湖南省洪江市2019-2020学年七年级上学期期末考试数学试题答案
2019-2020年新湘教版七年级上学期数学期末模拟测试卷及答案解析

湘教版七年级数学上学期期末模拟试卷(一)一、选择题1.3022的相反数是()A.3022B.﹣3022 C.|﹣3022| D.2.下列说法正确的是() A.绝对值是本身的数是正数B.倒数是本身的数是±1C.平方是它本身的数是 0D.立方等于本身的数是±13.若a<0,b>0,则b,b+a,b﹣a中最大的一个数是()A.a B.b+a C.b﹣aD.不能确定4.过度包装既浪费资源又污染环境.据测算,如果全国每年减少 10%的过度包装纸用量,那么可减排二氧化碳3120000吨,把数3120000 用科学记数法表示为()A.3.12×105 B.3.12×106 C.31.2×105 D.0.312×1075.若关于x 的方程3x+5=m与x﹣2m=5 有相同的解,则x的值是()A.3 B.﹣3C.﹣4D.46.甲以5千米/小时的速度先走16分钟,乙以13千米/小时的速度追甲,则乙追上甲的时间为多少小时()A.10 B.6 C.D.7.下面的去括号正确的是()A.x2﹣(3x﹣2)=x2﹣3x﹣2B.7a+(5b﹣1)=7a+5b+1 C.2m2﹣(3m+5)=2m2﹣3m﹣5 D.﹣(a﹣b)+(ab﹣1)=a﹣b+ab﹣18.下列说法正确的是()A.直线AB 和直线BA是两条直线 B.射线AB和射线BA是两条射线 C.线段AB和线段BA是两条线段D.直线AB 和直线a不能是同一条直线9.如果∠α和∠β互补,且∠α>∠β,则下列表示∠β的余角的式子中:①90°﹣∠β;②∠α﹣90°;③(∠α+∠β);④(∠α﹣∠β).正确的有()A.4 个 B.3 个 C.2 个 D.1个10.中国•湖南“崀山旅游节”开幕的当天,从早晨8:00开始每小时进入景区的游客人数约为1000 人,同时每小时走出景区的人数约为600人,已知崀山景区游客的饱和人数约为2000人,那么开幕当天该景区的游客人数饱和的时间约为()A.10:00 B.12:00 C.13:00 D.16:00二、填空题11.计算:0×(﹣2)﹣7= .12.据中新网上海6月1日电:世博会开园一个月来,客流平稳,累计至当晚19时,参观者已超过8000000人次.试用科学记数法表示8000000= .13.如图,整个圆表示某班参加课外活动的总人数,跳绳的人数占30%,表示踢毽的扇形圆心角是60°,踢毽和打篮球的人数比是1:2,那么表示参加“其它”活动的人数占总人数的%.14.﹣(6x2y﹣3xy2)= .15.某种苹果的售价是每千克x 元,用面值为100 元的人民币购买了5千克,应找回元.16.已知∠A 与∠B 互余,若∠A=70°,则∠B的度数为度.17.如图,若CB=4cm,DB=7cm,且D是AC的中点,则AB= .18.用黑白两种颜色的正方形纸片拼成如下一列图案:按这种规律排列第10个图案中有白色纸片张.三、解答题19.计算:3﹣(﹣2)×(﹣1)﹣8×(﹣)2÷|﹣3+1|.20.解方程:(﹣1)﹣2=2+x.21.设A=2x2﹣3xy+y2+2x+2y,B=4x2﹣6xy+2y2﹣3x﹣y,若|x﹣2a|+(y﹣3)2=0,且B﹣2A=a,求a的值.四、应用题22.郴州市某中学校团委开展“关爱残疾儿童”爱心捐书活动,全校师生踊跃捐赠各类书籍共3000 本.为了解各类书籍的分布情况,从中随机抽取了部分书籍分四类进行统计:A.艺术类;B.文学类;C.科普类;D.其他,并将统计结果绘制成如图所示的两幅不完整的统计图.(1)这次统计共抽取了本书籍,扇形统计图中的m= ,∠α的度数是;请将条形统计图补充完整;(3)估计全校师生共捐赠了多少本文学类书籍.23.以“开放崛起,绿色发展”为主题的第七届“中博会”已于2012年5月20日在湖南长沙圆满落幕,作为东道主的湖南省一共签订了境外与省外境内投资合作项目共348个,其中境外投资合作项目数的2倍比省外境内投资合作项目多51个.(1)求湖南省签订的境外,省外境内的投资合作项目分别有多少个?若境外、省外境内投资合作项目平均每个项目引进资金分别为6亿元,7.5亿元,求在这次“中博会”中,东道主湖南省共引进资金多少亿元?24.(1)如图,点C在线段AB 上,线段AC=6cm,BC=4cm,点M、N分别是AC、BC 的中点,求线段MN的长?根据(1)的计算过程和结果,设AC+BC=a,其他条件不变,你能猜出MN的长度吗?用一句话表述你发现的规律?(3)对于(1),如果叙述为:“已知线段AC=6cm,BC=4cm,点C在直线AB上,点M、N分别是AC、BC的中点,求线段MN的长?”结果会有变化吗?如果有,求出结果.五、综合题25.已知点O是直线AB上的一点,∠COE=90°,OF是∠AOE的平分线.(1)当点C,E,F在直线AB的同侧(如图1所示)时.试说明∠BOE=2∠COF;当点C与点E,F在直线AB的两旁(如图2所示)时,(1)中的结论是否仍然成立?请给出你的结论并说明理由;(3)将图2 中的射线OF绕点O顺时针旋转m°(0<m<180),得到射线OD.设∠AOC=n°,∠BOD=,则∠DOE的度数是(用含n 的式子表示).26.春节期间,七(1)班的明明、丽丽等同学随家长一同到某公园游玩,下面是购买门票时,明明与他爸爸的对话(如图),试根据图中的信息,解答下列问题:(1)明明他们一共去了几个成人,几个学生?请你帮助明明算一算,用哪种方式购票更省钱?说明理由;(3)购完票后,明明发现七班的张小涛等8名同学和他们的12名家长共20人也来购票,请你为他们设计出最省的购票方案,并求出此时的购票费用.参考答案与试题解析一、选择题1.3022的相反数是()A.3022B.﹣3022 C.|﹣3022| D.【考点】相反数.【分析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:3022的相反数是﹣3022,故选:B.【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.下列说法正确的是()A.绝对值是本身的数是正数B.倒数是本身的数是±1C.平方是它本身的数是 0D.立方等于本身的数是±1【考点】有理数的乘方;绝对值;倒数.【分析】根据绝对值的性质、倒数的定义、有理数的乘方法则判断即可.【解答】解:A、绝对值是本身的数是正数和0,故A错误;B、倒数是本身的数是±1,故B正确;C、平方是它本身的数是0和1,故C错误; D、立方等于本身的数是±1和0,故D错误.故选:B.【点评】本题主要考查的是绝对值的性质、倒数的定义、有理数的乘方,利用0,1,﹣1的特殊性进行判断是解题的关键.3.若a<0,b>0,则b,b+a,b﹣a中最大的一个数是()A.a B.b+a C.b﹣aD.不能确定【考点】有理数的减法;有理数大小比较;有理数的加法.【分析】减去一个数等于加上这个数的相反数,由于a<0,故b+a<b,b﹣a>b,进而得出结果.【解答】解:∵a<0,b>0,∴b+a<b<b﹣a.故选C.【点评】任意一个数加上一个负数一定小于它本身,加上一个正数一定大于它本身.4.过度包装既浪费资源又污染环境.据测算,如果全国每年减少 10%的过度包装纸用量,那么可减排二氧化碳3120000吨,把数3120000 用科学记数法表示为()A.3.12×105 B.3.12×106 C.31.2×105 D.0.312×107【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时, n 是正数;当原数的绝对值<1 时,n是负数.【解答】解:将3120000用科学记数法表示为:3.12×106.故选:B.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|< 10,n为整数,表示时关键要正确确定a的值以及n的值.5.若关于 x 的方程 3x+5=m 与 x﹣2m=5 有相同的解,则 x 的值是()A.3 B.﹣3 C.﹣4 D.4【考点】同解方程.【专题】计算题.【分析】此题可将两式的m用x 来代替,然后令两式相等,即可解出x的值.【解答】解:3x+5=m,∴m=3x+5①;又x﹣2m=5,∴m=②;令①=②,∴3x+5=,6x+10﹣x+5=0,∴x=﹣3,故选:B.【点评】此题可根据两个方程有相同的解可知两式的x值相等,注意细心作答,否则很容易出错.6.甲以5千米/小时的速度先走16分钟,乙以13千米/小时的速度追甲,则乙追上甲的时间为多少小时()A.10 B.6 C.D.【考点】一元一次方程的应用.【分析】设出追上甲所需的时间,利用甲和乙走过的距离相等,列出方程进行求解.【解答】解:设乙追上甲的时间为x小时,由题意得5(x+)=13x解得:x=答:乙追上甲的时间为小时.故选:C.【点评】本题考查一元一次方程的应用,关键在于找出题目中的等量关系,根据等量关系列出方程解答.7.下面的去括号正确的是()A.x2﹣(3x﹣2)=x2﹣3x﹣2B.7a+(5b﹣1)=7a+5b+1 C.2m2﹣(3m+5)=2m2﹣3m﹣5 D.﹣(a﹣b)+(ab﹣1)=a﹣b+ab﹣1【考点】去括号与添括号.【分析】根据去括号法则,对四个选项逐一进行分析,即可得出正确结果.【解答】解:根据去括号的方法:A、应为x2﹣(3x﹣2)=x2﹣3x+2,错误;B、应为7a+(5b﹣1)=7a+5b﹣1,错误; C、正确; D、﹣(a﹣b)+(ab﹣1)=a+b+ab﹣1,错误.故选C.【点评】本题考查去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘,再运用括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“﹣”,去括号后,括号里的各项都改变符号.8.下列说法正确的是()A.直线AB 和直线BA是两条直线B.射线AB和射线BA是两条射线C.线段AB和线段BA是两条线段D.直线AB 和直线a不能是同一条直线【考点】直线、射线、线段.【专题】应用题.【分析】此题较简单要熟知线、线段、射线的概念及直线、线段、射线的表示方法.【解答】解:A、直线AB和直线BA是同一条直线;B、正确;C、线段AB和线段BA是一条线段;D、直线AB 和直线a能是同一条直线.故选B.【点评】直线:是点在空间内沿相同或相反方向运动的轨迹.向两个方向无限延伸.线段:直线上两个点和它们之间的部分叫做线段,这两个点叫做线段的端点.9.如果∠α 和∠β 互补,且∠α>∠β,则下列表示∠β 的余角的式子中:①90°﹣∠β;②∠α﹣90°;③(∠α+∠β);④(∠α﹣∠β).