x≠x0时,曲线y=f(x)上的点 (x,f(x))都落在两条平行线之间。
观察函数 y=1/x 的图像
y y=1/x
o
x
再考察函数 y = ln x
y y=lnx
o
x
无穷小和无穷大的关系
在同一极限过程中,无穷小与无穷大之间是通过取倒数互相转化。 即在自变量的同一变化过程中,如果f(x)为无穷大,则
1 f ( x) 为无穷小;反之,如果f (x)为无穷小,且 f ( x) 0 则 1 为无穷大
x
x
x
若lim f ( x)或lim f ( x)不存在,则 lim f ( x)不存在.
x
x
x
若 lim f ( x) lim f ( x) , 则lim f ( x) 不存在.
x
x
x
几何意义
如果函数f(x)当x→∞时极限为A,以 任意给定一正数ε,作两条平行于x轴 的 直 线 y=A-ε 和 y=A+ε, 则 总 存 在 一 个正数X,使得当x<-X或x>X时, 函 数 y=f(x) 的 图 形 位 于 这 两 条 直 线 之间.
高等数学第一章函数极限(共41张PPT)
记 x lx 0 i作 0 m f(x ) A或 f(x 0 0 ) A . (x x 0 )
右极限 0,0,使x0当 xx0时 , 恒f有 (x)A.
记 x lx 0 i作 0 m f(x ) A或 f(x 0 0 ) A . (x x 0 )
注 :{ x 0 意 x x 0 } { x 0 x x 0 } { x x x 0 0 }
0 取 mx 0 i,n x 0 {}
当 0 |xx0|时恒有
| x x0||xxx 00|
例4 证明 lim a x 1 (a 1) x0 证 0 (不妨设ε<1)
要|使 ax1|
只 1 须 a x 1
又 la o ( 1 只 ) g x l须 a o ( 1 ) g
令 mia n 1 1 { ,llo o a(1 g g )}
x
问题: 如何用精确的数学数学语言刻划函数“无限 接近”.
f(x )A 表f(示 x )A 任;意小
xX表x示 的过 . 程
1. 定义 :
定义1 如果对于任意给定的正数 (不论它多么小), 总存在着正数X,使得对于适合不等式x X的一切 x,所对应的函数值f (x)都满足不等式f (x) A , 那末常数A就叫函数f (x)当x 时的极限,记作 limf(x) A 或 f(x)A(当x)
1. 定义:
定义2 如果对于任意给定的正数 (不论它多
么小),总存在正数 ,使得对于适合不等式
0 x x0 的一切x ,对应的函数值f (x) 都 满足不等式 f (x) A ,那末常数A 就叫函数
f (x)当x x0时的极限,记作
lim f (x) A 或
xx0
f (x) A(当x x0)
f ( xn )
右极限 0,0,使x0当 xx0时 , 恒f有 (x)A.
记 x lx 0 i作 0 m f(x ) A或 f(x 0 0 ) A . (x x 0 )
注 :{ x 0 意 x x 0 } { x 0 x x 0 } { x x x 0 0 }
0 取 mx 0 i,n x 0 {}
当 0 |xx0|时恒有
| x x0||xxx 00|
例4 证明 lim a x 1 (a 1) x0 证 0 (不妨设ε<1)
要|使 ax1|
只 1 须 a x 1
又 la o ( 1 只 ) g x l须 a o ( 1 ) g
令 mia n 1 1 { ,llo o a(1 g g )}
x
问题: 如何用精确的数学数学语言刻划函数“无限 接近”.