正确的有()A.4 个 B.3 个 C.2 个 D.1个【考点】余角和补角.【专题】压轴题.【分析】根据角的性质,互补两角之和为180°,互余两角之和为90°,可将,①②③④中的式子化为含有∠α+∠β 的式子,再将∠α+∠β=180°代入即可解出此题.【解答】解:∵∠α 和∠β互补,∴∠α+∠β=180°.因为 90°﹣∠β+∠β=90°,所以①正确;又∠α﹣90°+∠β=∠α+∠β﹣90°=180°﹣90°=90°,②也正确;(∠α+∠β)+∠β= ×180°+∠β=90°+∠β≠90°,所以③错误;(∠α﹣∠β)+∠β= (∠α+∠β)= ×180°=90°,所以④正确.综上可知,①②④均正确.故选B.【点评】本题考查了角之间互补与互余的关系,互补两角之和为180°,互余两角之和为90°.10.中国•湖南“崀山旅游节”开幕的当天,从早晨8:00开始每小时进入景区的游客人数约为1000 人,同时每小时走出景区的人数约为600人,已知崀山景区游客的饱和人数约为2000人,那么开幕当天该景区的游客人数饱和的时间约为()A.10:00 B.12:00 C.13:00 D.16:00【考点】一元一次方程的应用.【分析】设开幕当天该景区游客人数饱和的时间约为x点,结合已知条件“从早晨8:00开始每小时进入景区的游客人数约为1000人,同时每小时走出景区的游客人数约为600人,已知景区游客的饱和人数约为2000人”列出方程并解答.【解答】解:设开幕式当天该景区游客人数饱和的时间约为x点,则(x﹣8)×(1000﹣600)=2000,解得:x=13.即开幕式当天该景区游客人数饱和的时间约为13:00.故选:C.【点评】本题考查了一元一次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.二、填空题11.计算:0×(﹣2)﹣7= ﹣7 .【考点】有理数的混合运算.【分析】根据有理数的运算法则和运算顺序计算即可.【解答】解:0×(﹣2)﹣7=0﹣7=﹣7.故答案为:﹣7.【点评】本题考查了有理数的运算法则和运算顺序,注意任何数同零相乘,都得0.12.据中新网上海6月1日电:世博会开园一个月来,客流平稳,累计至当晚19时,参观者已超过8 000 000人次.试用科学记数法表示8 000000= 8×106【考点】科学记数法—表示较大的数.【专题】应用题.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于1 时,n是正数;当原数的绝对值小于1 时,n是负数.【解答】解:用科学记数法表示8000000=8×106.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n 的值.13.如图,整个圆表示某班参加课外活动的总人数,跳绳的人数占30%,表示踢毽的扇形圆心角是60°,踢毽和打篮球的人数比是 1:2,那么表示参加“其它”活动的人数占总人数的 20 %.【考点】扇形统计图.【分析】由“踢毽的扇形圆心角是60°,踢毽和打篮球的人数比是1:2”可得,踢毽的人数占总人数的比例以及打篮球的人数占的比例,由“各部分占总体的百分比之和为 1”可得:参加“其它”活动的人数占总人数的比例.【解答】解:由题意知,踢毽的人数占总人数的比例=60°÷360°=,则打篮球的人数占的比例=×2=,∴表示参加“其它”活动的人数占总人数的比例=1﹣﹣﹣30%=20%.故答案为:20%.【点评】本题考查的是扇形图的定义.在扇形统计图中,各部分占总体的百分比之和为1,每部分占总体的百分比等于该部分所对应的扇形圆心角的度数与360°的比.14.﹣(6x2y﹣3xy2)= 5xy2﹣3x2y .【考点】整式的加减.【专题】计算题.【分析】原式去括号合并即可得到结果.【解答】解:原式=2xy2+3x2y﹣6x2y+3xy2=5xy2﹣3x2y.故答案为:5xy2﹣3x2y【点评】此题考查了整式的加减,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握运算法则是解本题的关键.15.某种苹果的售价是每千克x元,用面值为100元的人民币购买了5千克,应找回(100﹣5x)元.【考点】列代数式.【分析】单价×重量=应付的钱;剩余的钱即为应找回的钱.【解答】解:根据题意,5 千克苹果售价为 5x 元,所以应找回(100﹣5x)元.故答案为(100﹣5x).【点评】此题考查列代数式,属基础题,简单.16.已知∠A 与∠B 互余,若∠A=70°,则∠B 的度数为 20 度.【考点】余角和补角.【专题】计算题.【分析】根据余角定义直接解答.【解答】解:∠B=90°﹣70°=20°.【点评】本题比较容易,考查互余角的数量关系.根据余角的定义可得∠B=90°﹣70°=20度.17.如图,若CB=4cm,DB=7cm,且D 是AC 的中点,则AB= 10cm .【考点】两点间的距离.【分析】先求出CD的长度,也就是AD的长度,然后代入数据计算即可求出AB的长度.【解答】解:∵CB=4cm,DB=7cm,∴CD=BD﹣BC=7﹣4=3cm,∵点D为AC的中点,∴AD=CD=3cm,∴AB=AD+BD=3+7=10cm.故答案为:10cm.【点评】本题考查了两点间的距离的计算,以及中点的定义,读懂图形,利用数形结合思想有助于解题的准确性,是基础题.18.用黑白两种颜色的正方形纸片拼成如下一列图案:按这种规律排列第10个图案中有白色纸片31 张.【考点】规律型:图形的变化类.【专题】压轴题;规律型.【分析】通过观察图形发现其中的规律,并应用规律解决问题.【解答】解:根据题意分析可得:第1个图案中有白色纸片4个,此后,每个图形都比前一个图形多3个;故按这种规律排列第10个图案中有白色纸片3×9+4=31个.【点评】此题考查了平面图形的有规律变化,主要培养学生的观察能力和分析、归纳能力.三、解答题19.计算:3﹣(﹣2)×(﹣1)﹣8×(﹣)2÷|﹣3+1|.【考点】有理数的混合运算.【专题】计算题;实数.【分析】原式先计算乘方及绝对值运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:原式=3﹣2﹣2÷2=3﹣2﹣1=0.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.20.解方程:(﹣1)﹣2=2+x.【考点】解一元一次方程.【专题】计算题.【分析】方程去括号,去分母,移项合并,将x系数化为1,即可求出解.【解答】解:去括号得:﹣1﹣3=2+x,去分母得:x﹣16=8+4x,移项合并得:3x=﹣24,解得:x=﹣8.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.21.设A=2x2﹣3xy+y2+2x+2y,B=4x2﹣6xy+2y2﹣3x﹣y,若|x﹣2a|+(y﹣3)2=0,且B﹣2A=a,求a的值.【考点】整式的加减—化简求值;非负数的性质:绝对值;非负数的性质:偶次方.【分析】根据绝对值和平方的非负性求得x与y的值,再对所求代数式进行化简,然后把x,y的值代入求解即可.【解答】解:∵|x﹣2a|+(y﹣3)2=0∴x=2a,y=3∵B﹣2A=4x2﹣6xy+2y2﹣3x﹣y﹣2=4x2﹣6xy+2y2﹣3x﹣y﹣4x2+6xy﹣2y2﹣4x﹣4y=﹣7x﹣5y又B﹣2A=a∴﹣7×2a﹣5×3=a∴a=﹣1.【点评】本题考查了非负数的性质:有限个非负数的和为零,那么每一个加数也必为零,即若a1,a2,…,a n为非负数,且a1+a2+…+a n=0,则必有a1=a2=…=a n=0.初中阶段有三种类型的非负数:(1)绝对值;偶次方;(3)二次根式(算术平方根).当它们相加和为0时,必须满足其中的每一项都等于0.根据这个结论可以求解这类题目.四、应用题22.郴州市某中学校团委开展“关爱残疾儿童”爱心捐书活动,全校师生踊跃捐赠各类书籍共3000 本.为了解各类书籍的分布情况,从中随机抽取了部分书籍分四类进行统计:A.艺术类;B.文学类;C.科普类;D.其他,并将统计结果绘制成如图所示的两幅不完整的统计图.(1)这次统计共抽取了200 本书籍,扇形统计图中的 m= 40 ,∠α 的度数是 36°;请将条形统计图补充完整;(3)估计全校师生共捐赠了多少本文学类书籍.【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)用A的本数÷A所占的百分比,即可得到抽取的本数;用C的本数÷总本数,即可求得m;计算出D的百分比乘以360°,即可得到圆心角的度数;计算出B的本数,即可补全条形统计图;(3)根据文学类书籍的百分比,即可解答.【解答】解:(1)40÷20%=200(本),80÷200=40%,×360°=36°,故答案为:200,40,36°;B的本数为:200﹣40﹣80﹣20=60(本),如图所示:(3)3000×=900(本).答:估计全校师生共捐赠了900本文学类书籍.【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.23.以“开放崛起,绿色发展”为主题的第七届“中博会”已于2012年5月20日在湖南长沙圆满落幕,作为东道主的湖南省一共签订了境外与省外境内投资合作项目共348个,其中境外投资合作项目个数的2倍比省外境内投资合作项目多51个.(1)求湖南省签订的境外,省外境内的投资合作项目分别有多少个?若境外、省外境内投资合作项目平均每个项目引进资金分别为6亿元,7.5亿元,求在这次“中博会”中,东道主湖南省共引进资金多少亿元?【考点】一元一次方程的应用.【分析】(1)利用境外投资合作项目个数的2 倍比省外境内投资合作项目多51个,得出等式方程求出即可;根据(1)中数据以及境外、省外境内投资合作项目平均每个项目引进资金分别为 6 亿元,7.5 亿元,得出即可.【解答】解:(1)设境外投资合作项目个数为x个,根据题意得出:2x﹣(348﹣x)=51,解得:x=133,故省外境内投资合作项目为:348﹣133=215个.答:境外投资合作项目为133个,省外境内投资合作项目为215个.∵境外、省外境内投资合作项目平均每个项目引进资金分别为6亿元,7.5亿元,∴湖南省共引进资金:133×6+215×7.5=2410.5亿元.答:东道主湖南省共引进资金2410.5亿元.【点评】此题主要考查了一元一次方程的应用,关键是弄清题意,找到等量关系:境外投资合作项目个数的2倍比省外境内投资合作项目多51个列出方程是解题关键.24.(1)如图,点C在线段AB 上,线段AC=6cm,BC=4cm,点M、N分别是AC、BC 的中点,求线段MN的长?根据(1)的计算过程和结果,设AC+BC=a,其他条件不变,你能猜出MN的长度吗?用一句话表述你发现的规律?(3)对于(1),如果叙述为:“已知线段AC=6cm,BC=4cm,点C在直线AB上,点M、N分别是AC、BC的中点,求线段MN的长?”结果会有变化吗?如果有,求出结果.【考点】两点间的距离.【分析】(1)根据线段的中点的性质,可得MC、NC的长,再根据线段的和差,可得答案;方法同(1);(3)方法同(1).【解答】解:(1)点M、N分别是AC、BC的中点,AC=6cm,BC=4cm,MC=AC÷2=6÷2=3cm,NC=CB÷2=4÷2=2cm,由线段的和差,得MN=MC+NC=3+2=5(cm).答:线段MN 的长是5cm.MN=a,MN的长度等于(AC+BC);(3)会有变化.当C点在线段AB上时,MN=5cm;当C点在线段AB的延长线上时,MN=1cm.【点评】本题考查了两点间的距离,先算出MC、NC的长,再算出MN的长.利用中点性质转化线段之间的倍分关系是解题的关键.五、综合题25.已知点O是直线AB上的一点,∠COE=90°,OF是∠AOE的平分线.(1)当点C,E,F在直线AB的同侧(如图1所示)时.试说明∠BOE=2∠COF;当点C与点E,F在直线AB的两旁(如图2所示)时,(1)中的结论是否仍然成立?请给出你的结论并说明理由;(3)将图2 中的射线OF绕点O顺时针旋转m°(0<m<180),得到射线OD.设∠AOC=n°,若∠BOD=,则∠DOE的度数是(30+n)°(用含n 的式子表示).【考点】角平分线的定义;角的计算;余角和补角.【专题】计算题.【分析】(1)设∠COF=α,则∠EOF=90°﹣α,根据角平分线性质求出∠AOF、∠AOC、推出∠BOE即可;设∠AOC=β,求出∠AOF,推出∠COF、∠BOE、即可推出答案;(3)根据∠DOE=180°﹣∠BOD﹣∠AOE 或∠DOE=∠BOE+∠BOD 和∠AOE=90°﹣∠AOC,代入求出即可.【解答】解:(1)设∠COF=α,则∠EOF=90°﹣α,∵OF 是∠AOE平分线,∴∠AOF=90°﹣α,∴∠AOC=(90°﹣α)﹣α=90°﹣2α,∠BOE=180°﹣∠COE﹣∠AOC,=180°﹣90°﹣(90°﹣2α),=2α,即∠BOE=2∠COF;解:成立,设∠AOC=β,则∠AOF=,∴∠COF=45°+=(90°+β),∠BOE=180°﹣∠AOE,=180°﹣(90°﹣β),=90°+β,∴∠BOE=2∠COF;(3)解:分为两种情况:如图3,∠DOE=180°﹣∠BOD﹣∠AOE,=180°﹣(60﹣)°﹣(90°﹣n°),=(30+n)°,如图4,∵∠BOE=180°﹣∠AOE=180°﹣(90°﹣n°)=90°+n°,∠BOD=(60﹣)°∴∠DOE=∠BOE+∠BOD,=(90°+n°)+(60﹣)°,=(150+n)°此时若要∠FOD<180°,则有n>90°,与题意不符;故舍去综上答案为:(30+n)°.【点评】本题考查了角平分线定义,角的大小计算等知识点的应用,主要培养学生分析问题和解决问题的能力,题目比较典型,有一定的代表性.26.春节期间,七(1)班的明明、丽丽等同学随家长一同到某公园游玩,下面是购买门票时,明明与他爸爸的对话(如图),试根据图中的信息,解答下列问题:(1)明明他们一共去了几个成人,几个学生?请你帮助明明算一算,用哪种方式购票更省钱?说明理由;(3)购完票后,明明发现七班的张小涛等8名同学和他们的12名家长共20人也来购票,请你为他们设计出最省的购票方案,并求出此时的购票费用.【考点】一元一次方程的应用.【专题】阅读型.【分析】(1)设成人人数为x人,则学生人数为(12﹣x)人,由题中所给的票价单可得出关于x的一元一次方程,解此方程即可得出成人与学生各有多少人数;已知购个人票的价钱,再算出购团体票的价钱,哪个更低哪个就更省钱;(3)由第二问可知购团体票要比购个人票便宜,再算出购16张团体票和4张学生票的价钱与全部购团体票的价钱比较,即可得最省的购票方案.【解答】解:(1)设成人人数为x人,则学生人数为(12﹣x)人,则:由题中所给的票价单可得:35x+(12﹣x)=350解得:x=8故:学生人数为12﹣8=4人,成人人数为8人.如果买团体票,按16人计算,共需费用:35×0.6×16=336元336<350所以,购团体票更省钱.(3)最省的购票方案为:买16人的团体票,再买4张学生票.此时的购票费用为:16×35×0.6+4×17.5=406元.【点评】本题考查了一元一次方程在经济问题中的运用以及购票方法的选取.。
2019—2020年新湘教版七年级数学上册(第一学期)期末模拟综合试题及答案解析(试题).docx

上学期期末教学质量监测模拟试卷七年级数学(时量:120分钟 满分:130分)姓名: 班级: 得分:一、选择题(本大题共10小题,每小题3分,共30分)1.81-的相反数是( )A .81-B .8-C .81D .82.下列有理数大小关系判断正确的是( )A .)21()21(-+<--B .5465-<-C .3282110>--D .)327(327--=--3.神州十一号飞船成功飞向浩瀚宇宙,并在距地面约390000米的轨道上与天宫二号交会对接. 将390000用科学记数法表示应为() A .4109.3⨯ B .5109.3⨯C .41039⨯ D .61039.0⨯ 4.单项式32xy π-的系数和次数分别是( ) A .π2-,4B .4,π2-C .-2,3D .3,-2 5.若6135'︒=∠A ,则其余角的度数为( ) A .4454'︒B .4854'︒C .4455'︒D .44144'︒6.为了解某校2000名学生的视力情况,从中随机调查了400名学生的视力情况,下列说法正确的是( )A .400名学生是总体B .每个学生是个体C .该调查的方式是普查D .2000名学生的视力情况是总体 7.如图,已知OC 是AOB ∠内部的一条射线,︒=∠30AOC ,OE 是COB ∠的平分线.当︒=∠40BOE 时,AOB ∠的度数是A .70°B .80°C .100°D .110°8.关于多项式1723.03232+--xy y x y x ,下列说法错误的是( ) A. 这个多项式是五次四项式B. 四次项的系数是7C. 常数项是1D. 按y 降幂排列为13.0272233++--y x y x xy9.观察图中正方形四个顶点所标的数字规律,可知数2016应标在( )A .第503个正方形的左下角B .第503个正方形的右下角C .第504个正方形的左下角D .第504个正方形的右下角10. 如图,R P N M ,,,分别是数轴上四个整数所对应的点,其中有一点是原点,并且1===PR NP MN . 数a 对应的点在M 与N 之间,数b 对应的点在P 与R 之间,若3=+b a ,则原点可能是A. M 或RB. N 或PC. M 或ND. P 或R二、填空题(本大题共10小题,每小题3分,共30分) 11.已知55-x 与93--x 互为相反数,则=x .12.一个三位数,a 表示百位数,b 表示十位数,c 表示个位数,那么这个数可表示为 .13.当=k 时,代数式8)3(2---xy k x 不含xy 项. 14.若关于x 的方程5)2(1=--m xm 是一元一次方程,则=m ________.15.若方程112-=+x 的解也是关于x 的方程2)(21=--a x 的解,则a 的值为.16.某种商品的标价为200元,按标价的八折出售,这时仍可盈利25%,若设这种商品的进价是x 元,由题意可列方程为.17.当1=x 时,代数式43213+-bx ax 的值是7,则当1-=x 时,这个代数式的值是.18.如下图,已知点C 在线段AB 上,点M 、N 分别是AC 、BC 的中点,且AB =8cm ,则MN 的长度为cm .19. 如图,在正方形ABCD 中,E 为DC 边上的一点,沿线段BE 对 折后,若ABF ∠比EBF ∠大︒15,则EBF ∠的度数是. 20. 若19=a ,97=b ,且b a b a +≠+,那么=-b a . 三、解答题(本大题共9小题,共70分) 21.(本小题满分8分)计算:(1)51)3()21()2(1232016------⨯-+- (2))214131(125+-⨯--22.(本小题满分12分)解方程:(1)31)2(3-=-+x x ; (2)23141xx x --=--.23.(本小题满分5分)先化简,再求值:)76()32(2522a ab a ab ab ---+,其中b a ,满足()03112=-++b a .24.(本小题满分5分)平面上有四个点A 、B 、C 、D ,按照以下要求作图: (1)连接AB 并延长AB 至E ,使AB BE =; (2)作射线CB ;(3)在直线BD 上确定点G ,使得GC AG +最短.25.(本小题满分6分)某车间共有75名工人生产A 、B 两种零件,已知一名工人每天可生产A 种零件15件或B 种零件20件,但要安装一台机械时,同时需A 种零件1件,BADBC种零件2件,才能配套。
湘教版2019-2020学年七年级上学期数学期末考试试卷(I)卷