f(x )A 表f(示 x )A 任;意小
xX表x示 的过 . 程
1. 定义 :
定义1 如果对于任意给定的正数 (不论它多么小), 总存在着正数X,使得对于适合不等式x X的一切 x,所对应的函数值f (x)都满足不等式f (x) A , 那末常数A就叫函数f (x)当x 时的极限,记作 limf(x) A 或 f(x)A(当x)
1. 定义:
定义2 如果对于任意给定的正数 (不论它多
么小),总存在正数 ,使得对于适合不等式
0 x x0 的一切x ,对应的函数值f (x) 都 满足不等式 f (x) A ,那末常数A 就叫函数
f (x)当x x0时的极限,记作
lim f (x) A 或
xx0
f (x) A(当x x0)
f ( xn )
《高数极限》课件
答案4
$lim_{h to 0} frac{f(x + h) - f(x)}{h} = f'(x)$
THANKS
感谢观看
极限的运算性质
极限的四则运算性质
加减乘除满足相应的运算法 则。
极限的复合运算性质
复合函数的极限满足相应的 运算法则。
极限的等价变换
在一定条件下,可以将复杂 的函数进行等价变换,简化 计算过程。
02
极限的求解方法
极限的四则运算法则
加法法则
如果lim(x→a) f(x) = A 和 lim(x→a) g(x) = B,则lim(x→a) [f(x) + g(x)] = A + B。
减法法则
如果lim(x→a) f(x) = A,则lim(x→a) [f(x) - g(x)] = A - B。
乘法法则
如果lim(x→a) f(x) = A 和 lim(x→a) g(x) = B,则lim(x→a) [f(x) * g(x)] = A * B。
除法法则
如果lim(x→a) f(x) = A 和 lim(x→a) g(x) = B(B≠0),则lim(x→a) [f(x) / g(x)] = A / B。
05
习题与答案
习题部分
习题1
计算下列极限:$lim_{x to 0} frac{sin x}{x}$
习题3
讨论下列函数的极限:$lim_{x to 0} frac{e^x - 1}{x}$
习题2
计算下列极限:$lim_{x to infty} frac{x^2 + 1}{x^3 + x}$
习题4
求下列函数的导数并计算极限:$lim_{h to 0} frac{f(x + h) - f(x)}{h}$
$lim_{h to 0} frac{f(x + h) - f(x)}{h} = f'(x)$
THANKS
感谢观看
极限的运算性质
极限的四则运算性质
加减乘除满足相应的运算法 则。
极限的复合运算性质
复合函数的极限满足相应的 运算法则。
极限的等价变换
在一定条件下,可以将复杂 的函数进行等价变换,简化 计算过程。
02
极限的求解方法
极限的四则运算法则
加法法则
如果lim(x→a) f(x) = A 和 lim(x→a) g(x) = B,则lim(x→a) [f(x) + g(x)] = A + B。
减法法则
如果lim(x→a) f(x) = A,则lim(x→a) [f(x) - g(x)] = A - B。
乘法法则
如果lim(x→a) f(x) = A 和 lim(x→a) g(x) = B,则lim(x→a) [f(x) * g(x)] = A * B。
除法法则
如果lim(x→a) f(x) = A 和 lim(x→a) g(x) = B(B≠0),则lim(x→a) [f(x) / g(x)] = A / B。
05
习题与答案
习题部分
习题1
计算下列极限:$lim_{x to 0} frac{sin x}{x}$
习题3
讨论下列函数的极限:$lim_{x to 0} frac{e^x - 1}{x}$
习题2
计算下列极限:$lim_{x to infty} frac{x^2 + 1}{x^3 + x}$
习题4
求下列函数的导数并计算极限:$lim_{h to 0} frac{f(x + h) - f(x)}{h}$
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
若 0, 0,当 0 x x0 时, 有 f (x) A
则称常数 A 为函数 当
时的极限, 记作
lim f (x) A 或
xx0
即
当
几何解释:
时, 有
y
A
A
A
y f (x)
这表明:
极限存在 函数局部有界
x0 x0 x
(P30 性质2)
机动 目录 上页 下页 返回 结束
例1. 证明
y sin x
证: sin x 0 1
0.05
x
x
x
-60 -40 -20 -0.05
x 20 40 60
-0.1
故 0, 欲使
即
-0.15
取X 1,
就有
因此
注:
机动 目录 上页 下页 返回 结束
两种特殊情况 :
lim f (x) A
x
0, X 0, 当 f (x) A
时, 有
x2 1 2
x 1
因此
lim x2 1 2 x1 x 1
时 , 必有
机动 目录 上页 下页 返回 结束
当
时
结论记住!