湘教版2019-2020学年七年级上学期数学期末考试试卷(I)卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分) (2020七上·德江期末) 的绝对值和相反数分别是()A . ,B . ,C . ,D . ,2. (2分) (2017七上·杭州月考) 下列大小比较正确的是()A . <B . -(- )=-|- |C . -(-31)<+(-31)-(-31)<+(-31)D . -|-10 |>73. (2分) (2018九上·白云期中) 十九大传递出许多值得青年关注的大数据,报告总结近五年解决了65000000青年人的就业问题,随着社会进步,大家要坚信就业状况将会持续改善. 65000000用科学记数法表示为()A .B .C .D .4. (2分) (2018七上·惠来月考) 下列各题正确的是()A . 由7x=4x﹣3移项得7x﹣4x=36B . 由去分母得2(2x﹣1)=1+3(x﹣3)C . 由2(2x﹣1)﹣3(x﹣3)=1去括号得4x﹣2﹣3x﹣9=1D . 由2(x+1)=x+7去括号、移项、合并同类项得x=55. (2分)(2018·益阳模拟) 下列运算正确的是()A . 2x+y=2xyB . x•2y2=2xy2C . 2x÷x2=2xD . 4x﹣5x=﹣16. (2分) (2018七上·松滋期末) 某土建工程共需动用30台挖运机械,每台机械每分钟能挖土3m3 ,或者运土2m3 ,为了使挖土和运土工作同时结束,安排了x台机械挖土,这里的x应满足的方程是()A .B .C .D .7. (2分)观察如图所示的数字排列表,按此规律,第673行的最后一个数应是()A . 2015B . 2016C . 2017D . 20188. (2分) (2018七上·银川期末) 已知∠AOB=20°,∠AOC=4∠AOB,OD平分∠AOB,OM平分∠AOC,则∠MOD的度数是()A . 20°或50°B . 20°或60°C . 30°或50°D . 30°或60°二、填空题 (共6题;共6分)9. (1分) (2019七上·双台子月考) 在-3、4、-2、5四个数中,任意两个数之积的最小值为________.10. (1分) (2016七上·仙游期中) 将12.348用四舍五入法取近似数,精确到0.01,其结果是________.11. (1分) (2019七上·大丰期中) 若与是同类项,则的值为________.12. (1分) (2019八上·武汉月考) 如图,一艘海轮位于灯塔P的南偏东70°方向的M处,它以每小时40海里的速度向正北方向航行,2小时后到达位于灯塔P的北偏东40°的N处,则NP=________海里.13. (1分) (2018七上·泰州月考) 已知点A在数轴上对应的有理数为a,将点A向左移动3个单位长度后,再向右移动1个单位长度得到点B,其在数轴上对应的有理数为﹣4.5,则有理数a=________.14. (1分)(2016·新化模拟) 观察下列图形,它们是按一定规律排列的,依照此规律,第6个图形有________个太阳.三、解答题 (共9题;共86分)15. (15分) (2019七上·龙华月考) 计算:(1) 13+(﹣5)﹣(﹣21)﹣19;(2)16. (5分) (2019九上·贵阳期末) 画出如图所示立体图形的三视图.17. (10分) (2018七上·江阴期中) 解方程:(1) 5x+3=7x+9(2)18. (10分) (2019七上·浦北期中) 解答下列各题:(1)按由小到大的顺序排列五个连续整数,已知第二个整数是,求这五个连续整数的乘积;(2)三个连续奇数中,中间一个是,求这三个连续奇数的和.19. (10分) (2017七上·点军期中) 一辆货车从超市出发,向东走了1千米,到达小明家,继续向东走了3千米到达小兵家,然后西走了10千米,到达小华家,最后又向东走了6千米结束行程.(1)如果以超市为原点,以向东为正方向,用1个单位长度表示1千米,请你在下面的数轴上表示出小明家、小兵家和小华家的具体位置.(2)请你通过计算说明货车最后回到什么地方?(3)如果货车行驶1千米的用油量为0.25升,请你计算货车从出发到结束行程共耗油多少升?20. (5分)(2017·石景山模拟) 列方程解应用题:我国元代数学家朱世杰所撰写的《算学启蒙》中有这样一道题:“良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何追及之.”译文:良马平均每天能跑240里,驽马平均每天能跑150里.现驽马出发12天后良马从同一地点出发沿同一路线追它,问良马多少天能够追上驽马?21. (10分)如图,O为直线AB上一点,∠AOC =50°,OD平分∠AOC,∠DOE=90°,(1)求∠BOD的度数.(2)通过计算判断OE是否平分∠BOC.22. (10分) (2019七上·城关期末) 某动物园的门票价格如下:购票张数1﹣50张51﹣100张100张以上每张票的价格15元12元10元某校七年级(1)、(2)两班共103人去游玩,其中(1)班有40多人,但不足50人.经估算,如果两个班都以班为单位购票,则一共应付1380元.问:(1)两班各有多少学生?(2)如果两个班联合起来,作为一个团体购票,可省多少钱?(3)如果七年级(1)班单独组织去动物园,作为组织者的你将如何购票才最省钱?23. (11分) (2019七上·宽城期末) 已知数轴上点A在原点的左侧,到原点的距离为6个单位长度,点B在原点的右侧,从点A走到点B ,要经过10个单位长度.(1)直接写出A、B两点所对应的数.(2)若点C也是数轴上的点,点C到点B的距离是4,求点C所对应的数.参考答案一、单选题 (共8题;共16分)1、答案:略2、答案:略3、答案:略4、答案:略5、答案:略6、答案:略7、答案:略8、答案:略二、填空题 (共6题;共6分)9、答案:略10、答案:略11、答案:略12、答案:略13、答案:略14、答案:略三、解答题 (共9题;共86分)15、答案:略16、答案:略17、答案:略18、答案:略19、答案:略20、答案:略21、答案:略22、答案:略23、答案:略。
2019-七年级数学上期期末考试参考答案

2019-2020 年七年级数学上期期末考试参照答案说明:1. 若是考 的解答与本参照答案供应的解法不同样,可依照供应的解法的 分 准精神行 分.2. 卷,要 持每 终究, 不能够因考生解答中出 而中断 本 的 .如果考生的解答在某一步出 , 影响后 部分而未改 本 的内容和 度, 影响的程度决定 后边 分的多少,但原 上不超 后 部分 得分数之半.3. 分 准中,如无特别 明,均 累 分.4. 分 程中,只 整数分数.一、 (每小 3 分,共18 分)号 1 2 3 4 5 6 答案ADDCCB二、 填空 (每小3 分,共27 分)78910 1112131415号答柱 ,7月14号5( 0. 8b-10)(或 7月 15案 2145°448号)三、解答 (共 55 分)16.解: (1)20116 ( 2)13)21 ( ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4 分21 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6 分217.解:( 1)如 ;⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 2 分( 2)如 ; ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 4 分( 3) MN ⊥ PH . ⋯⋯⋯⋯⋯⋯⋯⋯ 6 分18.解:① . ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 1 分2(2x 1)(5x1) 6 .4x 2 5x1 6 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4 分4x 5x 1 2 6 .x 3 .x 3 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 6 分19.解:原由以下:个数是x ,142(5x7)( 10) 1410x14( 10) 10x ( 10)x.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 1 分⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 4 分⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 6 分⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8 分20. 解:( 1)1224%50(名).班共50 名同学;⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 3 分( 2)如;⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 6 分学生平均每天完成作用学生平均每天完成作用人数30300.5 小1.5 小2024%16% 121 小10860%11.5 平均每天完成作用/小(3) 名同学平均每天完成作 用1 小 的可能性最大,因 从扇形 能够看出平均每天完成作 用1 小 占的地域最大.⋯⋯⋯⋯⋯⋯9 分21. 解:(1)三角形个数依次 :0,5, 10;⋯⋯⋯3分(2) 5( n - 1)个;⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 6 分(3)不能够 .⋯⋯⋯⋯⋯⋯ 7 分因 5( n - 1)=2011, 而 n2016 10 分不是整数,所以不能够 . ⋯⋯⋯⋯⋯⋯⋯522. 解: (1)x 秒后, 用 出的噪声开始使小明碰到影响.由 可得 100 4x 6x 20 . 解得 x 40 .40秒 , 用 出的噪声开始使小明碰到影响 . ⋯⋯⋯⋯⋯⋯⋯⋯ 4 分(2) 小明碰到 用 噪声的影响会持y 秒 .由 可得 6 y 4 y 20 20 .解得 y20 .小明碰到 用 噪声的影响会持20 秒. ⋯⋯⋯⋯⋯⋯⋯⋯ 7 分(3) 用 好 小明身旁 ,小明立刻停下来,受 用 噪声影响持 的 比(2)短.⋯⋯⋯⋯⋯⋯⋯ 8 分原由以下: 用 从离小明20 米到追上小明用 z 秒 .由 可得 6z 4z 20 .解得 z 10 .因 206 31,31011313<20.33所以用好小明身旁,小明立刻停下来,受用噪声影响持的比( 2)短 .⋯⋯⋯⋯⋯⋯⋯⋯ 10 分。
2019-2020学年度第一学期期末考试七年级数学试题参考答案

2019—2020学年度第一学期期末考试七年级数学试题参考答案说明:解答题各小题只给出了一种解法及评分标准.其他解法,只要步骤合理,解答正确,均应给出相应的分数.一、选择题:每小题3分,满分30分题号 1 2 3 4 5 6 7 8 9 10答案 B D C B A B A C D C二、填空题:本题共5小题,每题3分,共15分11.1;12.36;13.-6;14.250;15.8m+12.三、解答题:本题共7小题,共55分.要写出必要的文字说明或演算步骤.16.(本小题6分)(每正确画出一个图形得2分,共6分)17.(本小题6分)解:(1)(1)A-2B=(3a2-5ab)-2(a2-2ab)1分=3a2-5ab-2a2+4ab 2分=a2-ab. 3分(2)∵|3a +1|+(2-3b )2=0,∴3a +1=0,2-3b =0,解得a =13-,b =23. 4分 ∴A -2B =a 2-ab . =2112333⎛⎫⎛⎫---⨯ ⎪ ⎪⎝⎭⎝⎭ 5分 =121993+=. 6分 18.(本小题7分)(1)画图:如图所示. 4分(每正确画出一条射线得2分)(2)解:由题意知:∠MOG =110°,∠MOA =40°, 5分∴∠AOG=∠MOG -∠MOA =110°-40°=70° 射线OG 表示的方向是北偏东70°. 7分19.(本小题8分)解:(1)设甲、乙两车合作还需要x 天运完垃圾,根据题意,得31151530x x ++= 2分解得:x =8 3分答:甲、乙两车合作还需要8天运完垃圾.4分 (2)设乙车每天租金为y 元,则甲车每天租金为(y +100)元,根据题意,得 (3+8)(y +100)+8y =3950 6分解得:y =150 7分150+100=250答:甲车每天租金为250元,乙车每天租金为150元. 8分20.(本小题8分)解:(1)∵OB 平分∠AOC ,∴∠BOC =21∠COA =21×30°=15°. 1分同理:∠DOC =21∠EOC =21×90°=45°. 2分∴∠BOD =∠BOC +∠DOC =15°+45°=60°. 3分(2)∵OB 平分∠AOC ,∴∠COA =2∠BOC =2α. 4分同理:∠EOC =2∠DOC =2β. 5分∴∠AOE =∠COA +∠EOC =2α+2β. 6分(3)∠AOE =2∠BOD . 8分21.(本小题9分)(1)答:第①步错误,原因是去括号时,2这项没有乘以3;2分第④步错误,原因是应该用8除以2,小马用2除以8了. 4分【原因只要叙述合理即可得分】(2)解:7531164y y ---=,去分母得:12-2(7-5y )=3(3y -1). 6分去括号得:12-14+10y =9y -3. 7分移项得:10y -9y =-3-12+14. 8分合并同类项,得:y =-1. 9分22.(本小题11分)解:(1)EF =2020-(-2020)=4040. 2分(2)①当点P 是线段AB 的中点时,则PA =PB .所以x -(-2)=3-x .解得:x =0.5. 4分②当点A 是线段PB 的中点时,则PA =AB .所以(-2)-x =3-(-2).解得:x =-7. 6分③当点B 是线段P A 的中点时,则PB =AB .所以x -3=3-(-2).解得:x =8. 8分(3)答:在点A 左侧存在一点Q ,使点Q 到点A ,B 的距离和为19. 9分解:设点Q 表示的数是y .因为QA +QB =19,所以(-2)-y +3-y =19. 10分解得:y=-9.所以点Q表示的数是-9.11分。
2019-2020学年七年级数学上学期期末考试试卷(解析版)

2019-2020学年七年级数学上学期期末考试试卷一、选择题(本大题共10小题,共30.0分)1.一个物体向右移动1m记作+1m,那么这个物体向左移动3m记作()A. B. C. D.2.如图,数轴上有A,B,C,D四个点,其中所对应的数互为相反数的是()A. A与CB. A与DC. B与CD. B与D3.单项式-2x3y的系数为()A. B. 1 C. 2 D. 34.下列各式错误的是()A. B. C. D.5.如图所示,这个圆锥的侧面展开图可能是()A.B.C.D.6.已知a=b,下列变形不一定成立的是()A. B. C. D.7.买两种布料共120米,花了540元.其中蓝布料每米3元,黑布料每米5元,设买了蓝布料x米,依题意列方程()A. B.C. D.8.如图,将三角形纸片ABC沿EF折叠,点C落在C′处.若∠BFE=65°,则∠BFC′的度数为()A.B.C.D.9.如图,取一条长度为1的线段,将它三等分,去掉中间一段,余下两条线段,达到第1阶段;将剩下的两条线段再分别三等分,各去掉中间一段,余下四条线段,达到第2阶段;再将剩下四条线段分别三等分,各去掉中间一段,余下八条线段,达到第3阶段;…;这样一直继续操作下去,当达到第2017个阶段时,余下的线段的长度之和为()A. B. C. D.10.下列结论:①平面内3条直线两两相交,共有3个交点;②在平面内,若∠AOB=40°,∠AOC=∠BOC,则∠AOC的度数为20°;⑨若线段AB=3,BC=2,则线段AC的长为1或5;④若∠α+∠β=180°,且∠α<∠β,则∠α的余角为(∠β-∠α).其中正确结论的个数有()A. 1个B. 2个C. 3个D. 4个二、填空题(本大题共6小题,共18.0分)11.-的倒数是______.12.将一副三角板如图放置,则∠ABD的度数为______°.13.多项式3a2b-2ab+5是______次______项式,其中常数项为______.14.某货轮O在航行过程中,发现灯塔A在它的南偏东55°方向上,同时在它的北偏东40°方向发现了一座海岛B,则∠AOB的度数为______°.15.某商品按成本增加20%定出价格,由于库存积压,现将该商品按定价九折出售,那么出售该商品最终是______(填“盈利”或“亏损”),利润率或亏损率为______.16.如图,数轴上A,B两点之间的距离AB=16,有一根木棒PQ沿数轴向左水平移动,当点Q移动到点B时,点P所对应的数为6,当点Q移动到线段AB的中点时,点P所对应的数为______.三、计算题(本大题共3小题,共30.0分)17.先化简,再求值:3ab2+2(ab2-a3b)-3(2ab2-a3b),其中a=-2,b=.18.()观察积分榜,请直接写出球队胜一场积分,负一场积分;(2)根据积分规则,请求出E队已经进行了的11场比赛中胜、负各多少场?(3)若此次篮球比赛共16轮(每个球队各有16场比赛),D队希望最终积分达到28分,你认为有可能实现吗?请说明理由.19.数轴上点A表示的数为10,点M,N分别以每秒a个单位长度、每秒b个单位长度的速度沿数轴运动,a,b满足|a-5|+(b-6)2=0.(1)请直接写出a=______,b=______;(2)如图1,点M从A出发沿数轴向左运动,到达原点后立即返回向右运动;同时点N从原点O出发沿数轴向左运动,运动时间为t,点P为线段ON的中点.若MP=MA,求t的值;(3)如图2,若点M从原点向右运动,同时点N从原点向左运动,运动时间为t.当以M,N,O,A为端点的所有线段的长度和为109时,求此时点M对应的数.四、解答题(本大题共5小题,共42.0分)20.计算.(1)80°-53°17′;(2)(3-5)×4+(-6)2÷921.解方程(1)2(x+3)=5x:(2)1-.22.某车间每天能制作甲种零件50只,或制作乙种零件25只,甲、乙两种零件各一只配成一套产品.现要使60天内制作的产品成套.则甲、乙两种零件各应安排制作多少天?23.如图,延长线段AB到点C,使BC=AB,点D为AC的中点.(1)若AB=8,请补齐图形并求线段BD的长;(2)若F为BC的三等分点,则的值为______(直接写出结果)24.如图,∠AOB=α,∠COD=β,且90°<α<180°,0°<β<90°.(1)如图1,已知α=128°.①若OD平分∠BOC,∠AOC与∠BOD互为余角,求∠AOC的度数;②若β=30°,分别作∠AOC和∠BOD平分线OP,OQ.求∠POQ的度数;(2)如图2,若α+β=160°,∠COD在平面内绕点O旋转,分别作∠AOC和∠BOD 平分线OP,OQ,则∠POQ的度数为______°(直接写出结果).答案和解析1.【答案】D【解析】解:一个物体向右移动1m记作+1m,那么这个物体向左移动3m记作-3m,故选:D.根据正数和负数表示相反意义的量,向右移动记为正,可得向左移动的表示方法.本题考查了正数和负数,相反意义的量用正数和负数表示.2.【答案】B【解析】解:A=-2,-1<B<0,C=1,D=2,所以所对应的数互为相反数的是A和D,故选:B.根据数轴和相反数的概念解答即可.本题考查了数轴,学会根据点在数轴上的位置来判断数的大小与正负.3.【答案】A【解析】解:单项式-2x3y的系数为:-2.故选:A.利用单项式中的数字因数叫做单项式的系数,进而得出答案.此题主要考查了单项式,正确把握单项式的系数确定方法是解题关键.4.【答案】C【解析】解:A、-(-3)=3,正确;B、|2|=|-2|,正确;C、0<|-1|,错误;D、-2>-3,正确;故选:C.根据正数大于零,零大于负数和绝对值、相反数的概念可得答案.本题考查了有理数大小比较,利用正数大于零,零大于负数是解题关键.5.【答案】B【解析】解:观察图形可知,这个圆锥的侧面展开图可能是.故选:B.根据圆锥的侧面展开图是扇形,结合选项即可求解.本题考查了立体图形的侧面展开图.熟记常见立体图形的侧面展开图的特征是解决此类问题的关键.6.【答案】D【解析】解:由等式a=b,可得:a-n=b-n,an=bn,a2=b2,但b=0时,无意义,故选:D.分别利用等式的基本性质判断得出即可.此题主要考查了等式的基本性质,熟练掌握性质1、等式两边加同一个数(或整式)结果仍得等式;性质2、等式两边乘同一个数或除以一个不为零的数(或整式),结果仍得等式是解题关键.7.【答案】A【解析】解:设蓝布料x米,则黑布料(120-x)m,根据题意可得:3x+5(120-x)=540,故选:A.首先设蓝布料x米,则黑布料(120-x)m,进而利用买两种布料共120m,花了540元得出等式求出即可.此题主要考查了一元一次方程的应用,得出正确的等量关系是解题关键.8.【答案】B【解析】解:设∠BFC′的度数为α,则∠EFC'=65°+α,由折叠可得,∠EFC=∠EFC'=65°+α,又∵∠BFC=180°,∴∠EFB+∠EFC=180°,∴65°+65°+α=180°,∴α=50°,∴∠BFC′的度数为50°,故选:B.设∠BFC′的度数为α,则∠EFC=∠EFC'=65°+α,依据∠EFB+∠EFC=180°,即可得到α的大小.本题考查了三角形内角和定理以及折叠的性质,解题时注意:折叠前后两图形全等,即对应角相等,对应线段相等.解:根据题意知:第一阶段时,余下的线段的长度之和为,第二阶段时,余下的线段的长度之和为×=()2,第三阶段时,余下的线段的长度之和为××=()3,…以此类推,第五个阶段时,余下的线段的长度之和为()5,当达到第n个阶段时(n为正整数),余下的线段的长度之和为()n.∴达到第2017个阶段时,余下的线段的长度之和为()2017,故选:C.根据题意可知:当第一阶段时,余下线段之和为,当第二阶段时,余下线段之和为:=()2,当第三阶段时,余下线段之和为:=()3,于是得到结论.此题考查图形的变化规律,找出图形之间的联系,得出规律,解决问题.10.【答案】A【解析】解:①平面内3条直线两两相交,有1个或3个交点;故错误;②在平面内,若∠AOB=40°,∠AOC=∠BOC,则∠AOC的度数为20°或160°;故错误;③若线段AB=3,BC=2,则线段AC的长为1或5;点C不一定在直线AB上,故错误;④若∠α+∠β=180°,且∠α<∠β,则∠α的余角为(∠β-∠α),故正确.