(P29 例5)
机动 目录 上页 下页 返回 结束
2. 保号性定理
定理1 . 若
且 A > 0 , 则存在 (A<0)
f (x) 0. (P30 性质3) ( f (x) 0)
xx0
lim f (x) lim f (x) A
xx0
xx0
( P30 定理2 )
机动 目录 上页 下页 返回 结束
例5. 设函数
f
(
x)
x 0
1, ,
x 1 ,
x0 x0 x0
y
y x 1
1
o 1
x
y x 1
讨论 x 0 时 f (x) 的极限是否存在 .
解: 利用定理 3 . 因为
证略 已知
即 0,
当
时, 有
当 A > 0 时, 取正数
(< 0)
( A)
则在对应的邻域
上
( 0)
机动 目录 上页 下页 返回 结束
定理 2 . 若在 的某去心邻域内 f (x) 0 , 且
则 A 0.
( f (x) 0)
(P30推论1)
(A 0)
思考: 若定理 2 中的条件改为 f (x) 0,是否必有 A 0?
(2) 要f (x)与A多靠近,只须x与x0靠近(但 后, 就能多靠近.
)到一定程度
(3) 要| f (x)-A|多小,只须| x-x0 |小到一定程度后(但
)
就能有多小.
(4)
使得当 0 x x0 时,
f (x) A
机动 目录 上页 下页 返回 结束
定义1 . 设函数 在点 的某去心邻域内有定义 ,
lim f (x) lim (x 1) 1
x0
x0
lim f (0 ) f (0 ) , 所以 lim f (x) 不存在 .
x0
机动 目录 上页 下页 返回 结束
二、自变量趋于无穷大时函数的极限
定义2 . 设函数
大于某一正数时有定义, 若
0, X 0,
第四节 函数的极限
第一章
自变量变化过程的六种形式:
本节内容 :
一、自变量趋于有限值时函数的极限 二、自变量趋于无穷大时函数的极限
机动 目录 上页 下页 返回 结束
一、自变量趋于有限值时函数的极限
1.
时函数 f (x) 以A为极限的定义
(1) 当x与x0充分靠近(但 要多近就能有多近.
)时, f (x)与A可以任意靠近,
0, X 0, 当 x X 时, 有 f (x) A
几何意义 : 直线 y = A 仍是曲线 y = f (x) 的渐近线 .
例如,
1
1
都有水平渐近线 y 0;
1 x
x
又如,
都有水平渐近线 y 1.
机动 目录 上页 下页 返回 结束
内容小结
1. 函数极限的" " 或" X " 定义及应用
则称常数
A 为函数
时的极限, 记作
lim f (x) A
x
x X 或x X
A f (x) A
几何解释:
y
A
A
A
X o
X
直线 y = A 为曲线
的水平渐近线
y f (x) x
机动 目录 上页 下页 返回 结束
例6. 证明
lim sin x 0. (P27 例1) x x
y
0.15 0.1
2. 函数极限的性质: 保号性定理 Th1 Th2
思考与练习
与左右极限等价定理 Th3
1.
若极限 lim
x x0
f
( x) 存在,
是否一定有 lim
x x0
f (x)
f (x0 )
例3
?
2. 设函数 f (x)
a x2 , x 1 且 lim f (x) 存在, 则 2x 1, x 1 x1
(P28 例3)
证:
f (x) A
故 0, 对任意的 0, 当
时,
总有 因此
机动 目录 上页 下页 返回 结束
例2. 证明
证:
0, 欲使
只要
取 , 则当0 x x0 时 , 必有
因此
机动 目录 上页 下页 返回 结束
例3. 证明
(P29 例4)
证: f (x) A
故 0, 取 , 当
不能! 如
机动 目录 上页 下页 返回 结束
3. 左极限与右极限
左极限 :
f
(x0 )
lim
xx0
f
(x)
A
0, 0, 当 x ( x0 , x0 )
时, 有
右极限 :
f
(x0 )
lim
xx0
f
(x)
A
0, 0, 当 x ( x0 , x0 )
定理 3 .
时, 有
lim f (x) A
a 3 .
作业
P32 5;7
第四节 目录 上页 下页 返回 结束