故选:A.根据线段的和差,相交线的定义,角平分线的定义,余角和补角的定义进行判断找到正确的答案即可.本题考查了基本的几何定义,比较简单,属于基础题.解:-的倒数是-2.故答案为:-2.乘积是1的两数互为倒数.本题主要考查的是倒数的定义,熟练掌握倒数的概念是解题的关键.12.【答案】15【解析】解:∠ABD=∠CBD-∠ABC=45°-30°=15°.故答案为:15.根据角的和差关系即可求解.考查了角的计算,关键是熟记三角板上面的度数.13.【答案】三三 5【解析】解:因为多项式的最高次项是3a2b,由三个单项式的和组成,所以多项式3a2b-2ab+5是三次三项式,其中常数项是-5.故答案是:三,三,5.根据多项式次数和项数以及常数项的定义求解.此题考查的是多项式的定义,多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数.常数项是不含字母的项.14.【答案】85【解析】解:∠AOB=180°-60°-35°=85°.故答案是:85.首先根据方向角的定义作出图形,根据图形即可求解.本题考查了方向角的定义,正确理解方向角的定义,理解A、B、O的相对位置是关键.15.【答案】盈利8%【解析】解:设成本为a元,根据题意可得:(1+20%)a•90%-a=0.08a,即出售该商品最终是盈利,利润率为8%.故答案是:盈利,8%.设成本为a元,按成本增加20%定出价格,求出定价,再根据按定价的90%出售,求出售价,最后根据售价-进价=利润,列式计算即可.本题考查了一元一次方程的应用,解题的关键是理清数量之间的关系,求出每件商品的售价.16.【答案】-2【解析】解:设AB的中点为C,则AC=BC=8,∵当点Q移动到点B时,点P所对应的数为6,∴此时AP=10,当点Q移动到线段AB的中点C时,BQ=AQ=8,∴点P所对应的数为6-8=-2,故答案为:-2.设AB的中点为C,则AC=BC=8,求得AP=10,当点Q移动到线段AB的中点C时,BQ=AQ=8,根据两点间的距离的求法即可得到结论.本题考查了数轴,正确理解两点间的距离是解题的关键.17.【答案】解:原式=3ab2+2ab2-2a3b-6ab2+3a3b=-ab2+a3b,当,时,原式==.【解析】原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.18.【答案】2 1【解析】解:(1)2,1(2)设胜x场,则负(11-x)场依题意列方程2x+(11-x)=13解得x=2,则负场为 11-2=9(场)答:E对11场比赛胜2场,负9场(3)不可能实现,理由如下:设接下来的5场比赛胜x场,则负(5-x)场依题意列方程:2x+(5-x)=28-17x=6>5,不符合题意故不可能实现本题是典型的比赛积分问题.清楚积分的组成部分及胜负积分的规则是本题的关键.本类题型清楚积分的组成部分及胜负积分的规则及各个量之间的关系,并与一元一次方程相结合即可解该类题型.总积分等于胜场积分与负场的和.19.【答案】5 6【解析】解:(1)∵|a-5|+(b-6)2=0.∴a-5=0,b-6=0∴a=5,b=6故答案为5,6.(2)①点M未到达O时(0<t≤2时),NP=OP=3t,AM=5t,OM=10-5t,即3t+10-5t=5t,解得t=②点M到达O返回时当(2<t≤4时),OM=5t-10,AM=20-5t,即3t+5t-10=20-5t,解得t=③点M到达O返回时,即t>4时,不成立(3)①依题意,当M在OA之间时,NO+OM+AM+MN+OA+AN=6t+20+11t+10+6t=109,解得t=>2,不符合题意,舍去;②当M在A右侧时,NO+OA+AM+AN+OM+MN=6t+5t+11t+10+6t+5t=109,解得 t=3,点M对应的数为15答:此时点M对应的数为15.本题涉及数轴即路程为题,清楚各个点之间距离的表示方式是解题的关键.另外要注意路程相等的几种情况.本题考查学生对数轴相关知识的掌握情况及利用一元一次解决实际问题的能力.20.【答案】解:(1)原式=79°60'-53°17'=26°43';(2)原式=-2×4+36÷9=-8+4=-4.【解析】(1)根据度分秒的计算解答即可;(2)根据有理数的混合计算解答.此题考查度分秒的换算,关键是根据度分秒的和、差计算即可.21.【答案】解:(1)2(x+3)=5x,去括号,得:2x+6=5x,移项合并同类项,得3x=6,化系数为1,得x=2;(2)1-,去分母,得10-x=4x+8,移项合并同类项,得5x=2,化系数为1,得.【解析】(1)去括号、移项、合并同类项、系数化为1,依此即可求解;(2)去分母、去括号、移项、合并同类项、系数化为1,依此即可求解.考查了解一元一次方程,解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a形式转化.22.【答案】解:设安排甲制作x天,则安排乙制作(60-x)天,依题意列方程:50x=25(60-x)解得x=20,则安排乙制作 60-20=40(天)答:安排甲制作20天,则安排乙制作40天.【解析】可设甲种零件应制作x天,则乙种零件应制作(60-x)天,本题的等量关系为:甲、乙两种零件各一只配成一套产品.由此可得出方程求解.考查了一元一次方程的应用,解题关键是弄清题意,合适的等量关系,列出方程.本题要注意关键语“甲、乙两种零件各一只配成一套产品”得出等量关系,从而求出解.23.【答案】或【解析】解:(1)补图如图,∵BC=AB,AB=8,∴BC=4,∴AC=AB+BC=12,∵点D为AC的中点,∴DC=AC=6,∴BD=DC-BC=6-4=2.(2)由(1)知AD=DC=6,分两种情况讨论:①点F靠点B近,BF=,=;②点F靠点B近,BF=,=.故答案为:或.(1)先根据已知条件求出BC,再求出AC,由线段中点的定义求出DC,最后由BD=DC-BC求得答案;(2)由(1)知AD=DC=6,因为F为BC的三等分点,但是没有说明点F靠点B近,还是靠点C 近,所以需要分两种情况讨论:①点F 靠点B 近,BF=;②点F 靠点B 近,BF=.本题主要考查的是两点间的距离,掌握图形间线段之间的和差关系是解题的关键.24.【答案】100或80【解析】解:(1)①∵OD 平分∠BOC ,∠AOC+∠BOD=90°,∴∠BOD=∠COD=β,∴∠AOB=∠AOD+∠BOD=90°+β=128°,即β=38°,∴∠AOC=90°-β=52°; ②∵OP 平分∠AOC ,OQ 平分∠BOD ,∴∠AOP=∠AOC ,∠BOQ=∠BOD ,∴∠POQ=∠AOC+∠BOD+∠COD=(∠AOC+∠BOD+∠COD )+∠COD =∠AOB+15°=64°+15°=79°;(2)如图1,∵OP ,OQ 分别是∠AOC 和∠BOD 平分线,∴∠COP=∠AOC ,∠DOQ=∠BOD ,∴∠COP+∠DOQ=(∠AOC+∠BOD )=(∠AOB-∠COD )=(α-β),∴∠POQ=∠COP+∠DOQ+∠COD=(α-β)+β=(α+β)=80°; 如图2,∵∠AOD=∠AOB+∠COD-∠BOC=α+β-∠BOC ,∵OP ,OQ 分别是∠AOC 和∠BOD 平分线,∴∠COP=∠AOC ,∠BOQ=∠BOD ,∴∠POQ=∠COP+∠BOQ+∠BOC=(∠AOB-∠COD )+∠BOC=100°, 故答案为:80°或100°.(1)①根据角平分线的定义可以求得∠BOD=∠COD=β,可得∠AOB=∠AOD+∠BOD=90°+β=128°,求得β=38°,从而得到∠AOC的度数;②根据角平分线的定义得到∠AOP=∠AOC,∠BOQ=∠BOD,可得∠POQ=∠AOC+∠BOD+∠COD=(∠AOC+∠BOD+∠COD )+∠COD,从而得到∠POQ的度数;(2)分两种情况进行讨论,本题考查了角平分线定义,熟练掌握角平分线的定义是解题的关键.。
2019-2020年七年级数学上期期末考试参考答案

2019-2020年七年级数学上期期末考试参考答案说明:1.如果考试的解答与本参考答案提供的解法不同,可根据提供的解法的评分标准精神进行评分.2.评阅试卷,要坚持每题评阅到底,不能因考生解答中出现错误而中断对本题的评阅.如果考生的解答在某一步出现错误,影响后继部分而未改变本题的内容和难度,视影响的程度决定对后面给分的多少,但原则上不超过后继部分应得分数之半.3.评分标准中,如无特殊说明,均为累计给分.4.评分过程中,只给整数分数. 一、选择题(每小题3分,共18分) 题号 1 2 3 4 5 6 答案ADDCCB二、 填空题(每小题3分,共27分) 题号 7891011 12131415 答案5-圆柱,圆锥2145°(0.8b-10)4487月14号(或7月15号)三、解答题(共55分) 16.解:21)2(6)1(2011⨯-÷--)23(1---= ……………………………………4分21=. ………………………………………………………………………6分 17.解:(1)如图;…………………………2分 (2)如图; …………………………4分 (3)MN ⊥PH . ……………………6分18.解:①. …………………………………………………………………………1分6)15()12(2=--+x x .61524=+-+x x . ………………………………………4分 62154+--=-x x .3=-x .3-=x . ……………………………………………6分19.解:理由如下:设这个数是x ,则 …………………………………………………1分[][].)10(10)10(141014)10()75(214x x x x =-÷-=-÷+--=-÷-⨯--20. 解:(1)(名)50%2412=÷.该班共50名同学; ………………………………………………3分 (2) 如图; ………………………………………6分学生平均每天完成作业用时统计图/学生平均每天完成作业用时统…………………………………………………4分…………………………………………………6分…………………………………………………8分(3)这名同学平均每天完成作业用时为1小时的可能性最大,因为从扇形统计图可以看出平均每天完成作业用时为1小时占的区域最大. ………………9分21. 解:(1)三角形个数依次为:0,5,10; ………3分(2)5(n -1)个; …………………………6分 (3)不能. ………………7分因为5(n -1)=2011, 而52016=n 不是整数,所以不能.…………………10分 22. 解:(1)设经过x 秒后,农用车发出的噪声开始使小明受到影响. 由题可得2064100+=+x x . 解得40=x .经过40秒时,农用车发出的噪声开始使小明受到影响. ……………………4分 (2)设小明受到农用车噪声的影响会持续y 秒. 由题可得202046++=y y . 解得20=y .小明受到农用车噪声的影响会持续20秒. ……………………7分(3) 农用车刚好经过小明身旁时,小明立刻停下来,受农用车噪声影响持续的时间比(2)短. …………………8分理由如下: 设农用车从离小明20米到追上小明用z 秒.由题可得2046+=z z . 解得10=z .因为313620=÷,311331310=+<20.所以农用车刚好经过小明身旁时,小明立刻停下来,受农用车噪声影响持续的时间比(2)短. ……………………10分。
2019-2020 学年七年级上学期期末数学试题(解析版 )

初中2019级第一学期末教学质量监测数学第Ⅰ卷(选择题,共36分)一、选择题(本大题共12个小题,每小题3分,共36分.)1. 5的相反数是( )A. 15B.15- C. 5 D. 5-【答案】D【解析】【分析】根据相反数的定义解答.【详解】解:只有符号不同的两个数称为互为相反数,则5的相反数为-5,故选D.【点睛】本题主要考查了相反数的性质,只有符号不同的两个数互为相反数,0的相反数是0.2. 下列四个几何体中,是三棱柱的为( ).A. B.C. D.【答案】C【解析】【分析】分别判断各个几何体的形状,然后确定正确的选项即可.【详解】解:A、该几何体为四棱柱,不符合题意;B、该几何体为四棱锥,不符合题意;C、该几何体为三棱柱,符合题意;D、该几何体为圆柱,不符合题意.故选C.【点睛】考查了认识立体图形的知识,解题的关键是能够认识各个几何体,难度不大.3. 中国陆地面积约为29600000km ,将数字9600000用科学记数法表示为()A. 59610⨯B. 69.610⨯C. 79.610⨯D. 80.9610⨯ 【答案】B【解析】【分析】根据科学记数法的表示方法写出即可.【详解】解:将9600000用科学记数法表示为69.610⨯.故选B .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中110a <,n 为整数,表示时关键要正确确定a 的值以及n 的值.4. 如果单项式312m x y +-与2x 4y n+3的差是单项式,那么(m+n)2019的值为( ) A. 1-B. 0C. 1D. 22019【答案】A【解析】 【分析】 根据312m x y +-和2x 4y n+3是同类项,求出m 和n 的值,即可得出答案. 【详解】∵单项式312m x y +-与2x 4y n+3的差是单项式 ∴m+3=4,n+3=1解得:m=1,n=-2∴(m+n)2019=[1+(-2)]2019=-1故答案选择A.【点睛】本题考查的是同类项的定义:①字母相同;②相同字母的指数相同.5. 若(k ﹣5)x |k |﹣4﹣6=0是关于x 的一元一次方程,则k 的值为( )A. 5B. ﹣5C. 5 或﹣5D. 4 或﹣4【答案】B【解析】【分析】由一元一次方程的定义可得|k |﹣4=1且k ﹣5≠0,计算即可得到答案.【详解】∵(k ﹣5)x |k |﹣4﹣6=0是关于x 的一元一次方程, ∴|k |﹣4=1且k ﹣5≠0,解得:k =﹣5.故选B .【点睛】本题考查一元一次方程的定义,解题的关键是掌握一元一次方程的定义.6. 用四舍五入法得到的近似数1.02×104,其精确度为( )A. 精确到十分位B. 精确到十位C. 精确到百位D. 精确到千位【答案】C【解析】【分析】 先把近似数还原,再求精确度,即可得出答案.【详解】1.02×104=10200,2在百位上,故答案选择C. 【点睛】本题考查的是近似数的精确度,比较简单,近似数最后一位所在的数位即为该数的精确度. 7. 下列说法错误的是 ( )A. 若a=b,则3-2a=3-2bB. 若a b c c =,则a=b C. 若a b =,则a=bD. 若a=b,则ca=cb【答案】C【解析】【分析】 根据等式的性质逐一判断即可得出答案.【详解】A :因为a=b ,所以-2a=-2b ,进而3-2a=3-2b ,故选项A 正确;B :因为a b c c =,所以a=b ,故选项B 正确;C :因为a b =,所以a=b 或a=-b ,故选项C 错误;D :因为a=b ,所以ca=cb ,故选项D 正确;故答案选择C.【点睛】本题考查的是等式的性质,比较简单,需要熟练掌握等式的基本性质.8. 一张试卷有25道选择题,做对一题得4分,做错一题得-1分,某同学做完了25道题,共得70分,那么他做对的题数是( )A. 17道B. 18道C. 19道D. 20道【答案】C【解析】【分析】设作对了x道,则错了(25-x)道,根据题意列出方程进行求解.【详解】设作对了x道,则错了(25-x)道,依题意得4x-(25-x)=70,解得x=19故选C.【点睛】此题主要考查一元一次方程的应用,解题的关键是根据题意找到等量关系.9. 已知x2+3x=2,则多项式3x2+9x﹣4的值是()A. 0B. 2C. 4D. 6【答案】B【解析】【分析】【详解】解:∵x²+3x=2,∴3x²+9x−4=3(x²+3x)−4=3×2−4=6−4=2,故选B. 10. 已知数a、b、c在数轴上的位置如图所示,化简|a+b|﹣|c﹣b|的结果是()A. a+bB. ﹣a﹣cC. a+cD. a+2b﹣c【答案】C【解析】【分析】首先根据数轴可以得到a、b、c的取值范围,然后利用绝对值的定义去掉绝对值符号后化简即可.【详解】解:通过数轴得到a<0,c<0,b>0,|a|<|b|<|c|,∴a+b>0,c﹣b<0∴|a+b|﹣|c﹣b|=a+b﹣b+c=a+c,故答案为a+c.故选C11. 观察如图所示图形,则第n个图形中三角形的个数是( )A. 2n+2B. 4n+4C. 4nD. 4n-4【答案】C【解析】【分析】由已知的三个图可得到一般的规律,即第n个图形中三角形的个数是4n,根据一般规律解题即可.【详解】解:根据给出的3个图形可以知道:第1个图形中三角形的个数是4,第2个图形中三角形的个数是8,第3个图形中三角形的个数是12,从而得出一般的规律,第n个图形中三角形的个数是4n.故选C.【点睛】此题考查了学生由特殊到一般的归纳能力.解此题时要注意寻找各部分间的联系,找到一般规律.12. 如图,将两块三角尺AOB与COD的直角顶点O重合在一起,若∠AOD=4∠BOC,OE为∠BOC的平分线,则∠DOE的度数为()A. 36°B. 45°C. 60°D. 72°【答案】D【解析】【分析】先推出∠AOD+∠BOC=180°,结合∠AOD=4∠BOC,求出∠BOC的度数,再根据角平分线求出∠COE的度数,利用∠DOE=∠COD-∠COE即可解答.【详解】解:∵∠AOB=90°,∠COD=90°,∴∠AOB+∠COD=180°,∵∠AOB=∠AOC+∠BOC,∠COD=∠BOC+∠BOD ,∴∠AOC+∠BOC+∠BOC+∠BOD=180°,∴∠AOD+∠BOC=180°,∵∠AOD=4∠BOC,∴4∠BOC+∠BOC=180°,∴∠BOC=36°,∵OE 为∠BOC 的平分线,∴∠COE=12∠BOC=18°,∴∠DOE=∠COD−∠COE=90°−18°=72°,故选择:A.【点睛】本题考查了角平分线的定义,角的和差计算及数形结合的数学思想,根据图中的数量关系求出∠BOC=36°是解答本题的关键.第Ⅱ卷(非选择题,共64分)二、填空题:(本大题共6小题,每小题3分,共18分.)13. 建筑工人在砌墙时,经常用细线绳在墙的两端之间拉一条参照线,使垒的每一层砖在一条直线上,这样做的依据是:__________.【答案】两点确定一条直线【解析】【分析】由直线公理可直接得出答案.【详解】建筑工人在砌墙时,经常用细线绳在墙的两端之间拉一条参照线,使垒的每一层砖在一条直线上,沿着这条线就可以砌出直的墙,则其中的道理是:两点确定一条直线.故答案为:两点确定一条直线.【点睛】本题主要考查的是直线的性质,掌握直线的性质是解题的关键.14. 用“>、=、<”符号填空:45-______78-.【答案】> 【解析】【分析】先求绝对值,再用绝对值相减即可得出答案.【详解】∵44=55-,77=88-又4732-353-==-0 584040<∴47 < 58∴47 ->-58故答案为:>【点睛】本题考查的是负数的比较大小,先取绝对值,再比较大小,绝对值大的反而小.15. 如图,OA是北偏东28°36′方向的一条射线,OB是北偏西71°24′方向的一条射线,则∠AOB=__________.【答案】100°【解析】【分析】根据题意求出∠AOC和∠BOC的度数,相加即可得出答案.【详解】根据题意可得:∠AOC =28°36′,∠BOC=71°24′∠AOB=71°24′+28°36′=100°故答案为:100°【点睛】本题考查的是角度的计算,比较简单,角度的计算记住满60进1.16. 已知|3m ﹣12|+212n ⎛⎫+ ⎪⎝⎭=0,则2m ﹣n=_____. 【答案】10【解析】【分析】【详解】∵|3m ﹣12|+2(1)2n +=0,∴|3m ﹣12|=0,2(1)2n +=0,∴m =4,n =﹣2,∴2m ﹣n =8﹣(﹣2)=10.点睛:本题考查了非负数的性质,几个非负数的和等于0,则每个数都等于0,初中范围内的非负数有:绝对值,算术平方根和偶次方.17. 规定“Δ”是一种新的运算法则,满足:a △b=ab-3b ,示例:4△(-3)=4×(-3)-3×(-3)=-12+9=-3.若-3△(x+1)=1,则x=____________. 【答案】76- 【解析】【分析】根据新定义代入得出含x 的方程,解方程即可得出答案.【详解】∵a △b=ab-3b∴-3△(x+1)=-3(x+1)-3(x+1)=-6(x+1)∴-6(x+1)=1解得:x=76- 【点睛】本题考查的是新定义,认真审题,理清题目意思是解决本题的关键.18. 在数轴上点A 对应的数为-2,点B 是数轴上的一个动点,当动点B 到原点的距离与到点A 的距离之和为6时,则点B 对应的数为_________.【答案】-4或2【解析】【分析】先设点B 对应的数为b ,再用距离公式计算即可得出答案.【详解】设点B 对应的数为b解:设点B 表示的数为b ,①当点B 在点A 的左侧时,则有-2-b-b=6,解得,b=-4,②当点B 在OA 之间时,AB+AO=2≠6,因此此时不存在,③当点B 在原点的右侧时,则有b+2+b=6,解得,b=2,故答案为:-4或2.【点睛】本题考查的是数轴的动点问题,解题关键是利用距离公式进行计算.三、解答题(本大题共6个小题,共46分.)19. 计算:100211(10.5)3(3)3⎡⎤---⨯⨯--⎣⎦ 【答案】0【解析】【分析】按照有理数的混合运算顺序:先算乘方,再算乘除,最后算加减,若有括号先算括号内的,计算即可. 【详解】解:100211(10.5)3(3)3⎡⎤---⨯⨯--⎣⎦ =-1-12×13×(3-9) =-1-16×(-6) =-1+1=0【点睛】本题考查有理数的混合运算,掌握运算顺序及法则,正确计算是本题的解题关键.20. 解方程:12136x x x -+-=- 【答案】27x =-【解析】【分析】方程两边同时乘以最小公倍数去掉分母,进而去括号、移项、合并同类项即可求解.【详解】解:去分母得:6x-2(1-x )=x+2-6,去括号得:6x-2+2x=x+2-6,移项得:6x+2x-x=2-6+2,合并同类项得:7x=-2,解得:27x =-. 【点睛】本题考查一元一次方程的解法,掌握解方程的步骤正确计算是本题的关键.21. 先化简,再求值:已知()()222242x x y x y --+- ,其中1x =-,y=2. 【答案】22x y +;5.【解析】【分析】先去括号再合并同类项,然后把1x =-,y=2代入计算.【详解】解:原式=22222422=2x x y x y x y --+++, 当1x =-,y=2时,原式=(-1)2+2×2=5. 【点睛】本题考查了整式的加减−化简求值:先去括号,再合并同类项,然后把满足条件的字母的值代入计算得到对应的整式的值.22. 如图所示,已知C ,D 是线段AB 上的两个点,M ,N 分别为AC ,BD 的中点,若AB=10cm ,CD=4cm ,求线段MN 的长;【答案】7cm【解析】【分析】根据题目求出AC+DB 的值,进而根据中点求出AM+DN 的值,即可得出答案.【详解】解:∵AB=10cm ,CD=4cm∴AC+DB=AB-CD=6cm又M ,N 分别为AC ,BD 的中点∴AM=CM=12AC ,DN=BN=12DB ∴AM+DN=12(AC+DB)=3cm ∴MN=AB-(AM+DN)=7cm【点睛】本题考查的是线段的中点问题,解题关键是根据进行线段之间等量关系的转换.23. 小魏和小梁从A ,B 两地同时出发,小魏骑自行车,小梁步行,沿同条路线相向匀速而行。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
洪江市2019年上学期七年级期末试题 数学参考答案一、1、C 【解析】根据二元一次方程组的定义,共含有两个未知数,且未知数的次数为1的整式方程组成的方程组是二元一次方程组,直接解析判断即可.A 、第一个方程不是整式方程,故不是二元一次方程组;B 、未知项xy 的次数为2,故不是二元一次方程组;C 、符合二元一次方程组的定义,是二元一次方程组;D 、第一个方程未知项x 2的次数为2,故不是二元一次方程组.故选:C .2、D 【解析】A 项,24(2)(2)x x x -=+-,故A 项分解错误; B 项,2484(2)a a a a -=-,故B 项分解错误;C 项,2222(1)1a a a -+=-+,故C 项分解错误;D 项,2221(1)x x x -+=-,故D 项分解正确;故答案选:D . 3、B 【解析】本题主要考查轴对称图形的基本概念:轴对称图形是把图形沿着某条直线对折,直线两旁的部分能够完全重合的图形,而这条直线叫做对称轴。
A 项,不是轴对称图形。
故A 项错误;B 项,是轴对称图形。
故B 项正确;C 项,不是轴对称图形。
故C 项错误;D 项,不是轴对称图形。
故D 项错误;故答案选:B .4、C 【解析】A 项,2123a a a a +⋅==,故A 项错误;B 项,32326()x xx ⨯==,故B 项错误; C 项,2222(2)24a a a ==,故C 项正确;D 项,22(1)(1)(1)21x x x x x +=++=++,故D 项错误;故答案选:C .5、A 【解析】解:(4×3÷2)×2=12,共有12对,故选:A .6、D 【解析】A 项,平移不改变图形的形状和大小,故A 项正确;B 项,对顶角相等,故B 项正确;C 项,互补的两个角其和是180°,故C 项正确;D 项,两直线平行,同位角相等,故D 项错误;故答案选:D .7、C8、B 【解析】()()()()()()()()()()()()()()()12126612336126122461224=2121212121212121217921212163212121-+=-++=-+++=⨯⨯+++=⨯+++原式9、A 【解析】解:∵AB ⊥BC ,BC ⊥CD ,∴∠ABC=∠DCB=90°,∵∠EBC=∠BCF ,∴∠ABE=∠FCD .故选:A .10、B 【解析】解:如图,当AC ∥DE 时,∠BAD=∠DAE=45°;当BC ∥AD 时,∠DAB=∠B=60°;当BC ∥AE 时,∵∠EAB=∠B=60°,∴∠BAD=∠DAE+∠EAB=45°+60°=105°;当AB ∥DE 时,∵∠E=∠EAB=90°,∴∠BAD=∠DAE+∠EAB=45°+90°=135°.故本题答案为:B.二、11、5x -【解析】运用幂的乘方运算得23235(1)x x x x +-⋅=-⨯=-12、-1【解析】201920192019201920192019112(1)2122⎛⎫-⨯=-⨯⨯=- ⎪⎝⎭ 13、1【解析】如果一个方程含有两个未知数,并且所含未知项的次数都为1次,那么这个整式方程就叫做二元一次方程。
只有x ﹣3y=1是14、10【解析】依题意得:∵22225(5)x mx x mx ++=++±,∴2(5)10mx x m =⨯±⇒=±,又0m >,则10m =15、∠α+∠β−∠γ=180°【解析】过点E 作EF ∥AB ,如图所示。
∵AB ∥CD ,EF ∥AB ,∴EF ∥CD ∥AB ,∴∠α+∠AEF =180°,∠γ=∠CEF .又∵∠AEF +∠CEF =∠β,∴∠α+∠β−∠γ=180°. 故答案为:∠α+∠β−∠γ=180°. 16、3【解析】依题意得:因为两直线的距离为5,又,a b 之间的点P 到a 的距离为2,则点P 到b 的距离为523d =-= 17、116°【解析】解:由折叠的性质可得∠GEF=∠C′EF ,∵AC′//BD′,∴∠C′EF=∠EFB=32°,∴∠C′EG=2∠C′EF=64°,∴∠AEG=180°-∠C′EG=180°-64°=116°,故答案为:116°18、50°或130°【解析】如图∵β的两边与α的两边分别垂直,∴α+β=180°故β=130°,在上述情况下,若反向延长∠β的一边,那么∠β的补角的两边也与∠α的两边互相垂直,故此时∠β=50; 综上可知:∠β=50°或130°,三、19、【解析】22(1)=5=(5)(5)x x x --+解:原式222(2)=3(2)3()a x xy y a x y -+=-解:原式20、【解析】本题考查的是解二元一次方程组,熟知解二元一次方程组的加减消元法和代入消元法是解答此题的关键.(1)先用代入消元法求出x 的值,再把x 的值代入2y x =+即可得出结论;(2)先用加减消元法求出x 的值,再把x 的值代入求出y 的值即可.解:(1)228y x x y =+⎧⎨+=⎩①② ,把①代入②得,228x x ++=,解得2x =,把2x =代入①得,224y =+=.故此方程组的解为24x y =⎧⎨=⎩; (2)3217411x y x y -=⎧⎨+=⎩①②,①×2+②得,13x =13,解得1x =,把1x =代入①得,321y -= ,解得1y =.故此方程组的解为11x y =⎧⎨=⎩. 21、【解析】原式第一项利用多项式乘以多项式法则计算,第二项利用完全平方公式展开,去括号合并得到最简结果,将已知等式代入计算即可求出值.解: ()222243224434481x x x x x x x x x x =-+-+++=-+---=--原式 当21-=x 时,18132⎛⎫=-⨯--= ⎪⎝⎭原式. 22、【解析】结合图形分析相等或互补的两角之间的位置关系,根据平行线的判定解答;运用平行线的性质找相等或互补的角.解:∵DE ∥AC (已知),∴∠A+∠AED=180°(两直线平行,同旁内角互补);∵DF ∥AB (已知),∴∠AED+∠FDE=180°(两直线平行,同旁内角互补),∴∠A=∠FDE (等量代换)23、【详解】(1)如图所示,△DEF 即为所求;(2)由图可知,线段AD 与BE 的关系是:平行且相等,(3)S △DEF =3×3-12×2×3-12×1×2-12×1×3=72.24、【解析】(1)平均数:(45011301603505403352)1580⨯+⨯+⨯+⨯+⨯+⨯÷=中位数:50,众数: 50.(2)不合理.因为15人中有13人销售量达不到80,周销售额定为50较合适,因为50是众数也是中位数.25、【解析】设中国队的积分为x ,俄罗斯队的积分为y ,每轮比赛不管输赢平局,这局比赛的总积分为1分,共进行了15轮,又中国队净胜俄罗斯队3分。
所以可得15936x y x x y y +==⎧⎧⇒⎨⎨-==⎩⎩ 答:中国队的积分为9,俄罗斯的积分为626、【解析】(1)∵OC ⊥AB ,∴∠AOC=90°,∵OD 在OA 和OC 之间,∠COD=20°,∠EOD=60°,∴∠COE=60°-20°=40°,∴∠AOE=90°+40°=130°,故答案为:130°;(2)在△ODE 旋转过程中,∠AOD 与∠COE 的差不发生变化,有两种情况:①如图1、∵∠AOD+∠COD=90°,∠COD+∠COE=60°,∴∠AOD-∠COE=90°-60°=30°,②如图2、∵∠AOD=∠AOC+∠COD=90°+∠COD,∠COE=∠DOE+∠DOC=60°+∠DOC,∴∠AOD-∠COE=(90°+∠COD)-(60°+∠COD)=30°,即△ODE在旋转过程中,∠AOD与∠COE的差不发生变化,为30°;(3)如图1、∵∠AOE=7∠COD,∠AOC=90°,∠DOE=60°,∴90°+60°-∠COD=7∠COD,解得:∠COD=18.75°,∴∠AOE=7×18.75°=131.25°;如图2、∵∠AOE=7∠COD,∠AOC=90°,∠DOE=60°,∴90°+60°+∠COD=7∠COD,∴∠COD=25°,∴∠AOE=7×25°=175°,即∠AOE=131.25°或175°.。